Basic residues of human group IIA phospholipase A₂ are important for binding to factor Xa and prothrombinase inhibition

Comparison with other mammalian secreted phospholipases A₂

Carine M. Mounier¹², Philippe Luchetta², Christelle Lecut¹, Rao S. Koduri³, Grazyna Faure¹, Gérard Lambeau⁴, Emmanuel Valentin⁴, Alan Singer³, Farideh Ghomashchi³, Suzette Béguin⁵, Michael H. Gelb³ and Cassian Bon¹

1Unité des Venins, Institut Pasteur, Paris, France; ²Département de Biologie, Université de Cergy-Pontoise, France; ³Departments of Chemistry and Biochemistry, University of Washington, Seattle, USA; ⁴Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UPR 411, Valbonne, France; ⁵Department of Biochemistry, Medical Faculty and Cardiovascular Research Institute, Maastricht University, The Netherlands

Human secreted group IIA phospholipase A₂ (hGIIA) was reported to inhibit prothrombinase activity because of binding to factor Xa. This study further shows that hGIIA and its catalytically inactive H48Q mutant prolong the lag time of thrombin generation in human platelet-rich plasma with similar efficiency, indicating that hGIIA exerts an anticoagulant effect independently of phospholipid hydrolysis under ex vivo conditions. Charge reversal of basic residues on the interface binding surface (IBS) of hGIIA leads to decreased ability to inhibit prothrombinase activity, which correlates with a reduced affinity for factor Xa, as determined by surface plasmon resonance. Mutation of other surface-exposed basic residues, hydrophobic residues on the IBS, and His48, does not affect the ability of hGIIA to inhibit prothrombinase activity and bind to factor Xa. Other basic, but not neutral or acidic, mammalian secreted phospholipases A₂ (sPLA₂s) exert a phospholipid-independent inhibitory effect on prothrombinase activity, suggesting that these basic sPLA₂s also bind to factor Xa. In conclusion, this study demonstrates that the anticoagulant effect of hGIIA is independent of phospholipid hydrolysis and is based on its interaction with factor Xa, leading to prothrombinase inhibition, even under ex vivo conditions. This study also shows that such an interaction involves basic residues located on the IBS of hGIIA, and suggests that other basic mammalian sPLA₂s may also inhibit blood coagulation by a similar mechanism to that described for hGIIA.

Keywords: anticoagulant; blood coagulation; phospholipase A₂; surface plasmon resonance; venom.

Secreted phospholipases A₂ (sPLA₂s) are enzymes found in mammals and animal venoms that hydrolyse the fatty acid esterified at the sn-2 position of phospholipids [1–5]. They share common characteristics including low molecular mass (14–17 kDa), calcium-dependent catalytic activity, the presence of between five and eight disulfide bridges, and a number of conserved amino acids located in the calcium-binding loop and the catalytic site. In mammals, different sPLA₂s have been reported and classified into groups IB, IIA, IIC, IID, IIE, IIF, V, and X [2–8]. Snake venom sPLA₂s have been classified into groups IA, IB, IIA, IIB, and those from bee and lizard venoms belong to group III. The structural and enzymatic properties of human group IIA sPLA₂ (hGIIA) have been well documented, and this enzyme has been detected in various cells including macrophages, eosinophils and blood platelets [9]. hGIIA has attracted particular attention with respect to inflammatory diseases because its level in body fluids correlates with the severity of pathological states [10,11]. hGIIA also appears to be involved in the killing of invading Gram-positive bacteria [12], exocytosis/degranulation processes [13,14], and the production of eicosanoids by stimulated inflammatory cells [15,16]. These various biological effects have been reported to be mainly related to the catalytic activity of hGIIA.

In platelets, hGIIA is associated with α-granules and is released into the extracellular medium on activation by thrombin and collagen [17–19]. Once secreted, hGIIA does not participate in the production of eicosanoids and does not interfere with platelet stimulation [20,21]. On the other hand, hGIIA has been reported to exert an anticoagulant effect and may be involved in negative feedback during the initiation of thrombosis [22–24]. Platelet activation plays a central role in haemostasis and thrombosis, leading to the formation of the primary plug and to the appearance of anionic phospholipids at the membrane surface, which increase the efficiency of the coagulation process [25–27]. Platelets are also a rich source of factor V [28], which after activation to factor Va, participates in the formation of the prothrombinase complex [25,29]. In contrast with most other biological effects of hGIIA, it has been demonstrated that its anticoagulant effect is phospholipid-independent, and therefore has been proposed to be unrelated to its catalytic activity [23]. Indeed, hGIIA specifically inhibits the prothrombinase complex composed of factor Xa, factor Va, phospholipid and calcium, and this inhibitory effect is still...
observed in the absence of phospholipids [23,24]. hGIIA forms a 1 : 1 complex with human factor Xa and prevents formation of the factor Xa–factor Va complex [30]. In addition, high concentrations of factor Va in the prothrombinase assay reversed the inhibitory effect of hGIIA, consistent with the view that hGIIA competes with factor Va for binding to factor Xa [30]. The relevance of this model, explaining the phospholipid-independent anticoagulant effect of hGIIA, remains, however, to be examined under more physiological conditions. Furthermore, the structural elements of hGIIA involved in the interaction with human factor Xa have not been identified. Several basic venom sPLA2 have been shown to exert anticoagulant activity, suggesting that basic residues are involved [31–34]. hGIIA is also a basic protein containing 13 lysine and 10 arginine residues which are scattered over the whole surface and form cationic clusters. Several of them lie on the surface of the molecule that contacts the lipid membrane, the so-called ‘interfacial binding surface’ (IBS) [35].

In this study, we first investigated whether the phospholipid-independent anticoagulant effect of hGIIA, based on the direct interaction of hGIIA with factor Xa, is also observed under more physiological conditions. We next examined by site-directed mutagenesis the residues of hGIIA involved in its interaction with factor Xa, with particular emphasis on basic residues. Finally, we tested other recently cloned mammalian sPLA2s for antiprothrombinase activity.

