In Reply: We agree with Dr Tan and colleagues that the use of low-molecular-weight heparin has the potential to be a confounding factor in our meta-analysis, particularly in the results of trials with thrombolysis, whereas unfractionated heparin was used in all primary angioplasty trials. However, we believe that actual confounding is unlikely. The support for this hypothesis comes from a post hoc observation of a small trial (ENTIRE-TIMI 23), whereas the largest trial included in the meta-analysis (GUSTO V) showed that in patients treated with unfractionated heparin, combination therapy does not give any additional benefit in terms of mortality. Furthermore, no data on the comparison between thrombolysis plus abciximab in patients receiving unfractionated heparin vs low-molecular-weight heparin have been reported in the ASSENT-3 trial. Finally, in our study we analyzed death and reinfarction as separate end points, whereas the data cited from the ENTIRE-TIMI 23 trial are based on a combined end point of death, reinfarction, or both.

Giuseppe De Luca, MD, PhD
Harry Suryapranata, MD, PhD
h.suryapranata@diagram-zwolle.nl
Department of Cardiology
Isala Klinieken
Zwolle, the Netherlands

Financial Disclosures: None reported.


©2005 American Medical Association. All rights reserved.
higher. Although Bailey recently proposed a much higher limit (9972.7 m), his estimate was incorrectly based on a linear (rather than curvilinear) regression model and is unrealistic given slow climbing rates at extreme altitude.

We used a model atmosphere equation for barometric pressure vs altitude to compute present-day PIO2 at 9.0 km, and then used this amount as the minimum level tolerable by PIO2 and ignored minor effects of concurrent climate change and of uncertainty in percent oxygen. This estimated the maximum altitude reachable under a given percent oxygen, and solved for altitude. This estimated the maximum altitude reachable under a given percent oxygen. We assumed that maximum altitude is determined only by PIO2 and ignored minor effects of concurrent climate change and of uncertainty in percent oxygen.

Results. During the mid-Permian era, oxygen was relatively abundant and PIO2 is thought to have reached approximately 30 percent (Figure). By the early Triassic era, however, PIO2 fell to approximately 12%. Shifts in oxygen concentration would have dramatically altered the maximum climbable altitude over time (Figure). During the Permian high oxygen concentration, hypothetical paleo-mountaineers would have been aerobically capable of reaching nearly 12 km, about one third above the current summit of Mount Everest. During the Triassic low oxygen concentration, climbers would have been stopped at 4.5 km, below the summit of Mount Whitney (4.4 km). A prehistoric Ang Rita would have been incapable of reaching a Triassic base camp on Mount Everest (5.3 km).

Comment. On a geological scale, neither Mount Everest nor humans existed until recently. Nevertheless, our findings add a novel, deep-time perspective on high-altitude physiology and medicine. Our analysis suggests that peaks as high as Mount Everest would have been physiologically reachable by humans during less than one third of the past 570 million years. Thus, it is only through a fortunate accident of geology and biology that humans evolved and have always lived during a time in which oxygen levels have been sufficiently high to allow (a few of) us to reach the highest summit on Earth.

Raymond B. Huey, PhD
hucyb@u.washington.edu
Peter D. Ward, PhD
Department of Biology
University of Washington
Seattle

Financial Disclosures: None reported.

Author Contributions: Dr Huey had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Funding/Support: This research was supported by the National Science Foundation (Dr Huey) and the NASA Astrobiology Institute (University of Washington Node, Dr Ward, principal investigator).

Role of the Sponsors: The funding agencies had no role in the design and conduct of this study, in the collection, analysis, and interpretation of the data, or in the preparation, review, and approval of the manuscript.

2. Berner RA. Examination of hypotheses for the Permo-Triassic boundary extinc-

CORRECTION

Incorrect Labels in Figure: In the 3-page timeline foldout entitled “Albert Lasker Medical Research Awards, 60 Years of Basic Discoveries and Clinical Advances” published in the September 21, 2005, issue of JAMA (2005;294:1426 A-F), the labels indicating RNA bases and amino acids were incorrect. The labels for the RNA bases should have read U instead of T, and labels for amino acids should have read (from 5′ to 3′) Ala, Val, Phe.