A. Statistics of Conformational Equilibria in Proteins

- It is known from experiments that some proteins, DNA, and RNA molecules undergo transitions between structured helical forms and essentially disordered or random coil forms.
- In proteins, the α-helix exemplifies such a structured form, which is constituted mainly by a system of hydrogen bonds between the amide proton (i.e. N-H) of an amino acid to the oxygen of a carbonyl group (i.e. C=O) four residues away. See Figure 8.1

Figure 8.1: An alpha helix showing the system of hydrogen bonds between amide groups on the ith residue and the carbonyl groups on the i+4 residues.

- The helix form dominates at low temperatures. As temperature is increased, the random form dominates. Frequently the transition occurs over a very narrow range of temperatures, implying the entire helix unwinds very suddenly rather than sections of the helix unraveling gradually. See Figure 8.2.

Figure 8.2: Fraction of helicity in peptide chains of different lengths N monitored as a function of temperature by optical rotation. T_c is the temperature in the midpoint of the transition when half the total chains are helical. Highly cooperative transitions have sigmoidal shapes.

- As shown in Figure 8.2, when the fraction of chains that are helical is monitored as a function of temperature, the fraction changes rapidly at the melting
temperature T_C and has a sigmoidal shape. Such a transition is said to be cooperative, because the chain sections convert from helix to random coil all together., as shown in Figure 8.3.

- The thermodynamics of helix-coil transitions can be modeled statistically. First let us assume the peptide chain is composed of N monomer units. Each monomer unit can either be in a helical state (H) or a coil state (C). So the structure of the chain can be coded in terms of H and C. A particular configuration of the chain might be HHCCCHHHHCCCHHH, for example. There are many possibilities.

- Our objective is to calculate the partition function of the chain assuming all possible configurations. To do this we have to assume a model for the transition. We will assume two models; non-cooperative, fully cooperative, and the zipper model.

B. Noncooperative Helix-Coil Transitions
- There are N monomers in the chain. The structural state of each monomer H or C is independent of its neighbors. We need to calculate the partition function for all configurations of such a chain
 - Suppose a chain has four monomeric units $N=4$. If such a chain is in the CCCC configuration the partition function is q_0. If the configuration is HHHH, the partition function is q_4. There are four configurations with 3 C’s and 1 H: CCCH, CCHC, CHCC, and HCCC. Call this partition function q_1. There are 6 configurations with 2 H’s and 2C’s with q_2. There are four configurations with 1 C and 3 H’s for which the partition function is q_3. The total partition function is:
 \[
 q = q_0 + 4q_1 + 6q_2 + 4q_3 + q_4
 \]
 \[
 = q_0 \left(1 + 4 \frac{q_1}{q_0} + 6 \frac{q_2}{q_0} + 4 \frac{q_3}{q_0} + \frac{q_4}{q_0} \right)
 \]
 \[
 = q_0 \left(1 + 4k_1 + 6k_2 + 4k_3 + k_4 \right)
 \]
 - The parameters $k_n = \frac{q_n}{q_0}$ are called microscopic equilibrium constants.

 They represent equilibria between the CCCC configuration and each individual configuration containing n H-type monomers.

 - Now we make a big assumption about the energetics of these transitions. Regardless of which configurations are involved, every transition from C to H has the same energy change ΔG. Therefore the transition from CCCC to HCCC, CHCC, CCHC, or CCCH all have energy change ΔG and
Similarly the change from CCCC to any of the 6 configurations with 2H’s has energy change \(2\Delta G\) so \(k_2 = s^2\), and in general \(k_n = s^n\) so

\[q = q_0 \left(1 + 4k_1 + 6k_2 + 4k_3 + k_4 \right) = q_0 \left(1 + 4s + 6s^2 + 4s^3 + s^4 \right) = q_0 \left(1 + s \right)^4 \] (8.3)

Now each term in the expansion in 8.3 has a specific interpretation. When divided by \(q\), they give the probabilities that particular configurations occur with particular numbers of H units:

\[
\begin{align*}
p_0 &= \frac{q_0}{q} = \frac{1}{1 + 4s + 6s^2 + 4s^3 + s^4}; & p_1 &= \frac{q_0 4s}{q} = \frac{4s}{1 + 4s + 6s^2 + 4s^3 + s^4} \\
p_2 &= \frac{q_0 6s^2}{q} = \frac{6s^2}{1 + 4s + 6s^2 + 4s^3 + s^4}; & p_3 &= \frac{q_0 4s^3}{q} = \frac{4s^3}{1 + 4s + 6s^2 + 4s^3 + s^4} \\
p_4 &= \frac{q_0 s^4}{q} = \frac{s^4}{1 + 4s + 6s^2 + 4s^3 + s^4}
\end{align*}
\] (8.4)

Equations 8.3 and 8.4 can be generalized to any chain with N monomers:

\[
q = q_0 \left(1 + Ns + \frac{N(N-1)}{2} s^2 + \ldots + \frac{N!}{n!(N-n)!} s^n + \ldots + Ns^{N-1} + s^N \right) = q_0 \left(1 + s \right)^N
\] (8.5)

To simulate data displayed in Figure 8.2, we need to calculate the fractional helicity, defined as:

\[f_H = \frac{\langle n \rangle}{N} = \frac{\sum_{n=1,N} np_n}{N} \] (8.6)

where \(\langle n \rangle\) is the average number of helical units in a chain.