EXPERIMENTAL PROCEDURES

Materials

Human prothrombin, factor V and factor Xa were from Enzyme Laboratories (South Bend, IN, USA). Factor Va and gla-minus factor Xa were from Haematologics Technologies Inc. (Essex Junction, VT, USA). The chromogenic substrate for thrombin amidolytic activity, S-2238, was from Chromogenix (Vaudois, Switzerland). The basic sPLA2 from Bothropsasper venom and Ba IV sPLA2 from Bothrops asper venom were from Sigma. Mouse group IID (mGIID) and group V (mGIV) sPLA2 were expressed, refolded and purified as described previously [6,36]. The basic sPLA2 CM-III from Naja mossambica mossambica venom and Ba IV sPLA2 from Bothropsasper venom were purified as described [2,37]. Human group IIB sPLA2 (hGIB) was a gift from the late H. Verheij, rat group IIA (rGIIA) and group V (rGV) sPLA2s were from M. Janssen (Department of Membranes, Utrecht University, the Netherlands), and AmtxA was from I. Krizaj (Jožef Stefan Institute, Ljubljana, Slovenia).

Preparation of wild-type and mutant hGIIA recombinant proteins

The expression vector pT7-7 (Pharmacia) was transfected into BL21(DE3) Escherichia coli strain [38]. The BamHI–HindIII fragment encoding hGIIA [39] was cloned into the expression vector to obtain a wild-type primary sequence for hGIIA (see Fig. 3). hGIIA was expressed as a fusion protein with a 12-amino-acid N-terminal extension ending in an arginine residue for tryptic liberation of the hGIIA with its native N-terminus, as previously described [23,39]. Wild-type (or mutant) active hGIIA protein was obtained from the refolded fusion protein by tryptic cleavage [23]. hGIIA and its mutants were finally purified sequentially on two SP-Sephadex columns, tested for activity using a fluorescent substrate, and checked for purity by FPLC and SDS/PAGE as previously reported [20].

Site-directed mutagenesis of hGIIA

DNA fragments coding for hGIIA mutants H48Q, K35G/R54E, K57N/R58L, A185/A199/L20S, and F24S were prepared by PCR using Pwo polymerase (Roche Biochemicals, Meylan, France). Two PCRs were performed with the wild-type hGIIA pT7-7 plasmid, using the NT2 primer (5’-GTTAACCTCCACCGTTATGAACCAAG-3’) and the antisense mutant oligonucleotide for the PCR1 fragment; and the CT2 (5’-AACATTGTAACCTGCAAGACC-3’) primer and the sense mutant oligonucleotide for the PCR2 fragment. PCR1 and PCR2 fragments were mixed and a third amplification was performed in the presence of NT2 and CT2 primers to obtain the PCR3 fragment which was then cloned into the pGEM-T cloning vector (Promega). Finally, the BamHI–HindIII fragment containing the mutated sequence was released from the pGEM-T vector and ligated into the pT7-7 vector. The L2S/V3G mutant was prepared by a single-step PCR with the CT2 primer and the L2S/V3G sense mutant oligonucleotide. All mutants were sequenced completely before expression by the Sanger method (Sequenase 2.0). Nucleotide sequences of sense mutant oligonucleotides were:

H48Q, 5’-GCGTTACCCAgGACTGCTGCT-3’;
K35G/R54E, 5’-GCTGCTACGgtaaCTTGAAAAACGT-3’;
K57N/R58L, 5’-CTGgAAACAtCgTGTGCCTACG-3’;
A185/A199/L20S, 5’-CCGTTAAAGAACcGgTTeCCTCCTACG-3’;
K74E, K87E, R92E, F24S, 5’-GCTTCTGTCTACCGGGTctACATGGTTGCCCACGTT-3’;
L2S/V3G, 5’-CCGGCGGATCCATCGACGAGCCGGAAAACgtCcG-3’;
K38E/K110E, V3W were prepared as described previously [35,40].

sPLA2 assay

sPLA2 activity was assayed with a fluorescent phospholipid analog, 1-palmitoyl-2-(10-pyrenylecanonyl)-sn-glyceryl-3-phosphomethanol (Molecular Probes) used as a substrate as described previously [35]. Briefly, the reaction medium was prepared by sequential addition of: (a) 980 µL 50 mM Tris/HCl, pH 8.5; 50 mM KCl and 1 mM CaCl2; (b) 1.5 µM or 20 µM (final concentration) fluorescent substrate; and (c) 20 µL 10% fatty-acid-free BSA (Sigma) solution in water. The enzyme reaction was then initiated by adding 2–10 µL of the sample.

Measurement of thrombin generation in human platelet-rich plasma (PRP)

Blood was obtained from five distinct healthy donors. The blood of each donor was separately used to investigate the effect of wild-type hGIIA (three experiments) and the catalytically inactive H48Q mutant of hGIIA (two experiments). PRP was prepared by centrifugation of fresh citrated blood (nine parts of blood to one part of 0.13 mM trisodium citrate) at 250 g at 15 °C for 10 min. The platelet concentration was adjusted to 300 000 cells mL⁻¹. Thrombin generation in PRP
was measured as previously described [41,42]. In brief, 480 μL PRP was incubated with 120 μL buffer A (20 mM Hepes, 150 mM NaCl, 0.5 g·L⁻¹ BSA, pH 7.35) for 4 min, and coagulation was initiated by adding 120 μL 0.1 mM CaCl₂. The effect of hGIIA or the enzymatically inactive H48Q hGIIA was tested by adding these proteins to the reaction mixture 4 min later. Samples (10 μL) of the reaction mixture were taken at 1 min intervals and the level of free thrombin was calculated from amidolytic activity using a previously described computer program that takes into account the contribution of free thrombin and α₂-macroglobulin-bound thrombin [41,42]. The thrombin-generation curve, the thrombogram, gives three important variables: (a) the lag time of thrombin formation, which is defined as the time from addition of the triggering solution to the time at which the thrombin concentration increases above 10 nM; (b) the height of the peak that corresponds to the maximal thrombin concentration that can be reached; (c) the endogenous thrombin potential, which is defined as the area under the thrombin-generation curve and is directly proportional to the amount of thrombin generated during the coagulation process.

