Lecture Outline

- Exponentially weighted covariance estimation
- Multivariate GARCH models
- Prediction from multivariate GARCH models
Reading

- FRF chapter 3.
- QRM chapter 4, sections 5 and 6;
- FMUND, chapter 6
Exponentially Weighted Covariance Estimate

Let \mathbf{y}_t be a $k \times 1$ vector of multivariate time series:

$$
\mathbf{y}_t = \mathbf{c} + \epsilon_t, \quad t = 1, 2, \cdots, T
$$

$$
\epsilon_t \sim WN(0, \Sigma)
$$

The sample covariance matrix is given by:

$$
\hat{\Sigma} = \frac{1}{T-1} \sum_{t=1}^{T} \hat{\epsilon}_t \hat{\epsilon}_t' = \frac{1}{T-1} \sum_{t=1}^{T} (\mathbf{y}_t - \bar{\mathbf{y}}) (\mathbf{y}_t - \bar{\mathbf{y}})' \quad \bar{\mathbf{y}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{y}_t
$$

To allow for time varying covariance matrix, an ad hoc approach uses exponentially decreasing weights as follows:

$$
\hat{\Sigma}_t = \lambda \hat{\epsilon}_{t-1} \hat{\epsilon}_{t-1}' + \lambda^2 \hat{\epsilon}_{t-2} \hat{\epsilon}_{t-2}' + \cdots
$$

$$
= \sum_{i=1}^{\infty} \lambda^i \hat{\epsilon}_{t-i} \hat{\epsilon}_{t-i}' \quad 0 < \lambda < 1
$$
Since
\[\lambda + \lambda^2 + \cdots = \frac{\lambda}{1 - \lambda} \]
the weights are usually scaled so that they sum up to one:
\[\hat{\Sigma}_t = (1 - \lambda) \sum_{i=1}^{\infty} \lambda^{i-1} \hat{e}_{t-i} \hat{e}'_{t-i}. \]

The above equation can be easily rewritten to obtain the following recursive form for exponentially weighted covariance matrix:
\[\hat{\Sigma}_t = (1 - \lambda) \hat{e}_{t-1} \hat{e}'_{t-1} + \lambda \hat{\Sigma}_{t-1} \]

From the above equation, given \(\lambda \) and an initial estimate \(\hat{\Sigma}_0 \), the time varying exponentially weighted covariance matrices can be computed easily.
Example: Bivariate Model

\[
\begin{pmatrix}
\hat{\sigma}_{tt}^{11} & \hat{\sigma}_{tt}^{12} \\
\hat{\sigma}_{tt}^{12} & \hat{\sigma}_{tt}^{22}
\end{pmatrix}
= (1 - \lambda) \begin{bmatrix}
\hat{\epsilon}_{t-1}^1 \hat{\epsilon}_{t-1}^1 & \hat{\epsilon}_{t-1}^1 \hat{\epsilon}_{t-1}^2 \\
\hat{\epsilon}_{t-1}^1 \hat{\epsilon}_{t-1}^2 & \hat{\epsilon}_{t-1}^2 \hat{\epsilon}_{t-1}^2
\end{bmatrix}
+ \lambda \begin{bmatrix}
\hat{\sigma}_{t-1}^{11} & \hat{\sigma}_{t-1}^{12} \\
\hat{\sigma}_{t-1}^{12} & \hat{\sigma}_{t-1}^{22}
\end{bmatrix}
\]

Note

\[
\hat{\sigma}_{tt}^{11} = (1 - \lambda) \left(\hat{\epsilon}_{t-1}^1 \right)^2 + \lambda \hat{\sigma}_{t-1}^{11}
\]

\[
\hat{\sigma}_{tt}^{22} = (1 - \lambda) \left(\hat{\epsilon}_{t-1}^2 \right)^2 + \lambda \hat{\sigma}_{t-1}^{22}
\]

\[
\hat{\sigma}_{tt}^{12} = (1 - \lambda) \hat{\epsilon}_{t-1}^1 \hat{\epsilon}_{t-1}^2 + \lambda \hat{\sigma}_{t-1}^{12}
\]

\[
\rho_{tt}^{12} = \frac{\hat{\sigma}_{tt}^{12}}{\sqrt{\hat{\sigma}_{tt}^{11} \hat{\sigma}_{tt}^{22}}}
\]
Remarks:

- Each element of Σ_t is expressed as an EWMA with common decay factor λ

- λ less than 0.5 gives very fast decay; λ close to 1 gives very slow decay. Half-life of decay is defined as $h = \ln(0.5)/\ln(\lambda)$

