Lecture 6: Langevin Theory: The Velocity Autocorrelation Function
10/13/04

A. Limit of Delta-Function Correlated Processes.
 o We can further reduce (3.20) by assuming a specific form for \(K \). Let us assume that \(K \) falls off very rapidly as \(s \) increases. Another way of saying this is that the random force at \(t_1 \) is uncorrelated with its value at a time \(t_2 \) unless the two times are close together. Let us model this behavior with the function

\[
K(u_1, u_2) = \alpha \delta(u_1 - u_2)
\]

where \(\delta(u_1 - u_2) \) is the delta function. The property follows if we assume a Markovian Process. We can use (4.1) to evaluate (3.20)...

\[
\left\langle v^2(t) \right\rangle = e^{-2t/\tau} \left\{ v^2(0) + \int_0^t \int_0^t du_1 du_2 e^{(u_1+u_2)/\tau} K(u_1, u_2) \right\}
\]

\[
= e^{-2t/\tau} \left\{ v^2(0) + \alpha \int_0^t du_1 du_2 e^{(u_1+u_2)/\tau} \delta(u_1 - u_2) \right\}
\]

\[
= e^{-2t/\tau} \left\{ v^2(0) + \alpha \int_0^t e^{2u_1/\tau} \right\}
\]

\[
= e^{-2t/\tau} \left\{ v^2(0) + \frac{\alpha \tau}{2} \left(e^{2t/\tau} - 1 \right) \right\} = e^{-2t/\tau} v^2(0) + \frac{\alpha \tau}{2} \left(1 - e^{-2t/\tau} \right)
\]

• It remains to evaluate the parameter \(\alpha \). We can do this by requiring that (6.2) approach the equipartition value for large \(t \)…i.e.

\[
\left\langle v^2(t \to \infty) \right\rangle = \frac{3kT}{M} = \frac{\alpha \tau}{2} \Rightarrow \alpha = \frac{6kT}{\tau M}
\]

• Therefore

\[
\left\langle v^2(t) \right\rangle = e^{-2t/\tau} v^2(0) + \frac{3kT}{M} \left(1 - e^{-2t/\tau} \right)
\]

• From (5.10) and (6.4) we can obtain the equation for the mean squared displacement of a B-particle...

\[
\frac{d^2}{dt^2} \left\langle r^2 \right\rangle + \frac{1}{\tau} \frac{d}{dt} \left\langle r^2 \right\rangle = 2 \left\langle v^2 \right\rangle = 2 \left\{ e^{-2t/\tau} v^2(0) + \frac{3kT}{M} \left(1 - e^{-2t/\tau} \right) \right\}
\]

which has the solution...

\[
\left\langle r^2 \right\rangle = v^2(0) \tau^2 \left(1 - e^{-t/\tau} \right)^2 - \frac{3kT}{M} \tau^2 \left(1 - e^{-t/\tau} \right) \left(3 - e^{-t/\tau} \right) + \frac{6kT \tau}{M} t
\]

Homework 3: Solve (6.5) and show the solution is (6.6)
• Note again for
\[t \ll \tau \ldots \langle r^2 \rangle \approx v^2(0)t^2 \]
\[t \gg \tau \ldots \langle r^2 \rangle \approx (6BkT)t = \left(\frac{6kT}{f}\right)t = 6Dt \] \hspace{1cm} (6.7)

• These limiting values clearly indicate what we have already established about the Langevin theory. For times short compared to the relaxation time, (3.12) reduces to a reversible, deterministic expression. However, for times long compared to the relaxation time, the displacement is that expected for an irreversible diffusive motion.

B. The Velocity Autocorrelation Function

• Thus far we have only discussed the role of the autocorrelation function for the random force in Brownian motion. An important relationship also exists between the diffusion coefficient \(D \) and an autocorrelation function. A basic definition of \(r(t) \) is

\[r(t) - r(0) = \int_0^t v(u)du \] \hspace{1cm} (6.8)

where \(v(u) \) is the velocity at time \(u \). Then we can extend (6.8) to include the mean squared displacement…

\[\langle r^2 \rangle = \int_0^t \int_0^t dv_1dv_2 \langle v(u_1)v(u_2) \rangle \] \hspace{1cm} (6.9)

Homework 3: Derive (6.9)

where \(\langle v(u_1)v(u_2) \rangle = K_v(u_1,u_2) \) is the velocity autocorrelation function. Note the velocity autocorrelation function has the same properties as the autocorrelation function for the fluctuating force…it is sensitive only to \(u_1-u_2 \) Because the motion is a stationary Markov process. Therefore

\[K_v(u_1,u_2) = K_v(s) \text{ where } s = u_1 - u_2 \] \hspace{1cm} (6.10)