Coagulation tests with human blood plasma

Human control plasma (Diagnostica Stago, Asnieres, France) was reconstituted with 1 mL distilled water before use and diluted tenfold with saline buffer (0.15 mM NaCl). The recalcification time of plasma was measured in the absence or presence of wild-type (or mutant) hGIIA as reported [23]. For each measurement, 300 μL diluted human plasma was incubated for 3 min at 37°C under gentle stirring, then the coagulation was started by the addition of 6 mM CaCl₂. The time required for clot formation in the presence of wild-type (or mutant) hGIIA was recorded and expressed as a percentage of the clotting time measured in the absence of hGIIA. Three independent experiments were performed.

Measurement of prothrombinase activity

Phospholipid vesicles (phosphatidylcholine/phosphatidylserine, 9 : 1, w/w) were prepared as described by de Kruijff et al. [43]. Purified prothrombinase components were mixed and subsequently assayed at 37°C in Tris-buffered saline (0.1 mM Tris/HCl, 0.05 mM NaCl, 0.5% BSA, 5 mM CaCl₂, pH 7.4) in the two following combinations: (a) factor V, factor Xa and phospholipid: 20 pm factor Xa and phospholipid; 20 pm factor Xa was incubated with 120 pm factor V for 4 min, then the reaction was started with 5 μM phospholipid and 200 nM prothrombin; (b) factor Va and factor Xα: 1 nM factor Xα was incubated with 1 nM factor Va for 4 min, then the reaction was started with 1 μM prothrombin.

Activated prothrombin activity was determined at various time points as described [30]. Wild-type hGIIA (or mutant proteins) was added at the beginning of the 4 min preincubation period. The IC₅₀ value, which corresponds to 50% inhibition of thrombin generation, was then determined for wild-type and mutant hGIIA, as well as for other sPLA₂s, as reported [30].

Surface plasmon resonance (SPR) experiments

Studies were performed using a BIAcore® 2000 system (BIAcore AB, Uppsala, Sweden). Immobilization of factor Xa (or gla-minus factor Xa) on the Sensor Chips CM5 surface was performed as reported [30]. The SPR signals for immobilized factor Xa on three different flow cells were found to be: 7400 resonance units (RU), 4000 RU and 2000 RU, where 1 RU corresponds to an immobilized protein concentration of 1 pg·mm⁻². Unreacted moieties on the surface were blocked by ethanolamine. One independent flow cell of the same sensor chip, used as a control flow cell, was subjected to a ‘blank immobilization’. All experiments were carried out at 25°C in 10 mM Hepes, pH 7.4, 0.005% surfactant P20 and 150 mM NaCl. Different concentrations of hGIIA or its mutants (0.5, 1, 2, 4, 8, and 16 μg·mL⁻¹) were injected in the same buffer in the presence of CaCl₂ at 5 mM, at a flow rate of 10 μL·min⁻¹. Between each injection, surfaces were regenerated with 5 μL 1 mM NaCl. Kinetic constants, kₐ (association rate constant) and k₉ (dissociation rate constant), were calculated using BIAcore BIAevaluation 3 software and a two-component model of interaction [44], and values were determined after subtraction of control signals with the control flow cell. To investigate the effect of salt concentrations on the factor Xα–hGIIA interaction, similar experiments were performed with higher NaCl concentrations (300 mM and 500 mM).

RESULTS

Inhibitory effect of wild-type and catalytically inactive hGIIA on thrombin generation measured in human PRP

Previous experiments have shown that hGIIA inhibits the prothrombinase complex activity measured in vitro with a coagulation assay performed in the absence of platelets [30]. As platelets greatly increase the efficiency of blood coagulation and may counteract the anticoagulant effect of hGIIA, we analyzed whether hGIIA can still inhibit thrombin generation when measured under more physiological conditions with human PRP. We observed a large delaying effect of hGIIA on thrombin generation measured in PRP which depended on the concentration of hGIIA (Fig. 1A). The mean increases in lag time were 115% for 1 μM, 140% for 2 μM and 170% for 5 μM hGIIA. The effect of hGIIA was saturable, as concentrations higher than 5 μM did not lead to a further increase in the lag time of thrombin formation (data not shown). In a few cases, this delay was also associated with a moderate (15–30%) decrease in the endogenous thrombin potential, corresponding to the quantity of thrombin generated.

As natural phospholipids from plasma and activated platelets are present at physiological concentrations in the thrombin-generation assay with human PRP, the anticoagulant effect of hGIIA may be due to its enzymatic activity under such conditions. To investigate this possibility, we generated a catalytically inactive mutant of hGIIA by replacing His48 of the catalytic site with a glutamine (H48Q). The enzymatic activity of the H48Q mutant is less than 0.05% of that of the wild-type enzyme. As shown in Fig. 1B, the H48Q mutant shows the same efficiency in delaying thrombin generation as wild-type hGIIA (Fig. 1A). The average increases in the lag time were 115% for 0.5 μM and 140% for 1.5 μM H48Q hGIIA. This clearly demonstrates that hGIIA exerts an anticoagulant effect under ex vivo conditions and that this inhibitory effect is independent of its catalytic activity even when the source of phospholipid reflects physiological conditions.

Wild-type and catalytically inactive hGIIA inhibit prothrombinase activity and bind to factor Xa with similar affinity

The prothrombinase complex was reconstituted in vitro in the presence or absence of phospholipids to determine whether hGIIA acts on phospholipids or protein coagulation factor(s).
When the prothrombinase complex is composed of calcium, phospholipids, factor Xa, factor Va and prothrombin, it reflects the \textit{in vivo} composition, but this assay does not allow discrimination between phospholipid-dependent and protein-dependent mechanisms. When the prothrombinase complex is reconstituted in the absence of phospholipids, any inhibition is due to a direct effect on a protein component. Table 1 shows that hGIIA inhibits prothrombinase activity with similar efficiency in the presence (IC$_{50}$ = 80 nM) and absence (IC$_{50}$ = 50 nM) of phospholipids. SPR data (Table 1) indicate that the inhibition of prothrombinase activity (measured in the absence of phospholipids) by hGIIA correlates with its binding to factor Xa with a k_{on} of 310 000 M$^{-1}$ s$^{-1}$, a k_{off} of 0.00155 s$^{-1}$ and a K_{app} of 5 nM. We observed that the binding of hGIIA to factor Xa was completely abolished when higher salt concentrations (300 mM and 500 mM instead of 150 mM) were used during BIAcore experiments (Table 1). The IC$_{50}$ values for H48Q hGIIA determined in the presence and absence of phospholipid were similar to those measured for wild-type hGIIA, and no changes in k_{on}, k_{off} and K_{app} values were observed (Table 1), indicating that the inhibitory effect of hGIIA measured \textit{in vitro} is independent of its catalytic activity, but due to specific binding to factor Xa.

