Measurement Methods and Applications to High-Performance Timing Test

Mani Soma
Univ of Washington, Seattle

Purpose
- To emphasize the measurement issues critical in high-frequency test
- To develop in-depth understanding of noise in measurements
 - timing noise, phase noise in RF systems
 - noise in converters
- To provide a foundation for research in RF measurement and test

Outline
- Top-down view of measurement issues
- Basic noise mechanisms and models
- Noise in measurement circuits
 - converters (sampled data)
 - PLL & VCO (clocks and data control)
- Case studies in measurement
 - existing methods and their noise considerations
- Research in measurement methods

System-level View
- Focus on measurements in RF systems

RF Test Requirements
- High-frequency test for specific blocks
 - RF digital blocks: PLL, I/O buffers
 - RF analog / mixed-signal blocks: transceiver, modulator, VCO, LNA, etc.
- Functional parametric test to verify performance
 - Phase, frequency, jitter, SNR, spectrum
- Automatic test
 - Role of low-frequency ATE

High-frequency Test Approaches
- Which measurement can be done most efficiently at high-frequency?
 - Voltage
 - Current
 - Time
- Which high-frequency measurement tool is available?
 - GHz clocks
 - Very fast sampler, converters
Focus on Measurement

- Measure = acquire raw data from a signal
 - usually taken for granted but …..
 - the critical first step of any test procedure
 - strong impact on final test accuracy and decision
 - strong impact in evaluating tradeoffs between on-chip and off-chip test

What Do We Measure?

- Voltage
 - capture signal points \((t_n, V_n), n=1,N \)
 - S/H, ADC, and sampling clocks
 - most popular measurement methods
 - in oscilloscopes, spectrum analyzers, etc.
 - in ATE
 - post-processing
 - peak detection, voltage gain, amplitude, etc.
 - timing estimation (e.g. zero-crossing)
 - FFT: amplitude, phase, noise, etc.

What Do We Measure? (2)

- Current
 - capture current values (at one or a few points)
 - resistor, current sensor, clocks
 - implementation
 - built-in compliance in benchtop instrument
 - in ATE for IDDQ test
 - limited use
 - simple short/open detection
 - IDDQ, IDDI, IDDx testing for various faults
 - post-processing
 - usually for IDDQ applications

What Do We Measure? (3)

- Time and frequency
 - direct measurement by capturing signal edges
 - clocks for capturing edges
 - indirect measurement via FFT of voltage samples
 - recent strong interest in direct timing measurement
 - on-chip BIST
 - benchtop instrument (e.g. Wavecrest)
 - post-processing
 - FFT and/or statistical analysis

Measurement Issues

- No perfect measurement exists
- Limitations to accuracy
 - noise: fundamental limit
 - interactions between measuring instrument and circuit under test (CUT)
 - post-processing methods and interpretation of results

Outline

- Top-down view of measurement issues
- Basic noise mechanisms and models
- Noise in measurement circuits
 - converters (sampled data)
 - PLL & VCO (clocks and data control)
- Case studies in measurement
 - existing methods and their noise considerations
- Research in measurement methods
Noise Characteristics & Models

- Component noise and impact on measurement
 - Intrinsic noise
 - Both in CUT and in measurement circuits
- Timing noise of high-frequency circuits
 - Higher-level models
 - Measurement methods

Resistor Noise

- Thermal noise
 - Inherent ($T=0K$, $k=1.38E-23 J/0K$)
 - $1K\Omega$ @ $25^\circ C$ or $298^\circ K @ 1 MHz$ has $4\mu V$ noise

 \[e_n^2 = 4kT R \Delta f \]

 \[i_n^2 = 4kT \Delta f / R \]

Resistor Noise & Sampling Jitter

- Resistor noise creates timing uncertainty in input sampling
 - Need to design for at high frequencies
- Example
 - 50Ω system, $10 MHz$ clock with $250 ps$ rise time
 - Noise-induced $2.7 ps$ jitter with $0.5V$ input

 \[\Delta t_{CLK} = \frac{0.7 kT R_n}{f_{CLK} \sqrt{\pi \tau_{CLK}}} \]

Wiring Impact

- 16-bit ADC on loadboard, $Z_\text{in} = 5K\Omega$, $5 cm$ of PCB copper track (0.25 mm wide, 0.038 mm thick) between input and signal source
- R (wire) = 0.09Ω
- Gain error = $R / Z_\text{in} = 0.0018\%$ (> 0.0015% = LSB for 16 bits)
- Data accuracy is no longer 16-bit!!