- EWMA estimate ρ_{12}^t is derived from EWMA estimates $\hat{\sigma}_{12}^t$, $\hat{\sigma}_{22}^t$ and $\hat{\sigma}_{22}^t$

- $\hat{\Sigma}_0$ is usually the full sample covariance matrix
 Remarks Continued

• Σ_t will be positive definite provided $\hat{\Sigma}_0$ is positive definite (pd implies that all $\sigma_{t}^{ii} > 0$ and $-1 \leq \rho_{t}^{ij} \leq 1$)

• The EWMA covariance is like a non-stationary multivariate GARCH model for Σ_t. No unconditional covariance (average covariance) exists

• Conditional h—step ahead forecasts follow the random walk rule

$$\Sigma_{t+h|t} = \Sigma_t \text{ for all } h > 0$$
How to Choose λ

- λ less than 1 (or short half-life) makes $\Sigma_{t+h|t} = \Sigma_t$ only depend on a few current observations

$$\Sigma_t \approx \rho \hat{\epsilon}_{t-1} \hat{\epsilon}'_{t-1} + \rho^1 \hat{\epsilon}_{t-2} \hat{\epsilon}'_{t-2} + \cdots + \rho^k \hat{\epsilon}_{t-k} \hat{\epsilon}'_{t-k}$$

Hence, forecasts $\Sigma_{t+h|t}$ are based on a weighed average of a few current returns. This may be good for very short-term forecasts

- λ close to 1 (or long half-life) makes $\Sigma_{t+h|t} = \Sigma_t$ close to the sample covariance

$$\Sigma_t \approx \frac{1}{T} \sum_{t=1}^{T} \hat{\epsilon}_{t-1} \hat{\epsilon}'_{t-1}$$

This may be preferred for long-horizon forecasts
Estimating λ

- In practice, the value of λ is usually chosen in an *ad hoc* way as typified by the RiskMetrics proposal (e.g. $\lambda = 0.94$ for daily returns).

- If $\varepsilon_t \sim N(0, \Sigma_t)$ where $\Sigma_t = \text{Cov}_{t-1}(\varepsilon_t)$ then the log-likelihood function of the observed time series can be written as:

$$
\log L = -\frac{kT}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{T} |\Sigma_t| - \frac{1}{2} \sum_{t=1}^{T} (y_t - c)'\Sigma_t^{-1}(y_t - c).
$$

- The mean vector c and λ can be treated as unknown model parameters and estimated using quasi-maximum likelihood estimation (MLE), given the initial value Σ_0.
Multivariate GARCH Models

The general multivariate GARCH model has the form

\[
y_t = c + \sum_{i=1}^{r} \Phi_i y_{t-i} + \sum_{l=1}^{L} \beta_l x_{t-l} + \sum_{s=1}^{S} \Theta_s \epsilon_{t-s}
\]

\[
\epsilon_t = \Sigma_t^{1/2} z_t, \quad z_t \sim iid \ (0, I_k)
\]

\[
\Sigma_t = \Sigma_t^{1/2} \Sigma_t^{1/2}', \quad \Sigma_t^{1/2} = \text{Cholesky factor}
\]

Here

\[
\text{var}(y_t|I_{t-1}) = \Sigma_t^{1/2} \text{var}(z_t|I_{t-1}) \Sigma_t^{1/2}' = \Sigma_t
\]
Practical Issues in Modeling Σ_t

- Models should be easy to understand and estimate, and allow for flexible dynamics in conditional variances and correlations

- Models should have a limited number of parameters

- Σ_t should be positive semi-definite
 - diagonal elements of $\Sigma_t^{1/2}$ should be greater than or equal to zero
Diagonal VEC Models

Bollerslev, Engle and Wooldridge (1988) extended the univariate GARCH specification to a multivariate setting with the diagonal VEC model

$$\Sigma_t = A_0 + \sum_{i=1}^{p} A_i \odot (\epsilon_{t-i}\epsilon'_{t-i}) + \sum_{j=1}^{q} B_j \odot \Sigma_{t-j}$$

