Zonal currents of the SW tropical Pacific

William S. Kessler and Lionel Gourdeau
Data/model sources

- CARS CTD compilation (Ridgway and Dunn)
- IFREMER XBT data
- Topex/Jason altimetry
- ORCA OGCM
- Linear Rossby model
Mean $\int u_g dz$ (colors), $\int DH dz$ (contours)

Relative to 2000m. CARS data (m²s⁻¹)
The SW Pacific is downstream of a subduction region.

The isopycnal 24.5 in the upper thermocline.
Meridional section of u_g shows the SEC broken up into jets

Mean u_g along 170°E

CARS data (rel. 2000m) (cm/s)
Island Rule streamfunction shows jets in the west, but hides some important details …..

Sverdrup (Island Rule) streamfunction (ERS winds)

Island Rule: Australia = −11.9, NC = −11.9, Fiji = −3.2, Vanuatu = 0.1, Solomons = 11.0
$\text{Curl}(\tau)$ and zonal Sverdrup transport (Island Rule)

ERS winds (1991-2000)
Sverdrupian filaments persist over years in the central Pacific

\[-\frac{dU_{sv}}{dx} = \frac{dV_{sv}}{dy} = \frac{1}{\beta \rho} \frac{d(Curl(\tau))}{dy}\]

Transport across 180° (Hi-Res XBT line)

The zonal currents are broken up into small-scale filaments, even east of the (large) islands.

The SEC appears to be concentrated in a wavering band near 12°-15°S.

Interannual (?) changes in the intensity of the eddying.

Morris, Roemmich, Cornuelle (1996)
1 cpy harmonic of Curl(τ)

ERS winds 1991-2000

Curl has the form:

\[B e^{-x/L} e^{iωt} \]
Strong downward Ekman pumping in winter leads to deep thermocline in spring:

- Morris et al. assumed a local balance, and found agreement between wind forcing and the observed structures.
- Chen and Qiu (2004) solved a reduced gravity Rossby balance simplifying the forcing to an exponential decay eastward (quite like the observed winds).
- For forcing $\text{Curl}(\tau/f) = B \, e^{-x/L} \, e^{i\omega t}$, they found that the Rossby solution is also stationary, with a phase lag.
- For parameters appropriate to the observed winds and latitude 25°S, the lag is 90 days, suggesting that the conclusion that the dynamics are local is incomplete.
A phase shift across the SEC between 10°-20°S.

The JNC and JNV fluctuate out of phase.

Mean transport:

Rossby model (anomalous) transport:
Annual cycle zonal transport across 162°E

ORCA vs Rossby models (ERS annual cycle forcing, c=3.5 m s⁻¹, D=24 mon)
Mean u_g on the Auckland-Solomon St XBT track

Cross-track velocity relative to 400m
Temperatures on the XBT track during 1992

(El Niño)
Temperatures on the XBT track during 1992

Superimpose 1989 (La Niña)
Cross-track velocity during 1989

(La Niña)
Cross-track velocity during 1992

(El Niño)
SEC transport and the SOI

Cross-track transport anomalies on the A-SS XBT track between 10°S-20°S

$r=0.71$
Dynamic Ht anomalies on the Auckland-Solomon St XBT track

SEC transport anomalies due to Rossby wave phase across 10°S-20°S
Salinity is a clue to flow directly into the Solomon Sea.
Salinity on $\sigma_\theta = 24.5$

CARS data. Overlay geostrophic streamlines.
Prospects for progress

- Relation of jets to features in the winds needs exploration (atmos analysis and model experiments).
- Flows into Solomon Sea need explication from models and observations (western boundary influence on Equator is crucial, and we don’t know where it originates).
- Relation of sources of subducted water to west Pacific thermocline remains unknown. Are the characteristics of the subducted water a major influence, or do wind-driven dynamics dominate?
- Modal structure of S Pacific thermocline is crucial but remains speculative (theory, models and observations).

- Glider!
Spray glider deployed off Guadalcanal on 17 July!

It is making 600m T and S profiles every 3-4 km, on its way to Nouméa.

In collaboration with Davis’ group at Scripps, we intend to make regular crossings of the SEC (4 times/yr).

Glider drift is a measure of average current over the upper 600m.