Lecture 7. 1/21/15

A. Partition Function & Equilibrium

- In the last lecture we found that for a chemical reaction
 \[\nu_A A + \nu_B B \rightleftharpoons \nu_C C + \nu_D D \] (7.1)
 the equilibrium criterion is
 \[\nu_A \mu_A + \nu_B \mu_B = \nu_C \mu_C + \nu_D \mu_D \] (7.2)

- Substituting the statistical expression for the chemical potential
 \[\mu_i = -k_B T \ln \left(\frac{q_i}{N} \right) \] (7.3)
 into equation 7.2 we obtain
 \[\Delta \mu = -k_B T \ln K = \nu_C \mu_C + \nu_D \mu_D - \nu_A \mu_A - \nu_B \mu_B \]
 \[= -k_B T \left(-\nu_A \ln \left(\frac{q_A}{N} \right) - \nu_B \ln \left(\frac{q_B}{N} \right) + \nu_C \ln \left(\frac{q_C}{N} \right) + \nu_D \ln \left(\frac{q_D}{N} \right) \right) \] (7.4)

- Note we use \(N \) in each denominator because we assume the chemical potential of each species is per mole and scale the number of moles with the stoichiometric coefficients. The equilibrium constant is:
 \[K_p = \frac{q_C^{\nu_C} q_D^{\nu_D}}{q_A^{\nu_A} q_B^{\nu_B}} N^{\nu_C + \nu_D - \nu_A - \nu_B} = \frac{q_C^{\nu_C} q_D^{\nu_D}}{q_A^{\nu_A} q_B^{\nu_B}} N^{-\Delta \nu} \] (7.5)
 \[\Delta \nu = \nu_C + \nu_D - \nu_A - \nu_B \]

B. Enthalpically Driven vs. Entropically Driven Reactions:
Correspondence of Classical and Statistical Thermodynamics

- Let us consider the simplest possible equilibrium
 \[A \rightleftharpoons B \ldots K = \frac{q_B}{q_A} \] (7.6)

- The equilibrium expressed in equation 7.6 could be the gas phase isomerization equilibrium between butane (A) and isobutene (B) or it could express the equilibrium between the structured form of a protein (A=N) and the unstructured or denatured form (B=D).

- As shown in Figure 7.1 let us represent the energies of A and B as energy ladders with different energy level spacings. For generality we also assume the ground state energies are different such that
 \[\epsilon_{B,0} = \epsilon_{A,0} + \Delta \epsilon \] (7.7)
We need to define the partition functions for A and B relative to a common reference. We chose this to be the A ground state so we use equation 7.7. Then the partition functions are:

\[
q_A^* = \sum_j e^{-\varepsilon_{A,j}/k_BT} \quad \text{and} \quad q_B^* = \sum_j e^{-\varepsilon_{B,j}+\Delta\varepsilon}/k_BT = e^{-\Delta\varepsilon/k_BT} \sum_j e^{-\varepsilon_{B,j}}/k_BT
\]

(7.8)

Note in equation 7.8 the energies \(\varepsilon_{A,j} \) for \(i>0 \) are referenced to \(\varepsilon_{A,0} = 0 \). Also, in equation 7.8 the energies \(\varepsilon_{B,j} \) for \(i>0 \) are referenced to \(\varepsilon_{B,0} = 0 \). The B referencing is OK IF the B molecule is viewed in isolation. But in an endothermic chemical reaction, we must take into account that \(\varepsilon_{B,0} - \varepsilon_{A,0} = \Delta\varepsilon > 0 \). Therefore, when partition functions are combined into the expression for \(K \), all energies must be referenced to a common ground state. In this case we use \(\varepsilon_{A,0} = 0 \) as the reference state.

The equilibrium constant in equation 7.6 is now:

\[
K = \frac{q_B^*}{q_A^*} = e^{-\Delta\varepsilon/k_BT} \sum_j e^{-\varepsilon_{B,j}/k_BT}/\sum_j e^{-\varepsilon_{A,j}/k_BT}
\]

(7.9)

At low T such that \(\Delta\varepsilon \gg k_B T \), the term \(e^{-\Delta\varepsilon/k_BT} << 1 \) and so \(K << 1 \). This means at low temperature, the A form is favored. This means that at low temperature molecules will congregate in the lowest energies available, which is in the A energy manifold.

At high T such that \(\Delta\varepsilon \ll k_B T \) the term \(e^{-\Delta\varepsilon/k_BT} >> 1 \) and so \(K >> 1 \). This means at high temperature the B form is favored even though at low T the B form is not favored.

In classical thermodynamics this result is obtained from the equation
\[
\ln K = \frac{-\Delta G^*}{RT} = \frac{-\Delta H^*}{RT} + \frac{\Delta S^*}{R} \tag{7.10}
\]

- At low T the \(\frac{-\Delta H^*}{RT}\) dominates so \(\ln K \approx \frac{-\Delta H^*}{RT}\). Because \(\Delta H^* > 0\) \(\ln K\) is large and negative meaning \(K\) is very small. The endothermic conversion of A to B is disfavored and the A form dominates.

- At high T \(\ln K \approx \frac{\Delta S^*}{RT}\). In this case the equilibrium is dominated by entropic effects. If \(\Delta S^* > 0\) the B form will be favored at high T.

- In fact we have set up the problem so that \(\Delta S^* > 0\). Note the energy level spacing for the B form is smaller than for the A form. This means at high T where \(\Delta \epsilon \ll k_B T\) the partition function for the B form will be higher than the partition function for the A form.

- If the reaction were thermo-neutral such that \(\Delta H^* \approx 0\) the equilibrium would be driven by entropy alone. This is the case in homework set 3 problem 3.