\(\odot\) = Hadamard product (element by element)

where \(A_0, A_i\) and \(B_j\) are symmetric matrices. For example, for \(k = 2\) and \(p = q = 1\)

$$\begin{pmatrix} \sigma_{t}^{11} & \sigma_{t}^{12} \\ \sigma_{t}^{12} & \sigma_{t}^{22} \end{pmatrix} = \begin{pmatrix} a_{0}^{11} & a_{0}^{21} \\ a_{0}^{21} & a_{0}^{22} \end{pmatrix} + \begin{pmatrix} a_{1}^{11} & a_{1}^{21} \\ a_{1}^{21} & a_{1}^{22} \end{pmatrix} \odot \begin{pmatrix} \epsilon_{t-1}^{1} & \epsilon_{t-1}^{1} & \epsilon_{t-1}^{1} \epsilon_{t-1}^{2} \\ \epsilon_{t-1}^{1} \epsilon_{t-1}^{2} & \epsilon_{t-1}^{2} \epsilon_{t-1}^{2} \end{pmatrix} + \begin{pmatrix} b_{1}^{11} & b_{1}^{21} \\ b_{1}^{21} & b_{1}^{22} \end{pmatrix} \odot \begin{pmatrix} \sigma_{t-1}^{11} & \sigma_{t-1}^{12} \\ \sigma_{t-1}^{12} & \sigma_{t-1}^{22} \end{pmatrix}$$
Element-by-element we have GARCH(1,1)-type models for variances and covariances:

\[
\begin{align*}
\sigma_{11}^t &= a_{01}^1 + a_{11}^1 (\epsilon_{t-1}^1)^2 + b_{11}^1 \sigma_{t-1}^{11} \\
\sigma_{12}^t &= a_{02}^1 + a_{21}^1 \epsilon_{t-1}^1 \epsilon_{t-1}^2 + b_{21}^1 \sigma_{t-1}^{12} \\
\sigma_{22}^t &= a_{02}^2 + a_{22}^2 (\epsilon_{t-1}^2)^2 + b_{22}^1 \sigma_{t-1}^{22}
\end{align*}
\]

Remark: There are no cross-volatility or cross-covariance feedback effects. For example, \(\sigma_{11}^t\) does not depend on \(\sigma_{12}^t, \epsilon_{t-2}^2, \) or \(\sigma_{22}^t\).
To isolate the unique elements of Σ_t the lower triangular elements are extracted using the vech(·) operator

$$\Sigma_t = \begin{pmatrix} \sigma_{11}^t & \sigma_{12}^t \\ \sigma_{12}^t & \sigma_{22}^t \end{pmatrix}, \quad \text{vech}(\Sigma_t) = \begin{pmatrix} \sigma_{11}^t \\ \sigma_{12}^t \\ \sigma_{22}^t \end{pmatrix}$$

Example: Unique components of bivariate DVEC(1,1) Model

$$\begin{pmatrix} \sigma_{11}^t \\ \sigma_{12}^t \\ \sigma_{22}^t \end{pmatrix} = \begin{pmatrix} a_{11}^0 \\ a_{12}^0 \\ a_{22}^0 \end{pmatrix} + \begin{pmatrix} a_{11}^1 \\ a_{21}^1 \end{pmatrix} \begin{pmatrix} \epsilon_{t-1}^1 \epsilon_{t-1}^2 \\ \epsilon_{t-1}^2 \epsilon_{t-1}^2 \end{pmatrix} + \begin{pmatrix} b_{11}^1 \\ b_{21}^1 \\ b_{22}^1 \end{pmatrix} \begin{pmatrix} \sigma_{11}^{t-1} \\ \sigma_{12}^{t-1} \\ \sigma_{22}^{t-1} \end{pmatrix}$$

Hence, only need to specify the lower triangular elements of A_0, A_1 and B_1.
In the bivariate DVEC(1,1),

\[
\begin{bmatrix}
a_{0}^{11} \\
a_{0}^{12} \\
a_{0}^{22}
\end{bmatrix}
= \text{vech}(A_0)
\]

\[
\begin{bmatrix}
a_{1}^{11} \\
a_{1}^{21} \\
a_{1}^{22}
\end{bmatrix}
= \text{diag}(\text{vech}(A_1))
\]

\[
\begin{bmatrix}
b_{1}^{11} \\
b_{1}^{21} \\
b_{1}^{22}
\end{bmatrix}
= \text{diag}(\text{vech}(B_1))
\]
Hence, the DVEC(1,1) can be expresses as

\[\text{vech}(\Sigma_t) = \text{vech}(A_0) + \text{diag}(\text{vech}(A_1))\text{vech}(\varepsilon_{t-1}\varepsilon'_{t-1}) + \text{diag}(\text{vech}(B_1))\text{vech}(\Sigma_{t-1}) \]

or, more simply, as

\[h_t = a_0 + \text{diag}(a_1)v_{t-1} + \text{diag}(b_1)h_{t-1} \]

where

\[h_t = \text{vech}(\Sigma_t), \quad v_t = \text{vech}(\varepsilon_{t-1}\varepsilon'_{t-1}), \quad a_0 = \text{vech}(A_0), \quad a_1 = \text{vech}(A_1), \quad b_1 = \text{vech}(B_1) \]
General Diagonal VEC Model