Other Resistor's Parasitics

- Skin effects ($f > 10 MHz$ for high resolution converters and high-frequency clocks)
- Copper (on PCB or on chip)

 \[\text{Skin depth}(cm) = 6.6 / \sqrt{f(\text{Hz})} \]

 \[R_{\text{square}}(\Omega) = 2.6 \times 10^{-7} \sqrt{f(\text{Hz})} \]

Resistive Noise Reduction Methods

- Reduce noise in design
 - Use differential designs
 - Match layout
 - Model and simulate with noise sources, series inductance and parallel capacitance
- Reduce noise in measurement
 - Use shielding or guard
 - Use differential measurement circuits
 - Use low-valued resistors
 - Reduce measurement bandwidth if possible
 - Use averaging methods in voltage measurement
Noise in Capacitors

- Capacitance between parallel wires -> crosstalk
- Capacitance between bond wires (~ 0.2 pF)
- Capacitor intrinsic noise
 - 1 pF @25°C has 64 µV noise

 \[e_n(C) = \sqrt{\frac{kT}{C}} \]

Capacitor Models in Measurement

- Use different models depending on measurement applications
- Add noise models for each component

 ![Model Diagrams]

Shot noise

- Discrete nature of current flow
- Shot noise current
 - \(q = 1.602 \times 10^{-19} \) C
 - another type of white noise

 \[I_n^2 = 4qI_{DC}\Delta f \]

1/f noise

- Flicker noise (terminology from vacuum tube)
 - generally 1/f, \(\alpha = 0.8 - 1.3 \)
 - very common
- Many names
 - excess noise, pink noise, contact noise, etc.
 - burst noise (popcorn noise): 1/F, \(\alpha = 1 - 2 \), usually 2
- red noise: 1/F
- Spectral density

 \[S_n(f) = \frac{E_n^2}{f} \]

Noise bandwidth

- Noise bandwidth ≠ 3-dB bandwidth
 - usually larger than 3-dB bandwidth
- Definition
 - system with voltage gain \(A_v(f) \) or power gain \(A_p(f) \),
 maximum gain = \(A_v0 \)

 \[\Delta f = \frac{1}{A_v0} \int |A_v(f)|^2 df \]
- First-order lowpass filter example
 - 3-dB bandwidth = \(f_L \)
 - noise bandwidth = \(\pi f_L / 2 \)
Note on measurement

- White (thermal) noise
 - longer measurement time reduces noise impact
 - accuracy increases as $T_{\text{measure}}^{1/2}$
- 1/f noise
 - measurement accuracy does not increase with measurement time
- Burst noise
 - amplitude and frequency (# bursts/sec)
 - need bandwidth large enough to capture sudden short burst, small enough to avoid thermal noise dominance

“Ground” in measurement

- realistic ground (ground loop)

Other ground loops

- Current from one source flows through ground impedance of the other source
- Current around ground loop creates magnetic coupling

Dealing with ground loops

- Guidelines for both design and test
- Separate digital and analog power and ground
- Join grounds at one point of the device

Signal routing guidelines

- Separate analog and digital signals
- Avoid crossovers between analog and digital signals
- Layout sampling clock and analog input wires carefully
- Layout high-impedance signals carefully
- Use differential designs

Noise in test set-up

- Instruments, ATE, on-chip test circuits all have noise
 - fundamental limit to measurement accuracy
 - system noise floor
 - highly dependent on test set-up
 - no industry standard for interpretation
 - need to understand basic mechanisms to interpret measurement and test results
System noise components

- Random noise
 - random timing jitter of test clocks
 - thermal noise
- Digital crosstalk and clock / signal harmonics
 - distinct spikes in spectrum
 - correlated to analog input or clock
 - synchronized noise
- Other noise sources
 - broad “needles” in spectrum
 - switching power supplies, linear power supplies, switching signals
 - non-synchronized

Case study: System noise

- Use ADC to characterize system noise
- Ideal 16-bit ADC
 - SNR (dB) = 6.02*16 + 1.76 = 98.08 dB
 - SNR = SQDR: noise includes quantization distortion, dynamic non-linearities, internal jitter, and internal thermal noise
- Measure via coherent sampling
 - larger sample size -> noise spread over more samples
 - noise per FFT bin decreases
 - noise improving figure NIF with N=2^K samples

 \[NIF(dB) = 10 \log \frac{N}{2} = 3.01(K - 1) \]

