Financial Econometrics and Volatility Models
Stochastic Volatility

Eric Zivot

April 26, 2010
Outline

- Stochastic Volatility and Stylized Facts for Returns
- Log-Normal Stochastic Volatility (SV) Model
- SV Model with Student-t Errors
- Asymmetric SV Model
- Multivariate SV Model
Reading

- APDVP, chapters 8 and 11
- FMUND, chapter 4 (section 7)
Stochastic Volatility and Stylized Facts for Returns

Assume daily cc returns can be described as

\[r_t = \mu + \sigma_t u_t \]

where

1. \(\sigma_t \) is a positive random variable s.t. \(\text{var}(\sigma_t | r_{t-1}, r_{t-2}, \ldots) > 0 \)

2. \(\{\sigma_t\} \) is stationary, \(E[\sigma_t^4] < \infty \) and \(\rho_{\tau,\sigma^2} = \text{corr}(\sigma_t^2, \sigma_{t+\tau}^2) > 0 \) for all \(\tau \)

3. \(u_t \sim iid (0, 1) \)

4. \(\{u_t\} \) and \(\{\sigma_t\} \) are independent
SV vs. ARCH

The ARCH model is expressed as

\[r_t = \mu + \sigma_t u_t \]
\[\sigma_t^2 = a_0 + a_1 r_{t-1}^2 \]

However,

\[
\text{var}(\sigma_t^2 | r_{t-1}, r_{t-2}, \ldots, \cdot) = E[\sigma_t^4 | r_{t-1}, r_{t-2} \ldots] - E[\sigma_t^2 | r_{t-1}, r_{t-2} \ldots]^2 \\
= E[(a_0 + a_1 r_{t-1}^2)^2 | r_{t-1}, r_{t-2} \ldots] - E[a_0 + a_1 r_{t-1}^2 | r_{t-1}, r_{t-2} \ldots]^2 \\
= (a_0 + a_1 r_{t-1}^2)^2 - (a_0 + a_1 r_{t-1}^2)^2 = 0
\]

so that there is no unpredictable volatility component.
SV vs ARCH

- SV specification can be motivated by economic theory

- Discrete-time SV specification has continuous-time diffusion representation

- SV fits nicely into continuous-time finance theory
Properties of Returns in SV Model

Key result: Because \(\{u_t\} \) and \(\{\sigma_t\} \) are independent, for any functions \(f_1 \) and \(f_2 \) we have

\[
E[f_1(\sigma_t, \sigma_{t-1}, \ldots,)f_2(u_t, u_{t-1}, \ldots,)] = E[f_1(\sigma_t, \sigma_{t-1}, \ldots,)]E[f_2(u_t, u_{t-1}, \ldots,)]
\]

Moments

\[
E[r_t - \mu] = E[\sigma_t u_t] = E[\sigma_t]E[u_t] = 0
\]
\[
\text{var}(r_t) = E[(r_t - \mu)^2] = E[\sigma_t^2 u_t^2] = E[\sigma_t^2]E[u_t^2] = E[\sigma_t^2]
\]
Moments continued

\[
\]

\[
\text{kurt}(r_t) = \frac{E[(r_t - \mu)^4]}{E[\sigma_t^2]^2} = \frac{\text{kurt}(u_t)E[\sigma_t^4]}{E[\sigma_t^2]^2}
\]

\[
= \text{kurt}(u_t) \left(1 + \frac{\text{var}(\sigma_t^2)}{E[\sigma_t^2]^2}\right) > \text{kurt}(u_t)
\]

Autocovariances and Autocorrelations

\[
\gamma_{\tau,r} = \text{cov}(r_t, r_{t+\tau}) = \text{cov}(\sigma_t u_t, \sigma_{t+\tau} u_{t+\tau})
\]

\[
= E[\sigma_t u_t \sigma_{t+\tau} u_{t+\tau}] - E[\sigma_t u_t]E[\sigma_{t+\tau} u_{t+\tau}]
\]

\[
= E[\sigma_t \sigma_{t+\tau}]E[u_t u_{t+\tau}] - E[\sigma_t]E[u_t]E[\sigma_{t+\tau}]E[u_{t+\tau}] = 0
\]
Define $s_t = (r_t - \mu)^2 = \sigma_t^2 u_t^2$. Then

$$
\gamma_{\tau,s} = \text{cov}(s_t, s_{t+\tau}) = \text{cov}(\sigma_t^2 u_t^2, \sigma_{t+\tau}^2 u_{t+\tau}^2)
$$

