CHAPTER 1

Introduction To Mathematical Modeling

In his book “The Possible and the Actual”, published by the University of Washington Press as a part of the Jessie and John Danz Lectures, Franc¸ois Jacob (1920-2013), a leading molecular biologist of the 20th century stated that a radically change in the Western art had occurred around the Renaissance time, from “symbolizing” to “represent” the real world. One can in fact view pure and applied mathematics as a change from the former to the latter. The task of mathematical modeling is to quantitatively represent the real world in terms of mathematics.

There are fundamentally two types of mathematical modeling: (a) Numerical representation of scientific data in terms of mathematical formula or equations, and (b) mechanistic representation of a system’s behavior (natural or engineered, physical or biological, electronic, chemical, economical, social, ...) based on existing, established mathematical formula and equations. For lack of better terminology, we shall call the former data-driven modeling and the latter mechanistic modeling. Note, according to Karl Popper (1902–1994) and his philosophy of science, the only legitimate scientific activity is falsifying a hypothesis: That requires first to formulate a hypothesis, which sometime is just looking for patterns in the data (e.g., numerical hypothesis) and sometime is proposing a mechanism (e.g., the modeling we shall study in this class); and (b) to derive rigorous predictions from a hypothesis, which is a form of logical, or mathematical, deduction.

The first two chapters of the textbook present several well-known data-driven models. Some were from ancient times. This kind of endeavor has never stopped. Two of the most active current areas are perhaps bioinformatics and financial engineering. Because the subject in biomedicine and in economics are very complex and full of uncertainties, the state-of-the-art data-driven modeling in these areas has to take chance, e.g., random probabilities, into account. That is why most of the modeling in these areas are statistical based.

1.1 Mechanistic model and applied mathematics

One of the most celebrated data-driven models in an earlier time was Kepler’s Laws (Ch. 5). They are mathematical representations for the various aspects of the motion of planets around the Sun.

But Isaac Newton did something very novel, probably inspired by his believe in
God: He described the mechanical motions represented by Kepler’s laws in terms of a “cause”, now widely called a “mechanism”. And furthermore, he generalized the same mechanism to many other systems beyond planetary motions, down to the earth, even for a falling apple! By doing so, he invented the philosophy of modern science and engineering. In a nutshell, Newton asked “why Kepler’s laws?” — This is precisely the last word of the Ch. 1. The two key words here are “why” and “generalize”. In the context of 383, knowing something about the “why” helps you to develop a *mechanistic* mathematical model; and mathematical computations can help you to “generalize” the predictions.

Therefore, when one finds a novel mathematical description for a set of interesting data, hopefully that will be one of you someday, the next question is “can it be explained by existing knowledge”? If it can, then you want to develop that. Here, the issue of *computability* and concept of *emergent behavior* come into play in modern mathematical modeling of complex phenomena. You should definitely check out these two buzzwords online.

The mechanistic approach to systems, processes, and scientific data leads to several distinct features:

(i) It is based on certain mechanistic hypotheses, which are themselves data-driven models from different systems in an earlier time;*

(ii) It believes “universality” more than diversity, even though it certainly does not oppose the latter;†

(iii) It is largely mathematical analysis in nature. In Professor Tung’s preface, he called this type of modeling “deductive”.

With predictions from a mechanistic mathematical model in hand, the true value of data lies in its disagreement with a prediction, i.e., a contradict to the hypothesis.‡ Then, one needs to develop an improved model. This cycle turns out to be the most valuable:

mechanistic formulation → analysis/solution → interpretation/generalization/prediction → compare with data → improved mechanistic model.

We shall show this “paradigm” in several examples.

* In classical physics, these are called *natural laws*. It is important to point out the notion of “intrinsic properties” which has led to reductionism, and the opposite notion of “systems perspective”. There is an intimate relation between one’s believe in the former and one’s tendency to generalize. If one believes everything is “context dependent”, then no data-driven model can and should be generalized.

† In current applied mathematics, diversity is often modelled in terms of a “distribution”. This naturally leads to models in terms of partial differential equations and stochastic dynamics.

‡ Here, one can see why it is generally claimed that a data-driven model does not lead to a “real understanding” while a mechanistic model does: The latter is built upon previous understandings. No wonder data-driven models are also called by some as “discoveries”.
1.1.1 The certainty and confidence in exact sciences

You don’t hear the term “exact science” very often anymore. It means a field of science, such as physics or chemistry, which has a mathematical foundation, with its theories expressed in terms of mathematics, and its measurements being quantitative and can be checked against predictions from the mathematical theory.