Noise floor calculations

- 16-bit ADC, 2^{17} samples
 - SQDR = 98.08 dB, NIF = 48.16 dB
 - noise floor (dBc) = SQDR+NIF = 146.24 dB
- noise floor (mean and absolute values)
 - signal swing: -5V to +5V
 - signal amplitude: 5V or 20 log 5 = 13.98 dBV
 - mean noise floor (dBV) = 146.24 - 13.98 = 132.26 dB
 - absolute noise floor (dBV) = 132.26 - 11 = 121.26 dB
 - > 11 dB: worst-case bin 11 dB greater than mean bin, due to Gaussian distribution of quantization noise

Sample size vs. noise floor

- Small number of samples: noise floor not visible
 - SQDR+NIF
 - Noise floor due to quantization distortion

Sample size vs. noise floor (2)

- Larger number of samples: noise floor components and spurious component
 - SFDR = spurious-free dynamic range

Case study: experiment

- Analogic ADC 4355
- Input signal frequency \(f_s = 997.162 \text{ Hz} \) (approx. 1 KHz)
- Sampling frequency \(f_s = 100000.0135 \text{ Hz} \) (approx. 100 KHz)
 - Nyquist bandwidth = 50 KHz
 - Number of signal periods = 1307
 - Record size = 131072 samples = 2^{17}
 - FFT frequency resolution = 100 KHz/2^{17} = 0.763 Hz
What type of sampling?
- From the spectrum, is the sampling coherent? Accurate? Why?
- Is the sampling clock jitter-free? Why?

Harmonics and spurious noise
- Is the spike at 11.965 KHz a signal harmonic or spurious noise?

Harmonics and spurious noise (2)
- Is the spike at 27.491 KHz a signal harmonic or spurious noise?

Answers
- \(f_i \) (signal) = 997.162 Hz
- \(f_s \) (sampling) = 100000.0135 Hz
- \(f = 11.9659 \) KHz = 12 \(\times \) 997.162 Hz = 12th harmonic
- \(f = 27.491 \) KHz = 2\(\times \)\(f_s \) - 173\(\times \)\(f_i \) = 173th harmonic folded back into the Nyquist band

Harmonics identification
- Higher harmonics folded back into the Nyquist band
- \(n \) = frequency zone
 - zone 0: 0 - 0.5 \(f_s \) (Nyquist band)
 - zone 1: 0.5 \(f_s \) - \(f_s \)
 - zone 2: 1.5 \(f_s \) - 2 \(f_s \)
- \(M \) = \(M \)th harmonic of signal (\(M = 1, 2, 3 \ldots \))
- \(f \) (\(M \)th harmonic in zone \(n \) folded to Nyquist zone) = \((n \times f_s + M \times f_i) \) or \((n \times f_s - M \times f_i) \)

Harmonics and signal
- Given input frequency \(f_i \) and sampling frequency \(f_s \), identify harmonic bin \(f_h \)
 - \(i \) = largest integer \(\leq 2 \frac{f_i}{f_s} \)
 - \(\frac{f_i}{f_s} = (1 - \frac{1}{2}) \left(f_s - \left(i + \frac{1 - (-1)^i}{2} \right) \frac{f_s}{2} \right) \)
- Given a peak frequency \(f_p \) and sampling frequency \(f_s \), identify signal frequency \(f_i \)
 - \(i = 0, 1, 2, 3 \ldots \) (ambiguity in identification)
 - need 2 sampling rates to identify better
 - \(f_i = (1 - \frac{1}{2}) \left(f_s - \left(i + \frac{1 - (-1)^i}{2} \right) \frac{f_s}{2} \right) \)
Outline
- Top-down view of measurement issues
- Basic noise mechanisms and models
- Noise in measurement circuits
 - converters (sampled data)
 - PLL & VCO (clocks and data control)
- Case studies in measurement
 - existing methods and their noise considerations
- Research in measurement methods

Noise calculation in converters
- DAC
 - ground all digital inputs
 - place noise sources (thermal, shot, 1/f, etc.) in appropriate circuit elements
 - contributions from each noise source type
 - resistor, opamp, input voltage noise, input current noise
 - calculate total noise using circuit analysis
 - sum independent noise power

DAC R-2R network noise
- Total noise spectral density
 - independent of N
 - $E_{n}^2 = 4kTR$

DAC binary-weighted network
- Total spectral density
 - approximately $E_{n}^2 = 2kTR$