Example: Use equation 7.6 to calculate the fractional helicity for \(N=2\).

\[
f_H = \frac{\langle n \rangle}{2} = \frac{\sum_{n=1,2} np_n}{2} = \frac{1}{2} \left(p_1 + 2p_2 \right)
= \frac{1}{2} \left(\frac{2s}{1+2s+s^2} + \frac{2s^2}{1+2s+s^2} \right) = s \left(1+s \right) = s \frac{1}{1+s}
\]

This procedure is fairly simple for small values of \(N\). But if \(N\) is large the series summation can become daunting. Fortunately, there is a really easy way to calculate \(\langle n \rangle\) that does not use the \(p_n\) series expression. It can be shown:
\[
\langle n \rangle = \frac{\partial \ln q}{\partial \ln s} = s \frac{\partial q}{\partial s} = \frac{s q_0}{q_0 (1+s)^2} \frac{\partial}{\partial s} \left[\ln (1+s)^2 \right] = \frac{s}{(1+s)^2} 2(1+s) = \frac{2s}{1+s}
\]

(8.7)

\[
\therefore f_H = \frac{\langle n \rangle}{2} = \frac{s}{1+s}
\]

o In general, for N monomers:

\[
f_H = \frac{\langle n \rangle}{N} = \frac{s}{1+s}
\]

(8.8)

o Recall that the conversion from C to H occurs with a Gibbs energy change \(\Delta G^o \);

\[
C \xrightarrow{\Delta G^o} H
\]

(8.9)

o If \(s<1 \), then \(\Delta G^o>0 \), helix is not favored. This is the situation that prevails at high temperature.

o If \(s>1 \) then \(\Delta G^o<0 \), helix is favored which is the situation that prevails at low temperature. A plot of equation 8.7 for \(f_H \) versus is given in Figure 8.3:

Figure 8.3: A plot of the fractional helicity as a function of s using equation 7.8.

- Equation 8.7 and Figure 8.3 indicate that in the absence of cooperativity, there is a smooth accumulation of helical monomers as s increases.

- In Figure 8.4 we can view the progress of non-cooperative and fully cooperative protein helix-coil transitions with temperature. Suppose the unstructured form of a protein with N monomers ...CCCC...has energy \(E_1 \) and the fully structured formHHHH.... has energy \(E_2 \). At temperature \(T_1 \) the number of unstructured molecules \(w(E_1) \) is a large number and \(\langle n \rangle \approx 0 \). At temperature \(T_2 \) the number of fully structured molecules \(w(E_2) \) is large and \(\langle n \rangle \approx N \).
As the temperature is varied between T_1 and T_2, partially structured forms appear and the maximum shifts gradually with temperature, and $\langle n \rangle$ increases gradually from 0 to N.

Figure 8.4: A non-cooperative model (left) has a gradual shift of the population maximum from T_1 where the unstructured form dominates to T_2 where the structured form dominates. At intermediate temperatures partially structured forms are most numerous. In the fully cooperative model (right) there are only two populations: fully structured and unstructured. At T_1 almost all the population is in the unstructured state and at T_2 almost all the population is in the structured state. At the melting temperature T^*, the populations are equal.

C. Fully Cooperative Model

- In the fully cooperative model there are only two states:
 - The unstructured state: where the chain of length N has no helical monomers so has the configuration is \texttt{CCCCCCCC}... and the partition function is q_0.
 - The structured state: where the chain has all helical monomers which corresponds to \texttt{HHHHHHH}... and the partition function is $q_N=q_0s^4$.
 - Because there are only two forms in equilibrium: all C and all H, and assuming there are N monomers the equilibrium is
 \[
 CCCCCCCC \xrightleftharpoons[k_4=s^4]{k_4=s^4} HHHHHHH
 \]
 - To construct the partition function, we simplify equation 8.3. In this equilibrium only the constant $k_4=s^4$ is nonzero. Therefore the partition function simplifies to
$q = q_0 \left(1 + s^N\right)$ \hspace{1cm} (8.11)

- Proceeding just as before:

$$\langle n \rangle = \frac{s}{q} \frac{\partial q}{\partial s} = \frac{s}{1 + s^N} \frac{\partial}{\partial s} \left[1 + s^N\right]^{N-1} = \frac{N s^N}{1 + s^N}
\Rightarrow \frac{\langle n \rangle}{N} = \frac{s^N}{1 + s^N}$$

(8.12)

- Figure 8.5 A plot of equation 8.12 is shown to the right. It has the familiar sigmoidal dependence of the data in Figure 8.2.

- Figure 8.4, right and Figure 8.5 display the properties of a fully cooperative transition. In this model no intermediate forms exist and the fully structured and unstructured population change as a function of temperature. At the melting temperature T^* the populations are equal so that $f_H = 0.5$ and $s = 1$.

![Fully Cooperative](image)