The gla domain of factor Xa has been shown to promote calcium-dependent binding of factor Xa to phospholipid [45]. As hGIIA inhibits prothrombinase activity both in the presence and absence of phospholipids, the interaction of hGIIA with factor Xa should be independent of the gla domain of factor Xa. This was investigated by replacing native factor Xa with factor Xa lacking the gla domain (gla-minus factor Xa) in the prothrombinase complex. As gla-minus factor Xa does not bind to phospholipid, prothrombinase activity was measured in the absence of phospholipid. We observed that the inhibitory effect of hGIIA on prothrombinase activity measured with gla-minus factor Xa (IC$_{50}$ = 50 nM) is similar to that measured with native factor Xa (Table 1). Moreover, the kinetic constants measured by SPR for the interaction between hGIIA and gla-minus factor Xa were similar to those determined with native factor Xa (Table 1). This indicates that the interaction of hGIIA with factor Xa does not involve the gla domain and that prothrombinase inhibition by hGIIA does not require the interaction of either factor Xa or hGIIA with phospholipids.

Involvement of basic residues of hGIIA in the binding to factor Xa

A number of exposed basic residues, i.e. R7, K10, K16, K38, K74, K87, R92, K110, K115, K116, K124 and R127, are located on or near the IBS of hGIIA. These residues form several basic clusters: R7/K10/K16; K110/K115/K116; K74/K87/R92 and K124/R127 (Fig. 2). Other exposed basic residues of hGIIA, i.e. K53, R54, K57, R58, and R132, lie on the face of the molecule that is opposite to the IBS, whereas residues K100 and R108 are located in another region. Various mutants of hGIIA were produced by replacing one or several of these basic residues with acidic ones and assayed for their ability to inhibit prothrombinase activity and to bind to factor Xa (Fig. 3 and Table 1). As the mutated side chains

When the prothrombinase complex is composed of calcium, phospholipids, factor Xa, factor Va and prothrombin, it reflects the \textit{in vivo} composition, but this assay does not allow discrimination between phospholipid-dependent and protein-dependent mechanisms. When the prothrombinase complex is reconstituted in the absence of phospholipids, any inhibition is due to a direct effect on a protein component. Table 1 shows that hGIIA inhibits prothrombinase activity with similar efficiency in the presence (IC$_{50}$ = 80 nM) and absence (IC$_{50}$ = 50 nM) of phospholipids. SPR data (Table 1) indicate that the inhibition of prothrombinase activity (measured in the absence of phospholipids) by hGIIA correlates with its binding to factor Xa with a k_{on} of 310 000 M$^{-1}$ s$^{-1}$, a k_{off} of 0.00155 s$^{-1}$ and a K_{app} of 5 nM. We observed that the binding of hGIIA to factor Xa was completely abolished when higher salt concentrations (300 mM and 500 mM instead of 150 mM) were used during BIAcore experiments (Table 1). The IC$_{50}$ values for H48Q hGIIA determined in the presence and absence of phospholipid were similar to those measured for wild-type hGIIA, and no changes in k_{on}, k_{off} and K_{app} values were observed (Table 1), indicating that the inhibitory effect of hGIIA measured \textit{in vitro} is independent of its catalytic activity, but due to specific binding to factor Xa.

The gla domain of factor Xa has been shown to promote calcium-dependent binding of factor Xa to phospholipid [45]. As hGIIA inhibits prothrombinase activity both in the presence and absence of phospholipids, the interaction of hGIIA with factor Xa should be independent of the gla domain of factor Xa. This was investigated by replacing native factor Xa with factor Xa lacking the gla domain (gla-minus factor Xa) in the prothrombinase complex. As gla-minus factor Xa does not bind to phospholipid, prothrombinase activity was measured in the absence of phospholipid. We observed that the inhibitory effect of hGIIA on prothrombinase activity measured with gla-minus factor Xa (IC$_{50}$ = 50 nM) is similar to that measured with native factor Xa (Table 1). Moreover, the kinetic constants measured by SPR for the interaction between hGIIA and gla-minus factor Xa were similar to those determined with native factor Xa (Table 1). This indicates that the interaction of hGIIA with factor Xa does not involve the gla domain and that prothrombinase inhibition by hGIIA does not require the interaction of either factor Xa or hGIIA with phospholipids.

Involvement of basic residues of hGIIA in the binding to factor Xa

A number of exposed basic residues, i.e. R7, K10, K16, K38, K74, K87, R92, K110, K115, K116, K124 and R127, are located on or near the IBS of hGIIA. These residues form several basic clusters: R7/K10/K16; K110/K115/K116; K74/K87/R92 and K124/R127 (Fig. 2). Other exposed basic residues of hGIIA, i.e. K53, R54, K57, R58, and R132, lie on the face of the molecule that is opposite to the IBS, whereas residues K100 and R108 are located in another region. Various mutants of hGIIA were produced by replacing one or several of these basic residues with acidic ones and assayed for their ability to inhibit prothrombinase activity and to bind to factor Xa (Fig. 3 and Table 1). As the mutated side chains
Table 1. Effect on prothrombinase activity and FXa-binding kinetic parameters of hGIIA and mutants. PL, phospholipid.