DAC topologies vs. noise
- 4 topologies
 - R-2R with voltage follower
 - R-2R with inverting amplifier
 - R-2R with non-inverting amplifier
 - Binary-weighted with inverting summer
- Which has lower total noise at output?
- Why?
DAC noise analysis

- Normalizing assumptions
 - to make noise transfer function = 1 in all topologies
 - R-2R networks: $R_L = R_1 = R_2 = R$
 - binary-weighted network: $R_F = R_{eq} = R/2$
- Lowest noise
 - R-2R with follower (fewest components, no multiplication of opamp noise due to gain=1)
 - binary-weighted could be better if amplifier noise dominates

DAC noise lessons

- Use amplifier with lowest noise
 - E_n of amplifier dominates DAC noise
- Use low-noise reference voltage
 - second dominant noise factor
- Binary-weighted DAC
 - below 1 KHz: resistor 1/f noise dominates
 - above 1 KHz: voltage reference noise dominates

ADC noise model

- Flash ADC example
- Noise components
 - resistor noise
 - reference noise
 - comparator noise (voltage and current)
- Noise models: white and 1/f
- Ignore digital encoder noise

ADC noise analysis

- largest contribution of V_{ref} noise
- all other sources contribute
- most noise at the mid-range comparators

ADC noise vs. bit error

- Noise distribution with respect to LSB quantization window
 - Gaussian
 - center of each quantized step
- 6σ spread of the noise distribution
 - within quantization step: no bit error
 - outside quantization step
 - calculate probability of one-bit error

Outline

- Top-down view of measurement issues
- Basic noise mechanisms and models
- Noise in measurement circuits
 - converters (sampled data)
 - PLL & VCO (clocks and data control)
- Case studies in measurement
 - existing methods and their noise considerations
- Research in measurement methods
Phase noise and timing jitter

- Two domains to characterize clocks in measurement
 - Timing systems: jitter
 - RF systems: phase noise
 - How to relate them?
- Case study: VCO and other oscillators
 - $S_\phi(\omega)$ = phase noise in dBc (reference to carrier at ω_0) at the offset frequency $(\omega - \omega_0)$ from the carrier
 - $J_{cc, RMS}$ = RMS value of cycle-to-cycle jitter
 - White noise sources (thermal and shot noise)

$S_\phi(\omega) = \frac{a_0^2 / 4 \pi^2 f_0^3}{(\omega - \omega_0)^2}$

$J_{cc, RMS}^2 = \frac{4 \pi}{a_0^2} S_\phi(\omega) (\omega - \omega_0)^2$

Noise and timing jitter (1)

- VCO with supply and substrate noise
 - Non-white noise: model by noise modulation $V_m \cos(\omega_m t)$
 - RMS value of period jitter $J_{P, RMS}$ increases with noise amplitude
 - RMS value of cycle-to-cycle jitter $J_{cc, RMS}$ increases with noise frequency

$J_{P, RMS} = \frac{V_m K_{VCO}}{2 f_0}$

$J_{cc, RMS} = \frac{V_m K_{VCO}}{f_0} \frac{1 - \cos(\omega_m / f_0)}{2 f_0} \approx \frac{V_m K_{VCO}}{2 f_0^3}$

Noise and timing jitter (2)

- Single-ended VCO
 - Supply and substrate noise
 - $V_m = \Delta V_{DD} = 100$ mV
 - Analytical vs. simulated results

Noise and timing jitter (3)

- Differential-ring VCO
 - Supply and substrate noise
 - $V_m = \Delta V_{DD} = 100$ mV
 - Analytical vs. simulated results

Measurement guidelines

- Spectrum analyzer
 - More noise measured with higher bandwidth
 - Cannot be compared directly
 - Divide each noise measurement by $(\Delta f)^{1/2}$ for comparison
 - Analyzer calibrated resolution bandwidth ≠ noise bandwidth
 - Need to know how to interpret measured data correctly
Measurement time

- Instrument response time: \(\tau \)
 - Smallest time window possible
- Measurement bandwidth: \(\Delta f \)
- Relative error:
 \[
 \varepsilon = \frac{1}{\sqrt{2\pi \Delta f}}
 \]
- Use widest possible bandwidth (see next slide)
 - Narrowband measurements require more averaging for same accuracy
- Use long time window (with averaging when appropriate)

Noise reduction in measurement

- Use measurement methods with differential circuits and signals
- Use smaller bandwidth
 - Just "enough" bandwidth to reduce noise and still get good accuracy (previous slide)
- Employ signal separation and shielding
- Reduce transition switching in the measurement circuits
 - Use current-steering methods in analog measurement circuits to avoid \(di/dt \) transient

Noise reduction in measurement (2)

- "Instrument" = ATE, external instrument, or on-chip measurement circuit
- Considerations for sub-ps timing measurements
 - DUT - instrument interface
 - Instrument one-shot resolution / accuracy
 - Instrument DC input accuracy
 - Instrument physical location relative to DUT
 - Instrument jitter noise floor
 - Instrument throughput over data interface
 - Instrument trigger mode
 - Instrument bandwidth required to measure DUT timing parameters (rise, fall, delay, etc.)