$$
= E[\sigma_t^2 u_t^2 \sigma_{t+\tau}^2 u_{t+\tau}^2] - E[\sigma_t^2 u_t^2]E[\sigma_{t+\tau}^2 u_{t+\tau}^2]
$$

$$
= E[\sigma_t^2 \sigma_{t+\tau}^2]E[u_t^2]E[u_{t+\tau}^2] - E[\sigma_t^2]E[u_t^2]E[\sigma_{t+\tau}^2]E[u_{t+\tau}^2]
$$

$$
= E[\sigma_t^2 \sigma_{t+\tau}^2] - E[\sigma_t^2]E[\sigma_{t+\tau}^2]
$$

$$
= \text{cov}(\sigma_t^2, \sigma_{t+\tau}^2) = \gamma_{\tau,\sigma^2} > 0
$$

Positive dependence in squared returns result from positive dependence in σ_t^2

Note:

$$
\rho_{\tau,s} = \frac{\text{cov}(s_t, s_{t+\tau})}{\text{var}(s_t)} = \frac{\text{cov}(\sigma_t, \sigma_{t+\tau})}{\text{var}(\sigma_t)} \frac{\text{var}(\sigma_t^2)}{\text{var}(s_t)} = \rho_{\tau,\sigma^2} \left[\frac{\text{var}(\sigma_t^2)}{\text{var}(s_t)} \right]
$$
Define

\[a_t = |r_t - \mu| = \sigma_t |u_t| \]

Then for \(\tau > 0 \)

\[
E[a_t^p a_{t+\tau}^p] = E[\sigma_t^p \sigma_{t+\tau}^p |u_t|^p |u_{t+\tau}|^p]
\]

\[
= E[\sigma_t^p \sigma_{t+\tau}^p] E[|u_t|^p]^2
\]

\[
E[a_t^p] E[a_{t+\tau}^p] = E[\sigma_t^p] E[\sigma_{t+\tau}^p] E[|u_t|^p]^2
\]

and

\[
\text{cov}(a_t^p, a_{t+\tau}^p) = E[a_t^p a_{t+\tau}^p] - E[a_t^p] E[a_{t+\tau}^p]
\]

\[
= \left(E[\sigma_t^p \sigma_{t+\tau}^p] - E[\sigma_t^p] E[\sigma_{t+\tau}^p] \right) E[|u_t|^p]^2
\]

\[
= \gamma_{\tau, \sigma^p} E[|u_t|^p]^2 \text{ for } \tau > 0
\]
Note:

$$\text{var}(a_t^p) = E[a_t^{2p}] - E[a_t^p]^2$$

$$= E[\sigma_t^{2p}|u_t|^{2p}] - E[\sigma_t^p|u_t|^p]^2$$

$$= E[\sigma_t^{2p}] E[|u_t|^{2p}] - E[\sigma_t^p]^2 E[|u_t|^p]^2$$
Autocorrelations of $|a_t|^p$

Define

$$A(p) = \frac{E[\sigma_t^{2p}]}{E[\sigma_t^p]^2} \quad \text{and} \quad B(p) = \frac{E[|u_t|^{2p}]}{E[|u_t|^p]^2}$$

Taylor (1994) derived the following result

$$\rho_{\tau, a^p} = \text{corr}(a_t^p, a_{t+\tau}^p) = \frac{\text{cov}(a_t^p, a_{t+\tau}^p)}{\text{var}(a_t^p)} = \frac{\gamma_{\tau, \sigma^p} E[|u_t|^p]^2}{E[\sigma_t^{2p}] E[|u_t|^{2p}] - E[\sigma_t^p]^2 E[|u_t|^p]^2} = C(p) \rho_{\tau, \sigma^p}$$

$$C(p) = \frac{A(p) - 1}{A(p) B(p) - 1} \leq \frac{1}{B(p)}$$
Result: If $u_t \sim iid \ N(0, 1)$ then

$$E[|u_t|^p] = 2^{p/2} \pi^{-1/2} \Gamma((p + 1)/2)$$

$$\Gamma(u) = \int_0^\infty x^{u-1} e^{-x} dx, \ u > 0$$

$$\Gamma(1/2) = \sqrt{\pi}, \ \Gamma(1) = 1, \ \Gamma(u + 1) = u\Gamma(u)$$

$$\Gamma(n) = (n - 1)! \text{ if } n \text{ is an integer}$$

If $u_t \sim iid$ Student’s t with v df then

$$E[|u_t|] = \frac{2\sqrt{v-2}\Gamma((v+1)/2)}{\sqrt{\pi}(v-1)\Gamma(v/2)}$$
The Log-Normal AR(1) Stochastic Volatility Model