<table>
<thead>
<tr>
<th>Wild-type</th>
<th>Absence of PL</th>
<th>Presence of PL</th>
<th>Inhibition of prothrombinase activity (IC_{50}, nM)</th>
<th>Factor Xa-binding kinetic parameters</th>
<th>Specific activity % of wild-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>50 ± 6</td>
<td>80 ± 10</td>
<td>3.1 ± 0.7 × 10^5 1.55 ± 0.4 × 10^3</td>
<td>5 100</td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>52 ± 6</td>
<td>–</td>
<td>4.1 ± 0.2 × 10^5 1.60 ± 0.3 × 10^3</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>H48Q</td>
<td>35 ± 4</td>
<td>110 ± 5</td>
<td>3.5 ± 0.5 × 10^5 2.35 ± 0.4 × 10^3</td>
<td>6.7 0.05</td>
<td></td>
</tr>
<tr>
<td>K53G/R54E</td>
<td>40 ± 4</td>
<td>65 ± 8</td>
<td>3.9 ± 0.2 × 10^5 1.35 ± 0.1 × 10^3</td>
<td>3.5 115</td>
<td></td>
</tr>
<tr>
<td>K57N/R58L</td>
<td>140 ± 10</td>
<td>295 ± 50</td>
<td>2.5 ± 0.3 × 10^5 2.90 ± 0.5 × 10^3</td>
<td>12 90</td>
<td></td>
</tr>
<tr>
<td>K53E/R54E/R58E</td>
<td>110 ± 10</td>
<td>360 ± 50</td>
<td>15 ± 1 × 10^3 1.1 ± 2 × 10^3</td>
<td>58 120</td>
<td></td>
</tr>
<tr>
<td>K100E</td>
<td>65 ± 10</td>
<td>95 ± 20</td>
<td>2.6 ± 0.4 × 10^5 1.1 ± 2 × 10^3</td>
<td>104 102</td>
<td></td>
</tr>
<tr>
<td>R108E</td>
<td>105 ± 13</td>
<td>150 ± 20</td>
<td>2.6 ± 0.4 × 10^5 1.1 ± 2 × 10^3</td>
<td>102 102</td>
<td></td>
</tr>
<tr>
<td>R132E</td>
<td>55 ± 6</td>
<td>145 ± 3</td>
<td>2.6 ± 0.4 × 10^5 1.1 ± 2 × 10^3</td>
<td>102 102</td>
<td></td>
</tr>
<tr>
<td>K74E/K87E/R92E</td>
<td>195 ± 20</td>
<td>290 ± 20</td>
<td>2.6 ± 0.4 × 10^5 1.1 ± 2 × 10^3</td>
<td>102 102</td>
<td></td>
</tr>
<tr>
<td>K74E</td>
<td>85 ± 10</td>
<td>115 ± 3</td>
<td>2.3 ± 0.3 × 10^5 13.5 ± 2 × 10^3</td>
<td>59 106</td>
<td></td>
</tr>
<tr>
<td>K87E</td>
<td>155 ± 30</td>
<td>180 ± 5</td>
<td>2.7 ± 0.3 × 10^5 14.5 ± 1 × 10^3</td>
<td>54 108</td>
<td></td>
</tr>
<tr>
<td>R92E</td>
<td>60 ± 4</td>
<td>100 ± 5</td>
<td>2.7 ± 0.3 × 10^5 14.5 ± 1 × 10^3</td>
<td>54 108</td>
<td></td>
</tr>
<tr>
<td>K124E/R127D</td>
<td>180 ± 20</td>
<td>420 ± 30</td>
<td>3.0 ± 0.5 × 10^5 3.0 ± 0.1 × 10^3</td>
<td>59 106</td>
<td></td>
</tr>
<tr>
<td>R7E/K10E/K16E</td>
<td>215 ± 25</td>
<td>310 ± 6</td>
<td>3.0 ± 0.5 × 10^5 3.0 ± 0.1 × 10^3</td>
<td>59 106</td>
<td></td>
</tr>
<tr>
<td>R7E/K10E/K16E/K124E/R127D</td>
<td>500 ± 500 > 10 000</td>
<td>–</td>
<td>3.0 ± 0.5 × 10^5 3.0 ± 0.1 × 10^3</td>
<td>59 106</td>
<td></td>
</tr>
<tr>
<td>K38E/K124E/K127D</td>
<td>335 ± 30</td>
<td>1 000 ± 100</td>
<td>1.0 ± 0.2 × 10^5 1.9 ± 2 × 10^3</td>
<td>190 95</td>
<td></td>
</tr>
<tr>
<td>K38E/K110E/K115E/K116E</td>
<td>350 ± 50</td>
<td>1 300 ± 110</td>
<td>1.1 ± 0.2 × 10^5 20 ± 3 × 10^3</td>
<td>180 90</td>
<td></td>
</tr>
<tr>
<td>V3W</td>
<td>50 ± 10</td>
<td>80 ± 7</td>
<td>1.0 ± 0.2 × 10^5 1.9 ± 2 × 10^3</td>
<td>190 95</td>
<td></td>
</tr>
<tr>
<td>L25V3G</td>
<td>58 ± 7</td>
<td>180 ± 30</td>
<td>1.1 ± 0.2 × 10^5 20 ± 3 × 10^3</td>
<td>180 90</td>
<td></td>
</tr>
<tr>
<td>A18S/A19G/L20S</td>
<td>40 ± 6</td>
<td>150 ± 30</td>
<td>1.1 ± 0.2 × 10^5 20 ± 3 × 10^3</td>
<td>180 90</td>
<td></td>
</tr>
<tr>
<td>F24S</td>
<td>53 ± 7</td>
<td>110 ± 7</td>
<td>1.1 ± 0.2 × 10^5 20 ± 3 × 10^3</td>
<td>180 90</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 shows that the mutants K53G/R54E, R132E and K100E inhibit prothrombinase activity with IC_{50} values similar to that of the wild-type hGIIA. The IC_{50} values for the mutants K57N/K58L, K53E/R54E/R58E, K53E/R54E/K57E/R58E and R108E are slightly increased compared to that for the wild-type, and their kinetic constants (k_{on}, k_{off} and K_{app}) for binding to factor Xa are similar to those determined for the wild-type (Table 1). In contrast, mutations of basic residues located on the IBS of hGIIA led to increases in the IC_{50} values of fourfold (K74E/K87E/R92E, K124E/R127D, R7E/K10E/K16E), sevenfold (K38E/K124E/K127D and R7E/K10E/K115E/K116E) and 70-fold (R7E/K10E/K16E/K124E/R127D) (Table 1). The changes in IC_{50} values correlated with increases in the K_{app} values for binding to factor Xa, and the decrease in apparent affinity was found to be associated with higher k_{off} values but unchanged, or slightly decreased, k_{on} values (Table 1). In particular, the mutant R7E/K10E/K16E/K124E/R127D, which combines the removal of the basic charges of two clusters, K124/R127 and R7/K10/K16 (Fig. 2), shows a dramatic decrease in the prothrombinase effect. This large effect correlated with an increase of at least 200-fold in the K_{app} value (Table 1). It should also be mentioned that single-site mutations of an individual basic cluster, for example K74E, K87E or R92E, produced only a modest change in the IC_{50} values for prothrombinase inhibition. The effect of mutations on the ability of hGIIA to bind to factor Xa was stronger when investigated with SPR than when determined by prothrombinase assay, even though a good correlation between the relative activities in the two assays was observed. This may be because the direct binding of hGIIA to factor Xa was recorded...
by SPR in the absence of factor Va and prothrombin, whereas these two proteins acting as competitors were present for the prothrombinase inhibition experiments.