Outline

- Top-down view of measurement issues
- Basic noise mechanisms and models
- Noise in measurement circuits
 - Converters (sampled data)
 - PLL & VCO (clocks and data control)
- Case studies in measurement
 - Existing methods and their noise considerations
- Research in measurement methods

Measuring Voltage: Sampling

- Signal under test
- Sample-and-Hold (SH)
- Digitizer (ADC)
- Memory storage
 - CLK

Sampling Architecture

- ATE
 - Control protocols
- Clock sources
 - DC references
- Memory Analysis
 - Extraction
- ADC & temporary registers
- Customer IC
 - Test controller

Consider noise floor of entire test set-up, including on-chip measurement circuits
Sampling Clock Issues

- Frequency
 - On-chip: limited by technology (CMOS, SiGe CMOS, BiCMOS)
 - 2 - 5 GHz
 - same speed as fastest on-chip signals
 - ATE: 1 GHz
 - limited by pin electronics and test setup
 - Benchtop instrument
 - up to 40 GHz samplers

Faster Sampling Methods

- Delay-line interpolation
 - on-chip or ATE
 - 1 GHz clock + 7-stage delay line (125 ps each) = 8 GHz sampling clock

Faster Sampling Methods (2)

- Parallel samplers
 - ATE and benchtop instruments
 - up to 40 GHz sampling rate

Sampling Limitations

- Clock jitter
 - signal with 100-ps rise time
 - sampled with 5-ps jitter clock
 - 5% error in sampled values
 - averaging to reduce error in periodic signals
 - no correction for one-shot signal

Sampling Limitations (2)

- Clock synchronization
 - synchronized with signal to be sampled
 - synchronized between sampling clocks

Realistic clock jitter values

- On-chip (CMOS / BiCMOS) as of 2002:
 - 2.2 GHz - 6 GHz clocks
 - 30 - 40 ps peak-to-peak jitter
 - 3 - 5 ps RMS jitter

- Off-chip
 - ATE, oscilloscope, spectrum analyzer, TIA
 - 1 - 10 ps RMS jitter
 - 200 fs resolution with 2 ps noise floor (best case)
 - need calibration before measurements
Sampling Limitations (3)

- Undersampling is better?
 - Lower-frequency more stable clocks
 - Fundamental problems in time coherency

![Diagram](https://via.placeholder.com/150)

Measuring Voltage: Sampling

Sampling Limitations (4)

- Sample-and-Hold (capacitor noise, opamp noise, switching noise)
 - limited bandwidth
 - aperture error
 - transient response, overshoot, etc.
- ADC (noise estimation from previous slides)
 - sample rates at 8-bit < 400 MHz
 - parallel (4-channel) ADC: synchronization error
 - ATE or benchtop instrument only
- Memory storage
 - limited on-chip memory or temporary buffer

Sampling noise sources

- Uncorrelated noise
 - thermal noise
 - 1/f noise
- Correlated noise (difficult to estimate correlation)
 - power supply noise
 - substrate noise
 - clock synchronization noise
 - delay-line generation of clocks, parallel clocks
- Noise floor of the on-chip measurement circuit
 - in dB for amplitude sampling
 - in ps for timing accuracy

Direct Digital Conversion

- Sigma-delta modulator
 - pulse-density conversion method
 - low frequency and low conversion rates

![Diagram](https://via.placeholder.com/150)

Method limitations

- Clock jitter
- Jitter in output signal edges
 - need to characterize for each modulator design
- Post-processing issues
 - what parameters to extract from pulse stream?
 - on-chip or off-chip extraction
 - corruption / modulation of signal edges during processing due to jitter and noise sources
 - correlation to accepted measurements
 - phase noise, frequency, timing parameters
Measuring Current on ATE

- VS2
- Tester Channel #2
- Loadboard
- Circuit Under Test
- Tester Channel #1
- VS1
- Supply noise
- Resistive noise
- Current shot noise
- Supply noise