Let Σ_t be $k \times k$ and define the $k(k + 1)/2 \times 1$ vectors $h_t = \text{vech}(\Sigma_t)$, $v_t = \text{vech}(\varepsilon_t\varepsilon'_t)$, $a_j = \text{vech}(A_{j})$ and $b_j = \text{vech}(B_{j})$. Then the DVEC(p,q) model has the form

$$h_t = a_0 + \sum_{j=1}^{p} \text{diag}(a_j)v_{t-j} + \sum_{j=1}^{q} \text{diag}(b_j)h_{t-j}$$

where $\text{diag}(a_j)$ and $\text{diag}(b_j)$ denote diagonal matrices with the elements of a_j and b_j along the diagonals, respectively.
Problems

- Large number of parameters: \((p + q + 1)k(k + 1)/2\).

 \(- p = q = 1, k = 2 \Rightarrow 9\) parameters

 \(- p = q = 1, k = 10 \Rightarrow 135\) parameters

- \(\Sigma_t\) is not guaranteed to be psd

 \(- \) could have negative variances or absolute correlations bigger than one
Unconditional Covariance in DVEC model

Consider the DVEC(1,1)

\[h_t = a_0 + \text{diag}(a_1)v_{t-1} + \text{diag}(b_1)h_{t-1} \]

Then

\[E[h_t] = a_0 + \text{diag}(a_1)E[v_{t-1}] + \text{diag}(b_1)E[h_{t-1}] \]

\[= a_0 + \text{diag}(a_1)E[h_t] + \text{diag}(b_1)E[h_t] \text{ by stationarity} \]

\[\Rightarrow E[h_t] = (I_p - \text{diag}(a_1) - \text{diag}(b_1))^{-1}a_0 \]

where \(p = k(k+1)/2 \). Here, stationarity requires the eigenvalues of \(\text{diag}(a_1) + \text{diag}(b_1) \) to have modulus less than unity.
Covariance Targeting

Using the result $E[h_t] = (I_p - \text{diag}(a_1) - \text{diag}(b_1))^{-1}a_0$, the vector a_0 can be expressed as

$$a_0 = (I_p - \text{diag}(a_1) - \text{diag}(b_1))E[h_t]$$

The parameters in a_0 can be eliminated by specifying a vector for $E[h_t]$. For example, set $E[h_t] = \text{vech}(\hat{\Sigma})$, where $\hat{\Sigma}$ is the sample covariance matrix. This is called covariance targeting.

Example: DVEC(1,1) with covariance targeting

$$h_t = (I_p - \text{diag}(a_1) - \text{diag}(B_1))\text{vech}(\hat{\Sigma}) + \text{diag}(a_1)v'_{t-1} + \text{diag}(b_1)h_{t-1}$$

This eliminates $p = k(k + 1)/2$ parameters from the model.
Simplification of DVEC model (Scalar DVEC)

• Restrict A_i to have common element a_i and B_j to have common element b_j.

• Total parameters = $k(k + 1) + (p + q)$.

 $- k = 2, p = q = 1 \Rightarrow 5$ parameters;

 $- k = 10, p = q = 1 \Rightarrow 112$ parameters
Example: Bivariate DVEC(1,1) Model

\[
\begin{bmatrix}
\sigma_{11}^t \\
\sigma_{12}^t \\
\sigma_{22}^t \\
\end{bmatrix}
= \begin{bmatrix}
a_{11}^0 \\
a_{12}^0 \\
a_{22}^0 \\
\end{bmatrix}
+ \begin{bmatrix}
a_1 \\
a_1 \\
a_1 \\
\end{bmatrix}
\begin{bmatrix}
\epsilon_{t-1}^1 \\
\epsilon_{t-1}^2 \\
\epsilon_{t-1}^1 \\
\end{bmatrix}
+ \begin{bmatrix}
b_1 \\
b_1 \\
b_1 \\
\end{bmatrix}
\begin{bmatrix}
\sigma_{11}^{t-1} \\
\sigma_{12}^{t-1} \\
\sigma_{22}^{t-1} \\
\end{bmatrix}
\]
The scalar bivariate DVEC(1,1) can then be re-expressed as

\[h_t = a_0 + a_1 I_3 v_{t-1} + b_1 I_3 h_{t-1} \]

Notice that

\[E[h_t] = (1 - a_1 - b_1)^{-1} a_0 \]

and that stationarity requires \(a_1 + b_1 < 1 \)
BEKK Models

- DEV and model restricts conditional variances and covariances to only depend on their own lagged values and the corresponding cross-product of the error terms.