These days, we have a tremendous amount of confidence in Science. One of the easiest ways to shoot-down an argument is to show “it is non-scientific”. But where is such a confidence from? If you examine carefully, you will see that the confidence really is about the absoluteness of a mathematical conclusion, or conclusions, based on an idealized mathematical model. Actually, a cautious person, correctly, should not have too much confidence in the idealized mathematical model representing a reality. The latter is always only approximately true.

1.2 Statistical laws, or models

Kepler’s laws and Fibonacci numbers give precise “predictions” for the values of next measurements. What happens if one can not give such precise, deterministic prediction? Does that mean things are hopeless? The answer is “no”. If one can not predict with certainty, maybe one can predict with certainty about the “uncertainty”. That is the probabilistic thinking. In modern economics, this is called “estimating the risk”. Risk management is all about computing probabilities.

Let us consider the number of rain drops on a tin roof. Certainly, if you count the number of rain drops per unit time, it will not always be exactly the same. However, if you repeat the measurement again and again, a pattern emerges: Let the n be the number of rain drops. It is random with a distribution

$$\Pr\{n = k\} \approx \frac{\lambda^k}{k!} e^{-\lambda}, \quad (1.1)$$

where λ is a parameter. This is known as Poisson distribution.

But why? This leads to the concepts of statistical modeling and stochastic (mechanistic based, agent-based) modeling. Statistical modeling starts with data; and stochastic modeling starts with a mechanism. We now try to give a “mechanistic model” for the Poisson distribution about rain drops.

Let us assume that there are N number of total rain drops coming from the sky. Each one behaves in a similar, but independent fashion as another one. Let the probability of a single rain drop hitting the roof be p, and not hitting be $1-p$. Then the probability of having k rain drops hitting the roof is

$$p_k = \binom{N}{k} p^k (1-p)^{N-k} = \frac{N!}{k!(N-k)!} p^k (1-p)^{N-k}.$$

This certainly does not look like that in Eq. 1.1. We also note, however, that the N
must be a very large number while the p a very small one. But Np is the average number of drops on the roof! So let us denote $Np = \lambda$, and now consider

$$p_k = \frac{N!}{k!(N-k)!} \left(\frac{\lambda}{N} \right)^k \left(\frac{N-\lambda}{N} \right)^{N-k} = \left\{ \frac{N!}{(N-k)!} \left(\frac{1}{N-\lambda} \right)^k \right\} \lambda^k \left(1 - \frac{\lambda}{N} \right)^N.$$

We are interested in its limit when $N \to \infty$.

You can use the Stirling formula: For a large number n:

$$\ln n! \approx n \ln n - n.$$

Therefore,

$$\ln \left\{ \frac{N!}{(N-k)!} \left(\frac{1}{N-\lambda} \right)^k \right\} \approx N \ln \frac{N}{N-k} + k \ln \frac{N-k}{N-\lambda} - k$$

$$= N \ln \left(1 + \frac{k}{N-k} \right) + k \ln \left(1 + \frac{\lambda-k}{N-\lambda} \right) - k$$

$$= N \left(\frac{k}{N-k} - \frac{1}{2} \left(\frac{k}{N-k} \right)^2 + \cdots \right) + k \left(\frac{\lambda-k}{N-\lambda} - \frac{1}{2} \left(\frac{\lambda-k}{N-\lambda} \right)^2 + \cdots \right) - k$$

$$\to 0.$$

And

$$\lim_{N \to \infty} \left(1 - \frac{\lambda}{N} \right)^N = e^{-\lambda}.$$

Therefore, in the limit of $N \to \infty$,

$$\lim_{N \to \infty} \frac{N!}{k!(N-k)!} \left(\frac{\lambda}{N} \right)^k \left(\frac{N-\lambda}{N} \right)^{N-k} = \frac{\lambda^k}{k!} e^{-\lambda}.$$

From both examples, the Fibonacci sequence and the Poisson distribution, we see that mathematical modeling increases one’s understanding of a natural phenomenon as well as provides some predictions. The ultimate goal of science is to understand, to cumulative knowledge; accurate predictions are valuable to engineering.

There is a wide range of issues in how to develop a data-driven mathematical model

$$\ln n! = \sum_{k=1}^{n} \ln k \approx \int_{1}^{n} \ln x \, dx = x \ln x - x \big|_{1}^{n} = n \ln n - n + 1 \approx n \ln n - n.$$
for a give set of data. This is much more so in statistical modeling than in deterministic modeling. Still there are several essential issues one should keep in mind:

(1) The definition of “goodness of fit”;

(2) Over fitting and maximum parsimony;

(3) Choices of different “numerical models”, with parameters.

One suggestion: Answers to the above questions are often not unique in mathematics. But if you ask yourself “what is the model for?”, you would be able to come up with simple answers to these difficult questions. Each one of them becomes an entire area of research in statistics.