The effect of wild-type hGIIA as well as of H48Q, R7E/K10E/K16E/K124E/R127D and K53E/R54E/K57E/R58E mutants on the recalcification time of human blood plasma was also examined. As expected, an increase in the time required for clot formation (150% for 1 μM wild-type hGIIA and 160% for 1 μM H48Q mutant) was observed, indicating that the two proteins have similar anticoagulant efficiencies on plasma as well as the same ability to inhibit the prothrombinase complex (Table 1). The mutant R7E/K10E/K16E/R127D is devoid of anticoagulant activity, even when assayed at 20 μM, as the clotting time was identical with that of the control experiment (i.e. in the absence of added hGIIA). The mutant K53E/R54E/K57E/R58E shows a similar ability to that of the wild-type to inhibit blood coagulation (140% for 1 μM and 180% for 2 μM), indicating that the substitution of four non-relevant lysines or arginines does not impair the anticoagulant action of hGIIA.

As basic residues located on the IBS of hGIIA were found to be involved in binding to factor Xa, the contribution of some exposed hydrophobic residues surrounding the catalytic site of hGIIA and located in the center of the IBS (Fig. 2) was analyzed by replacing these residues by glycine or serine. Mutants L2S/V3G, A18S/A19G/L20S and F24S were found to inhibit prothrombinase activity with IC50 values close to that of the wild-type, suggesting that these residues do not contribute greatly to the interaction with factor Xa (Table 1). In addition, mutant V3W, which displays a 200-fold increased affinity

<table>
<thead>
<tr>
<th></th>
<th>Inhibition of prothrombinase activity (IC50, nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Presence of PL</td>
</tr>
<tr>
<td>hGIB</td>
<td>8.7</td>
</tr>
<tr>
<td>hGI A</td>
<td>10.6</td>
</tr>
<tr>
<td>rGIA</td>
<td>10.3</td>
</tr>
<tr>
<td>mGIA</td>
<td>10.3</td>
</tr>
<tr>
<td>mGIID</td>
<td>10</td>
</tr>
<tr>
<td>hGV</td>
<td>9.8</td>
</tr>
<tr>
<td>rGV</td>
<td>9.7</td>
</tr>
<tr>
<td>hGX</td>
<td>4.8</td>
</tr>
<tr>
<td>Ba IV Basicb</td>
<td>105 ± 10</td>
</tr>
<tr>
<td>CM-III</td>
<td>9.9</td>
</tr>
<tr>
<td>Apis mellifera</td>
<td>7.8</td>
</tr>
</tbody>
</table>

* Theoretical pI values were calculated from multiple equilibria theory [55] using the program available at http://www.up.univ-mrs.fr/~wabim/d_abim/compo-p.html. b Ba IV sPLA2 from Bothrops asper has not been entirely sequenced but has been shown to be basic [37]. The IC50 values are means ± SE calculated from three independent experiments.

Fig. 2. Primary structures of some mammalian sPLA2s. Sequences of mature sPLA2 proteins are shown: hGIB [48]; hGI A [49]; rGIA [50]; mGIA [51]; mGIID [6,7]; hGV [52]; rGV [53]; hGX [54]. Residues are numbered according to the common numbering system proposed by Renetseder et al. [46]. Asterisks indicate the location of conserved amino acid residues among sPLA2s. Boxed residues correspond to the position of the different mutations of hGIIA. Residues on the IBS of hGIIA that are involved in the interaction with factor Xa are indicated in grey, as well as homologous residues found in other basic sPLA 2s that also inhibit prothrombinase activity by a phospholipid-independent mechanism.
towards phosphatidylcholine vesicles [47], inhibits prothrombinase activity as efficiently as the wild-type hGIIA even in the presence of phospholipids.

Effect of other mammalian and venom sPLA₂s on prothrombinase activity

A few sPLA₂s from snake and bee venom were tested in prothrombinase assays. The basic sPLA₂ Ba IV from *B. asper* venom, a K-49 myotoxin devoid of catalytic activity [37], significantly inhibits prothrombinase activity in the presence or absence of phospholipids (Table 2). This result is in agreement with that obtained with H48Q hGIIA and suggests a phospholipid-independent mechanism of inhibition. On the other hand, the CM-III sPLA₂ from *N. mossambica mossambica* venom, although basic (pI = 9.9), and the neutral group III sPLA₂ from honey bee venom (*A. mellifera*) are unable to inhibit prothrombinase activity in the absence of phospholipids, whereas they are active in their presence (Table 2). This suggests that they exert their inhibitory effects through phospholipid hydrolysis.

