Note: This assignment is due on 17 November 2014.

1. (a) Suppose one of the states of an irreducible Markov chain has a self loop. Show that the chain has period 1.

 (b) Let \(N \) be a collection of integers closed under addition. Let 100 be the first integer in \(N \) for which the immediate successor is also in \(N \). Find an integer after which every integer is present in \(N \).

 (c) Using Euclid’s Algorithm, find \(a, b \) such that \(100a + 81b = 1 \).

2. At a local 2 year college, \(\frac{2}{3} \) of freshmen become sophomores, \(\frac{1}{4} \) remain freshmen, and \(\frac{1}{12} \) drop out. Two thirds of sophomores graduate, \(\frac{1}{4} \) remain as sophomores and \(\frac{1}{12} \) dropout. Take the states to be ‘F’ for freshmen, ‘S’ for sophomore, ‘D’ for dropout and ‘G’ for graduate. Let \(q(i, R) \) denote the probability that from state \(i \), we will eventually reach the absorbing state \(R \). Let \(l(i, R) \) denote the expected time to reach absorbing state \(R \) from state \(i \).

 (a) Write the transition matrix for the Markov chain with rows and columns in the order \(F, S, G, D \).

 (b) Write the set of equations for \(q(i, G) \), \(q(i, D) \).

 (c) Write the set of equations for \(l(i, G \cup D) \).

 (d) What fraction of new students eventually graduate?

 (e) What is the expected time of graduation or dropout for a sophomore student?

3. A certain Markov chain has transition matrix

\[
\begin{pmatrix}
A & B & C & D & E \\
A & 0 & 0 & 1/3 & 1/3 & 1/3 \\
B & 1/3 & 1/3 & 1/3 & 0 & 0 \\
C & 0 & 1/3 & 1/3 & 1/3 & 0 \\
D & 0 & 0 & 0 & 0 & 1 \\
E & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

(a) Which are the transient and which, the recurrent states? Are there any absorbing states?

(b) Write linear equations for \(q(i, k), l(i, k) \), where \(k \) is an absorbing state.
4. A certain Markov chain has its states partitioned into \(T, R_1, R_2, R_3 \). Let \(x \in T \).

(a) How will you compute the probability of starting from \(x \) and reaching either \(R_1 \) or \(R_2 \)?

(b) Let \(r \in R_1 \). How will you compute the probability of starting from \(x \) and reaching \(r \) before any other recurrent state?

5. Let \(P \) be a square matrix with nonnegative entries. Suppose all rows of \(P \) have row sum strictly less than 1. Show that \(I - P \) is invertible.

6. A certain branching process has the following one step probability for number of progeny:

\[
p_0 = a, p_1 = b, p_2 = c.
\]

For the following cases

- \(a = 1/2, b = 1/4, c = 1/4 \);
- \(a = 1/4, b = 1/4, c = 1/2 \);

(a) Write down the equation the probability of extinction satisfies;

(b) Examine the probability of extinction.