Measuring Current on Chip

- Vdd
- BIC Sensor
- GND

Current Measurement Issues

- Slow measurement
 - ATE: 100 µs - 3 ms; BICS: 50 µs - 500 µs
- Lower accuracy than voltage measurement
- Effects on on-chip VDD and GND
 - Power supply values reduced due to sensors
 - Power supply noise and ground noise increase

Current measurement noise sources

- Uncorrelated noise
 - Thermal noise
 - 1/f noise
 - Shot noise
- Correlated noise
 - Power supply noise
 - Substrate noise
- On-chip comparator noise
 - Reference noise
 - Comparator offset and input noise

Methods to Measure Time

- Sampling
 - Indirect method, already covered
- Counter-based method
- Time-to-voltage converter
- Time-to-digital converter
- Differential oscillator method
- Delay search method
- Start-and-stop counter method

Counter-based Method

- Time interval much larger than T_{CLK}
- Resolution = 1 clock period T_{CLK}
 - Improved by delay-line interpolation

Soma 14
Counter-method Observations

- All-digital circuits
 - more robust and scalable with processes
 - accuracy can be improved
 - easier on-chip circuit designs
- Key noise is clock jitter
- Need modifications if the time interval to be measured is < T_{min} of fastest signals
- The core of many subsequent techniques

Time-to-Voltage Converter

- Need a DC voltage measurement or Pass / Fail comparison
- Requires analog components
 - sources of errors
- Measurement time
 - $T+$ pre-charge time

\[V = V_{DD} - \frac{I_T}{C} \]

Time-to-Digital Converter

- Delay-line method to search for a signal edge
- Resolution = 1 unit delay
- Robust and very popular

Differential-Oscillator Method

- Measure a time interval T
 - Credence, Vector12
- Resolution = 1 unit delay
 - may be used to search for a signal edge

\[T = m_1 T_1 - m_2 T_2 \]

Differential-Oscillator Method (2)

- Measurement time depends on edge coincidence
 - coarse / fine tuning options
 - may miss many edges in a periodic signal
 - no cycle-to-cycle measurement
- Clock-triggering mechanisms and errors
- Jitter on measuring clocks CLK1, CLK2
 - may be correlated
- Noise and error in coincidence detector

Delay Search Method

- Adjust Capture CLK to measure delay
 - absolute value or Pass / Fail
 - may be used to search for a signal edge
- Resolution in the ps range for on-chip test
Start-Stop Counter Method

\[T_{average} = m_{CLK} T_{CLK} / N_{signal \text{-edges}} \]

Start-Stop Method Observations

- Variations of basic counter methods
- Start clock to count at one signal edge and stop count at another predetermined signal edge
- Mostly digital designs
- Same issues with other counter-based methods
- Additional problem due to re-triggering after stop
 - dead-time interval
- Core of Wavecrest timing analyzer

Outline

- Top-down view of measurement issues
- Basic noise mechanisms and models
- Noise in measurement circuits
 - converters (sampled data)
 - PLL & VCO (clocks and data control)
- Case studies in measurement
 - existing methods and their noise considerations
 - Research in measurement methods

Sampling Research

- Sampling in the presence of both voltage noise and timing jitter
 - theory and noise analysis
 - new sampling and post-processing methods
- Undersampling research with low timing coherency
 - critical for on-chip RF test
- Fast clocks for Nyquist sampling

Current-measurement Research

- Faster methods to measure currents
- Higher measurement resolution
 - at lower VDD
- Better designs of BICS to reduce noise effects on power supply and GND
 - critical for on-chip test
- More post-processing theory and methods
 - comparable to voltage sampling

Timing-measurement Research

- Theory and methods to reduce impact of jitter and timing noise in measurement
- Fundamental understanding of physical effects in turning ON / OFF transistors
 - critical to controlling clock edges
 - critical also to sampling and current-based methods
- Better circuits to capture timing edges
 - process variations
Leaping toward the Unknown

- Continuous-time measurements possible?
 - all current methods capture discrete values or edges, not waveform segments
 - no Sample-and-Hold
- Get rid of switches in measurement circuits?
 - no timing uncertainty
- Processing analog values directly?
 - no ADC, no clocks, no switches

Conclusion

- Noise models of basic components in on-chip design-for-test circuits
- Noise of measurement circuits and their impact on accuracy
 - noise source identification from measured data
 - noise components in each measurement method
- Guidelines for low-noise measurements
- Suggested research problems