We also analyzed whether other related mammalian sPLA₂s (Fig. 3 and Table 2) inhibit prothrombinase activity. Rat and mouse group II sPLA₂s (rGIIA and mGIIA), which are highly basic proteins like hGIIA, inhibit prothrombinase activity in the presence and absence of phospholipids, with IC₅₀ values close to those determined for hGIIA (Table 2). Human and rat group V (hGV and rGV) as well as mouse group IID (mIID) sPLA₂s, which are all basic proteins, also inhibit the prothrombinase activity in the absence of phospholipids with similar IC₅₀ values (Table 2). In contrast, the less basic human group IB (pI = 8.7) and the weakly acidic bovine group IB (pI = 6) sPLA₂s do not inhibit prothrombinase activity either in the absence or presence of phospholipids (Table 2 and data not shown). Finally, the human group X sPLA₂ (hGX), which is an acidic protein, efficiently inhibits prothrombinase activity in the presence of phospholipids (IC₅₀ = 35 nM), but is inactive in the absence of phospholipids, as observed for the bee venom sPLA₂ (Table 2). This suggests that these two sPLA₂s exert an inhibitory effect by a mechanism different from that of hGIIA and the other basic sPLA₂s, possibly through hydrolysis of procoagulant phospholipid as hGX and the bee venom sPLA₂s are known to have high affinity for phosphatidylcholine vesicles [36].

DISCUSSION

It has been previously reported that hGIIA inhibits *in vitro* the prothrombinase complex through its binding to factor Xa [30]. The present investigation further shows that hGIIA efficiently delays the formation of thrombin measured in human PRP, showing that the anticoagulant effect of hGIIA also occurs under experimental conditions close to physiological conditions. This *ex vivo* assay lacks endothelial cells and the associated extrinsic pathway, and is unable to mimic the accumulation of platelets and coagulation factors as it occurs *in vivo* at the thrombus clot. However, blood platelets and all plasma components of blood coagulation are present at physiological concentrations, and this *ex vivo* assay has been developed to detect hypercoagulability and hypocoagulability in patients and to monitor anticoagulant treatment [56–58]. Interestingly, catalytically inactive H48Q hGIIA induces an increase in the lag time of thrombin generation as efficiently as the wild-type enzyme. This demonstrates that the catalytic activity of hGIIA is not required for its anticoagulant effect even when natural phospholipids from plasma and activated platelet membrane are present. Both wild-type and catalytically inactive hGIIA greatly delay the appearance of thrombin, in good agreement with an inhibitory mechanism based on the interaction of hGIIA with factor Xa. The function of hGIIA must therefore be to inhibit coagulation by delaying formation of the prothrombinase complex and thus the appearance of thrombin, rather than to inhibit the activity of the fully active prothrombinase complex which would decrease the amount of thrombin generated.

Such an anticoagulant effect of hGIIA is consistent with its inability to generate arachidonic acid from platelet membrane, and thus to participate in platelet activation [20,21]. It has been shown that hGIIA, in the presence of sphingomyelinase, is able to hydrolyse phospholipids from platelet-derivatived microvesicles [59]. These microvesicles support the coagulation cascade in addition to phospholipids from platelet membrane, and such an hydrolysis could lead to an anticoagulant effect [25–27]. However, it is unlikely that such microvesicular hydrolysis occurs during our *ex vivo* assay at a sufficient level to decrease significantly the procoagulant surface, because the catalytically inactive mutant (H48Q) shows the same efficiency as the wild-type hGIIA in inhibiting thrombin generation in PRP. Furthermore, hGIIA has been shown to increase the generation of prostacyclin by vascular endothelial cells [60], which is an efficient inhibitor of platelet activation. The occurrence of such an effect *in vivo* would amplify the anticoagulant effect of hGIIA. We were unable to investigate whether this additional anticoagulant effect does occur because of the absence of endothelial cells in our *ex vivo* assay.

It has been established that the levels of hGIIA in serum greatly increase from 0.35 nM to 0.6 μM under various inflammatory conditions [61,62]. We report here that hGIIA inhibits with an IC₅₀ value of 80 nM the prothrombinase activity measured *in vitro* in the presence of phospholipids. Furthermore, a Kₐ value of 230 nM was previously determined by isothermal microcalorimetry for the interaction of hGIIA with factor Xa, which is a more relevant value than the Kₜ app value determined by SPR, where one of the two components (factor Xa) is immobilized [30]. In any case, these IC₅₀ and Kₐ values appear consistent with a potential localized and/or systemic anticoagulant role of hGIIA during various physiological or pathological states. The inhibition of thrombin generation in PRP by hGIIA was significant for concentrations around 1 μM, i.e. at values slightly higher than the IC₅₀ and Kₐ values measured *in vitro*. This difference may be due to the large increase in blood coagulation efficiency observed with activated platelets in thrombin-generation experiments, in which high factor V/factor Va concentrations are present and compete for hGIIA/factor Xa binding, as well as to the presence of natural phospholipids which may slightly modify the Kₐ value of the hGIIA–factor Xa interaction. This value is slightly higher than the levels of hGIIA determined in serum, i.e. in the systemic circulation. However, it is well established that blood platelets secrete large amounts of hGIIA upon activation [17–19]. Therefore, the hGIIA secreted from platelets will participate, in addition to the hGIIA coming from the systemic circulation, to reach high local concentrations during thrombotic events [9,59]. It has been shown that hGIIA is adsorbed at the platelet surface during secretion, and therefore will not be diluted into the systemic circulation [63]. In agreement with this, low micromolar concentrations of hGIIA have been locally described in synovial fluids from patients with various inflammatory diseases [64], ascitic fluid [65], seminal fluid [66] and tears [67].
This study also shows that several surface-exposed basic residues of hGIIA are key elements in the interaction with factor Xa. We were unable to detect substantial changes in the affinity for factor Xa upon mutation of residues K53, R54, K57 and R58, even when all four were simultaneously replaced by negatives charges. This was surprising as it has been reported that the replacement of Lys57 by glutamine causes a 10-fold reduction in antiprothrombinase activity of hGIIA [24], and that a synthetic peptide comprising residues 51-74 of hGIIA inhibits prothrombinase activity [30]. The present investigation indicates that residues 53-58 of hGIIA do not play a major role in the interaction with factor Xa. In contrast, clusters of basic residues located on the IBS probably play an important role in the interaction of hGIIA with factor Xa, as mutations of these residues lead to a significant reduction in the ability of hGIIA to inhibit prothrombinase activity and to bind to factor Xa. This suggests that electrostatic interactions probably play a crucial role in the hGIIA-factor Xa interaction, as also supported by the observation that increased salt concentrations completely abolished the binding of hGIIA to factor Xa (Table 1). The affinity of hGIIA for factor Xa is abolished when two distant basic clusters of the IBS are simultaneously replaced by acidic clusters, suggesting that the surface of the factor Xa-hGIIA interaction is rather large and composed of several basic residues. It also explains why a single-site mutation only induces a modest change in the ability of hGIIA to inhibit prothrombinase activity and bind to factor Xa, whereas pronounced changes are obtained with multiple mutations of basic residues in the same cluster. Furthermore, a non-specific effect due to a change in the overall basicity of the hGIIA seems unlikely, as the mutant K53/E/R54/E/K57/E/R58/E binds to factor Xa with an affinity similar to that of wild-type hGIIA. In addition, mutations of surface-exposed hydrophobic residues located on the IBS of hGIIA (Fig. 2) failed to interfere with the ability to inhibit prothrombinase activity in the absence of phospholipids (Table 1), suggesting that these residues do not make significant contact with factor Xa. However, we cannot exclude the possibility that other hydrophobic residue(s), not tested in this study, may be involved in the interaction with factor Xa.