\[r_t = \mu + \sigma_t u_t \]
\[\ln(\sigma_t) - \alpha = \phi(\ln(\sigma_{t-1} - \alpha) + \eta_t), |\phi| < 1 \]
\[\begin{pmatrix} u_t \\ \eta_t \end{pmatrix} \sim iid N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & \sigma^2_\eta \end{pmatrix} \right) \]

Note

\[\ln(\sigma_t) \sim N(\alpha, \beta^2) \]
\[\beta^2 = \frac{\sigma^2_\eta}{1 - \phi^2} \Rightarrow \sigma^2_\eta = \beta^2(1 - \phi^2) \]
Log Normal Distribution

Definition: If $\ln(Y) \sim N(\mu, \sigma^2)$ then $Y \sim LN(\mu, \sigma^2)$ such that

$$f(y|\mu, \sigma^2) = \frac{1}{y\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{\ln(y) - \mu}{\sigma}\right)^2\right), \quad y > 0$$

$$E[Y^n] = \exp\left(n\mu + \frac{1}{2}n^2\sigma^2\right)$$

$$E[Y] = \exp\left(\mu + \frac{1}{2}\sigma^2\right)$$

$$\text{var}(Y) = \exp\left(2\mu + \sigma^2\right) \left(\exp(\sigma^2) - 1\right)$$

In the Log-Normal AR(1) SV model

$$\sigma_t \sim LN(\alpha, \beta^2)$$
Alternative Parameterization

Some authors specify the log-Normal SV model as

\[r_t = \mu + \exp(\omega/2) u_t \]
\[w_t - \omega = \phi(w_{t-1} - \omega) + \eta_{w,t}, \quad \eta_{w,t} \sim iid \ N(0, \sigma_{\eta_w}^2) \]

Here

\[w_t = \ln(\sigma_t^2) = 2 \ln(\sigma_t) \quad \text{and} \quad \sigma_t = \exp(\omega_t/2) \]

It follows that

\[\omega = E[w_t] = 2E[\ln(\sigma_t)] = 2\alpha \]
\[\beta_w^2 = \text{var}(w_t) = \text{var}(2 \ln(\sigma_t)) = 4\text{var}(\ln(\sigma_t)) = 4\beta^2 \]
\[\sigma_{\eta_w}^2 = \beta_w^2(1 - \phi^2) = 4\beta^2(1 - \phi^2) \]
Basic Properties

- \(\{r_t\} \) is strictly stationary
- All moments of \(r_t \) are finite
- \(\text{kurt}(r_t) = 3 \exp(4\beta^2) \)
- \(\text{cov}(r_t, r_{t+\tau}) = 0 \) (\(\{r_t - \mu, I_t\} \) is a MDS)
- \(\text{cov}(s_t, s_{t+\tau}) > 0 \) when \(\phi > 0 \), \(s_t = (r_t - \mu)^2 \)
- ACF of \(a_t^p = |r_t - \mu|^p \) behaves like ACF of \(s_t \)
Extensions of Standard SV Model

- Fat tailed distribution for u_t (e.g. Student’s t)

- Dependence between u_t and η_t to capture leverage effect

- Long memory behavior for $\ln(\sigma_t)$

- Multivariate formulation
Density and Moments

\[r_t - \mu = \sigma_t u_t = \text{log-Normal } \times \text{ Normal} \]
\[\Rightarrow \text{ no closed form expression for density} \]

Derivation of Moments

Exploit independence between \(\{\sigma_t\} \) and \(\{u_t\} \)

Utilize moments of log-Normal distribution

Absolute Moments

\[E[|r_t - \mu|^p] = E[\sigma_t^p] = E[\sigma_t^p u_t^p] = E[\sigma_t^p] E[|u_t|^p] \]
Now

\[\ln(\sigma^p_t) = p \ln(\sigma_t) \sim N(p\mu, p^2 \beta^2) \]
\[\Rightarrow \sigma^p_t \sim LN(p\mu, p^2 \beta^2) \]

Hence

\[E[\sigma^p_t] = \exp \left(p\alpha + \frac{1}{2} p^2 \beta^2 \right) \]