Therefore we change variables in (6.9)... \(s = u_1 - u_2 \) and \(S = \frac{1}{2}(u_1 + u_2) \). We note that for \(0 \leq S \leq t/2 \), \(s \) varies from \(-2S\) to \(+2S\). Also for \(t/2 \leq S \leq t \), \(s \) varies from \(s = -2(t-S) \) to \(2(t-S) \). Then (6.9) becomes

\[\langle r^2 \rangle = \int_{t/2}^{t/2} dS \int_{-2S}^{+2S} ds K_v(s) + \int_{t/2}^{+2(t-S)} dS \int_{-2(t-S)}^{+2(t-S)} ds K_v(s) \] \hspace{1cm} (6.11)

• We have already noted that correlation functions drops off very rapidly once \(s \) becomes large. Therefore we can extend the integration limits for \(K(s) \) to negative and positive infinity and (6.11) becomes…
\[
\langle r^2 \rangle = \int_{-\infty}^{\infty} dS \int_{-\infty}^{\infty} ds K_v(s) + \int_{0}^{t} dt \int_{-\infty}^{\infty} ds K_v(s) \\
= \int_{0}^{t} dt \int_{-\infty}^{\infty} ds K_v(s) = t \int_{-\infty}^{\infty} ds K_v(s) \tag{6.12}
\]

- Therefore there is a relatively simple relationship between the diffusion coefficient and the velocity autocorrelation function. It can be derived in this way...recall
\[
\langle r^2 \rangle = 6Dt \Rightarrow \frac{d}{dt} \langle r^2 \rangle = 6D \tag{6.13}
\]

- But from (6.12) we have that
\[
\frac{d}{dt} \langle r^2 \rangle = \int_{-\infty}^{\infty} ds K_v(s) \tag{6.14}
\]

- Then we combine (6.13) and (6.14) to obtain...
\[
D = \frac{1}{6} \int_{-\infty}^{\infty} ds K_v(s) = \frac{1}{3} \int_{-\infty}^{\infty} ds K_v(s) \tag{6.15}
\]

- (6.15) means that if we graph the velocity autocorrelation function versus s for s>0, the area under the curve equals 3D.

C. The Fluctuation-Dissipation Theorem for Brownian Motion

- Recall the expression for the mean squared velocity of a Brownian particle:
\[
\langle v^2(t) \rangle = e^{-\frac{v}{\tau}} \left\{ v^2(0) + \int_{0}^{t} du_1 du_2 e^{(u_1-u_2)/\tau} K(u_1, u_2) \right\} \tag{6.16}
\]

where the correlation function of the random force is
\[
K(u_1, u_2) = \langle A(u_1) \cdot A(u_2) \rangle = \frac{\langle F(u_1) \cdot F(u_2) \rangle}{M^2} \tag{6.17}
\]

- For a stationary process the correlation function only depends on the time difference \(s = u_1 - u_2\) and so
\[
K(u_1, u_2) = \langle A(u_1) \cdot A(u_1 + s) \rangle = \langle A(0) \cdot A(s) \rangle = K(s) \tag{6.18}
\]

- Therefore (6.16) is rewritten as
\[
\langle v^2(t) \rangle = e^{-\frac{v}{\tau}} v^2(0) + \frac{\tau}{2} \left(1 - e^{-\frac{v}{\tau}}\right) \int_{-\infty}^{\infty} ds K(s) \tag{6.19}
\]

- In the infinite time limit we can invoke the equipartition theorem:
\[
\lim_{t \to \infty} \langle v^2(t) \rangle = \frac{3kT}{M} = \frac{\tau}{2} \int_{-\infty}^{\infty} ds K(s) \tag{6.20}
\]

- We finally obtain
\[
\frac{6kT}{\tau M} = \frac{6fM}{M^2} = \int_{-\infty}^{\infty} ds K(s) \Rightarrow f = \frac{M^2}{6kT} \int_{-\infty}^{\infty} ds K(s) \tag{6.21}
\]
• (6.21) states that the drag force on a Brownian particle, described by the friction coefficient \(f \), is related to the area under the curve of the correlation function of the fluctuating force. This particular form of the fluctuation-dissipation theorem was derived assuming the random force is a stationary process and the friction is Markovian (i.e. no memory).