Although the anticoagulant activity of venom sPLA2s is well established [31-34], some controversy exists in the literature over the mechanism. Some studies suggest that the sPLA2 catalytic activity is important [33,68], whereas others support the notion that the catalytic activity is not required [34,69,70]. Our present investigation suggests that both hypotheses may be correct, and that the mechanism of inhibition depends on the particular sPLA2. For instance, we show here that the catalytically inactive basic venom sPLA2, Ba IV, can inhibit prothrombinase activity in the absence of phospholipids, suggesting that it acts through direct binding to factor Xa. Similar efficiency to inhibit prothrombinase was observed with the basic subunit of crotoxin (data not shown). These observations are in good agreement with the recent report of a direct interaction between the basic sPLA2 from Naja nigricollis and bovine factor Xa [71]. It is thus likely that some basic venom sPLA2s inhibit blood coagulation through direct binding to factor Xa, rather than, or in addition to, a hydrolytic action on phospholipids. On the other hand, our data suggest that other venom sPLA2s, such as CM-III and bee venom sPLA2s, inhibit prothrombinase activity through phospholipid hydrolysis (Table 2).

As the phospholipid-independent anticoagulant effect of hGIIA appears to be relevant for some basic venom sPLA2s, we investigated whether such an effect could also be extended to the recently cloned mammalian sPLA2s. Mammalian rGIIA, mGIIA, hGV, rGV and mGIID sPLA2s were found to inhibit prothrombinase activity in the absence of phospholipids with an efficiency similar to that of hGIIA, suggesting that they may also act through direct binding to factor Xa. These sPLA2s are all basic proteins, as noted above for venom sPLA2s. However, the overall basicity of the molecule is not sufficient as the basic CM-III sPLA2s (Table 2) and the basic AmtxA from Viper ammodytes ammodytes venom (data not shown) are devoid of inhibitory effect in the absence of phospholipids. The structure-function study presented here for hGIIA indicates that several basic residues located on the IBS are key elements for the interaction with factor Xa and prothrombinase inhibition. Amino-acid alignment of hGIIA with other mammalian sPLA2s shows that several of these residues are conserved between basic sPLA2s active on prothrombinase via a phospholipid-independent mechanism (Fig. 3). In particular, rGIIA and mGIIA share with hGIIA residues K16, K38, K74, K110, K116, and R127 or K127, shown here to be important basic residues for the interaction with factor Xa. Interestingly, except for K110, all these basic residues are conserved in mGIID, a basic sPLA2 that presents an IC50 on prothrombinase activity in the absence of phospholipids close to that of the hGIIA. The basic residues of hGIIA involved in the interaction with factor Xa are less conserved in mGV or rGV, only K16, K38 and K74 or R116 being present. In this case, the loss of one or some defined basic residue(s) may account for the slightly lower efficiency of hGV in inhibiting prothrombinase activity (150 ± 10 nM compared with 50 ± 6 nM for hGIIA).

This study indeed shows that, in addition to hGIIA, three other mammalian sPLA2s are able to inhibit blood coagulation, either by acting through direct binding to factor Xa (hGV, rGV and mGIID) or by phospholipid hydrolysis (hGX). This raises the question of the circulating levels of these sPLA2s in blood and of their physiological or pathophysiological roles in thrombolytic events. So far, data on the circulating levels of GIID, GV, or GX are lacking, even though the presence of GV and GX in blood is likely as the former is detected in macrophages and mast cells, and the latter in peripheral blood leukocytes [4,5]. It may be possible that the levels of anticoagulant sPLA2s in blood are higher than expected and depend on various physiopathological conditions in which one or more of these sPLA2s can be secreted.

In conclusion, our results show that hGIIA probably exerts an anticoagulant effect during physiological and/or pathological situations. This effect occurs through direct binding to factor Xa, via basic residues located on the IBS of hGIIA, and does not require sPLA2 catalytic activity. This study also indicates that several other mammalian and venom sPLA2s inhibit prothrombinase activity by a mechanism similar to that of...
hGIIA, whereas others act on phospholipids. This leads to the hypothesis that various mammalian sPLA₂s may act in concert to inhibit blood coagulation, through either binding to factor Xa or an action on procoagulant phospholipids.

ACKNOWLEDGEMENTS

We are grateful to Professor H. C. Hemker (Medical Faculty and Cardiovascular Research Institute, Maastricht University, the Netherlands) and Professor J. H. Griffin (The Scripps Research Institute, La Jolla, CA, USA) for encouragement and fruitful discussions, and Dr M. Jandrot-Perrus (Faculté de Médecine Xavier Bichat, Paris, France) for critical reading of the manuscript. We thank Dr M. Janssen (Department of Biomembranes, Utrecht University, the Netherlands) for rGV and rGIIA, Dr I. Krizaj (Jozef Stefan Institute, Ljubljana, Slovenia) for AmtxA, Dr J. M. Gutiérrez and S. Lizano (Universidad de Costa Rica, San José, Costa Rica) for Ba IV, and the late Professor H. Verheij (Department of Enzymology and Protein Engineering, Utrecht University) for IGG. The technical assistance of Mr Khalid Maroofi (Medical Faculty and Cardiovascular Research Institute, Maastricht University) in performing thrombin-generation experiments in PRP is greatly appreciated.

REFERENCES