Furthermore, recall for \(u_t \sim iid N(0, 1) \)

\[E[|u_t|^p] = 2^{p/2} \pi^{-1/2} \Gamma((p + 1)/2) \]

Therefore,

\[E[|r_t - \mu|^p] = E[\sigma^p_t] E[|u_t|^p] = \exp \left(p\alpha + \frac{1}{2} p^2 \beta^2 \right) 2^{p/2} \pi^{-1/2} \Gamma \left(\frac{p + 1}{2} \right) \]
For $p = 1$ and $p = 2$

$$E[|r_t - \mu|] = \exp\left(\alpha + \frac{1}{2} \beta^2\right) \sqrt{2/\pi}$$

$$E[|r_t - \mu|^2] = \text{var}(r_t) = \exp\left(2\alpha + 2\beta^2\right) \frac{2}{\sqrt{\pi}} \Gamma\left(\frac{3}{2}\right)$$

$$= \exp\left(2\alpha + 2\beta^2\right)$$

because

$$\Gamma\left(\frac{3}{2}\right) = \Gamma\left(\frac{1}{2} + 1\right) = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{1}{2} \sqrt{\pi}$$

Straightforward algebra gives

$$\text{kurt}(r_t) = \frac{E[|r_t - \mu|^4]}{\text{var}(r_t)^2} = 3 \exp\left(4\beta^2\right)$$
Autocorrelations

• \(\{r_t - \mu\} = \{\sigma_t u_t\} \) is a MDS \(\Rightarrow \{r_t\} \) is an uncorrelated processes

• \(\{\sigma_t\} \) is autocorrelated because \(\ln(\sigma_t) \) follows an AR(1) process

• \(a_t = |r_t - \mu| = \sigma_t |u_t|, \quad l_t = \ln a_t = \ln(\sigma_t) + \ln(|u_t|) \) and \(s_t = (r_t - \mu)^2 \) are autocorrelated and behave similarly to \(\{\sigma_t\} \)
Autocorrelations of l_t, σ_t, a_t, and s_t

Autocorrelations of $l_t = \ln(a_t) = \ln(\sigma_t) + \ln(|u_t|)$

$$
\text{cov}(l_t, l_{t+\tau}) = \text{cov}(\ln(\sigma_t) + \ln(|u_t|), \ln(\sigma_{t+\tau}) + \ln(|u_{t+\tau}|))
= \text{cov}(\ln(\sigma_t), \ln(\sigma_{t+\tau})) \quad \text{(b/c u_t is iid)}
= \phi^\tau \beta^2 \quad \text{(b/c $\ln(\sigma_t)$ follows an AR(1))}
$$

Then

$$
\rho_{\tau,l} = \text{corr}(l_t, l_{t+\tau}) = \frac{\text{cov}(l_t, l_{t+\tau})}{\text{var}(l_t)} = \frac{\phi^\tau \beta^2}{\text{var}(\ln(\sigma_t) + \ln(|u_t|))}
$$
Now

$$\text{var}(\ln(\sigma_t)) = \beta^2, \text{ var}(\ln(|u_t|)) = \pi^2/8$$

Hence

$$\rho_{\tau,l} = \frac{\phi^\tau \beta^2}{\beta^2 + \pi^2/8} = \frac{8\phi^\tau \beta^2}{8\beta^2 + \pi^2} = C(0, \beta)$$

$$\text{sign}(\rho_{\tau,l}) = \text{sign}(\phi)$$
Autocorrelations of σ^p_t

As $\ln(\sigma^p_t)$ is a Gaussian AR(1) process, with mean αp, variance $p^2 \beta^2$ and autoregressive coefficient ϕ it can be shown that

$$\ln(\sigma^p_t) + \ln(\sigma^p_{t+\tau}) = \ln(\sigma^p_t \sigma^p_{t+\tau}) \sim N(2p\alpha, 2(1 + \phi|\tau|)p^2 \beta^2)$$

This follows since

$$E[\ln(\sigma^p_t) + \ln(\sigma^p_{t+\tau})] = p\alpha + p\alpha = 2p\alpha$$

$$\text{var}(\ln(\sigma^p_t) + \ln(\sigma^p_{t+\tau})) = \text{var}(\ln(\sigma^p_t)) + \text{var}(\ln(\sigma^p_{t+\tau})) + 2\text{cov}(\ln(\sigma^p_t), \ln(\sigma^p_{t+\tau}))$$

$$= p^2 \beta^2 + p^2 \beta^2 + 2p^2 \beta^2 \phi|\tau|$$

$$= 2(1 + \phi|\tau|)p^2 \beta^2$$
Hence

\[\sigma_t^p \sigma_{t+\tau}^p \sim LN(2p\alpha, 2(1 + \phi |\tau|)p^2 \beta^2) \]

It follows that

\[
E[\sigma_t^p \sigma_{t+\tau}^p] = \exp \left(2p\alpha + (1 + \phi^\tau)p^2 \beta^2 \right)
\]

\[
\rho_{\tau, \sigma^p} = \frac{\exp(p^2 \beta^2 \phi^\tau) - 1}{\exp(p^2 \beta^2) - 1}
\]
Autocorrelations of $a_t^p = |r_t - \mu|^p$

Previous we stated that

\[
\rho_{\tau, a^p} = \text{corr}(a_t^p, a_{t+\tau}^p) = C(p) \rho_{\tau, \sigma^p}
\]

\[
C(p) = \frac{A(p) - 1}{A(p)B(p) - 1}, \quad A(p) = \frac{E[\sigma_t^{2p}]}{E[\sigma_t^p]^2} \quad \text{and} \quad B(p) = \frac{E[|u_t|^{2p}]}{E[|u_t|^p]^2}
\]

Hence, it can be shown that

\[
\rho_{\tau, a^p} = \frac{\exp(p^2 \beta^2 \phi^\tau) - 1}{B(p) \exp(p^2 \beta^2) - 1}
\]

When $p = 2$, we have

\[
\rho_{\tau, s} = \frac{\exp(4 \beta^2 \phi^\tau) - 1}{3 \exp(4 \beta^2) - 1}
\]
Log-Normal AR(1) SV Model with Student-t Errors

\[r_t = \mu + \sigma_t u_t, \ u_t \sim iid \ St(v), \ v > 2 \]
\[\ln(\sigma_t) - \alpha = \phi(\ln(\sigma_{t-1} - \alpha) + \eta_t, \ \eta_t \sim iid \ N(0, \sigma^2_\eta) \]

\(u_t \) is independent of \(\eta_t \) for all \(t \)

Here

\[f(u|v) = c(v) \left[1 + \frac{u^2}{v - 2} \right]^{-(v+1)/2}, \ v > 2 \]
\[c(v) = \frac{\Gamma \left(\frac{v+1}{2} \right)}{\Gamma \left(\frac{v}{2} \right) \sqrt{\pi(v - 2)}} \]

\[E[u] = 0, \ \text{var}(u) = 1, \ \text{kurt}(u) = \frac{3(v - 2)}{v - 4} \]
Note: by definition

\[u_t = v_t \sqrt{w_t} \]

\[v_t \sim iid \ N(0, 1) \]

\[(v - 2)w_t^{-1} \sim x_v^2 \]

Then we can write

\[r_t - \mu = \sigma_t u_t = \sigma_t \sqrt{w_t} v_t = \sigma^*_t v_t \]

\[\sigma^*_t = \sigma_t \sqrt{w_t} \]

\[\ln \sigma^*_t = \ln \sigma_t + \frac{1}{2} \ln w_t \]

\[= AR(1) + WN(0, \sigma^2_{\ln w}) \]

\[= ARMA(1, 1) \]
Moments

\[a_t = |r_t - \mu| = \sigma_t |u_t| \]

\[u_t \sim \text{iid} St(v) \]

Then

\[
E[a_t^p] = E[\sigma_t^p] E[|u_t|^p] \\
= \exp \left(p\alpha + \frac{1}{2}p^2\beta^2 \right) E[|u_t|^p] < \infty \text{ for } p < v
\]

Example

\[
E[a_t] = \exp \left(\alpha + \frac{1}{2}\beta^2 \right) \frac{2(v - 2)\Gamma \left(\frac{v+1}{2} \right)}{\sqrt{\pi}(v - 1)\Gamma \left(\frac{v}{2} \right)}, \quad v > 1
\]

\[
E[a_t^2] = \exp(2\alpha + 2\beta^2), \quad v > 2
\]

\[
E[a_t^4] = \exp \left(4\alpha + 8\beta^2 \right) \frac{3(v - 2)}{v - 4}, \quad v > 4
\]
Note: Moment existence depending on v causes problems for GMM estimation of v.