- The BEKK model (Baba, Engle, Kraft and Kroner) gives a richer dynamics and is given by

\[
\Sigma_t = A_0 A_0' + \sum_{i=1}^{p} A_i (\varepsilon_{t-i} \varepsilon'_{t-i}) A_i' + \sum_{j=1}^{q} B_j \Sigma_{t-j} B_j'
\]

where \(A_0 \) is a lower triangular matrix, but \(A_i \) \((i = 1, \cdots, p)\) and \(B_j \) \((j = 1, \cdots, q)\) are unrestricted square matrices.

- \(k(k-1)(p+q)/2 \) more parameters than DVEC(p,q)
Example: bivariate BEKK(1,1)

\[\Sigma_t = A_0 A'_0 + A_1 (\epsilon_{t-1} \epsilon'_{t-1}) A'_1 + B_1 \Sigma_{t-1} B'_1 \]

Consider the (2, 2) element of \(\Sigma_t \) in the BEKK(1, 1) model:

\[\sigma_{22}^t = a_{00}^{22} a_0^{22} + [a_1^{21} \epsilon_{t-1}^1 + a_1^{22} \epsilon_{t-1}^2]^2 + \\
(b_1^{21} b_1^{21} \sigma_{t-1}^{11} + 2 b_1^{21} b_1^{22} \sigma_{t-1}^{21} + b_1^{22} b_1^{22} \sigma_{t-1}^{22}) \]

Notice that both \(\epsilon_{t-1}^1 \) and \(\epsilon_{t-1}^2 \) enter the equation. In addition, \(\sigma_{t-1}^{11} \), the volatility of the first series, also has direct impacts on \(\sigma_{t-1}^{22} \), the volatility of the second series. However, for the bivariate BEKK(1, 1) model, flexibility is achieved at the cost of two extra parameters, i.e., \(a_{12}^{12} \) and \(b_{12}^{12} \), which are not needed for the DVEC(1, 1) model.
Multivariate GARCH Prediction

- Predictions from multivariate GARCH models can be generated in a similar fashion to predictions from univariate GARCH models.

- For multivariate GARCH models, predictions can be generated for both the levels of the original multivariate time series and its conditional covariance matrix. Predictions of the levels are obtained just as for vector autoregressive (VAR) models. Compared with VAR models, the predictions of the conditional covariance matrix from multivariate GARCH models can be used to construct more reliable confidence intervals for predictions of the levels.
Forecasting from DVEC(1,1)

Consider the conditional variance equation for the DVEC(1, 1) model:

\[h_t = a_0 + \text{diag}(a_1)v_{t-1} + \text{diag}(b_1)h_{t-1} \]

which is estimated over the time period \(t = 1, 2, \ldots, T \).

- To obtain \(E_T(h_{T+k}) \), use the forecasts of conditional covariance matrix at time \(T + k \) for \(k > 0 \), given information at time \(T \).

- For one-step-ahead prediction:

\[
E_T(h_{T+1}) = a_0 + \text{diag}(a_1)E_T[v_T] + \text{diag}(b_1)E_T[h_T] \\
= a_0 + \text{diag}(a_1)v_T + \text{diag}(b_1)h_T
\]

since an estimate of \(v_T \) and \(h_T \) already exists after estimating the DVEC model.
• When $k = 2$,

$$
E_T(h_{T+2}) = a_0 + \text{diag}(a_1)E_T[v_{T+1}] + \text{diag}(b_1)E_T[h_{T+1}]
$$

$$
= a_0 + (\text{diag}(a_1) + \text{diag}(b_1))E_T[h_{T+1}].
$$

where $E_T(h_{T+1})$ is obtained in the previous step.

• This procedure can be iterated to obtain $E_T(h_{T+k})$ for $k > 2$.

• Forecasts converge to the unconditional covariance matrix defined by

$$
\text{vech}(\tilde{\Sigma}) = (I_k - \text{diag}(a_1) - \text{diag}(b_1)^{-1}a_0
$$
Univariate GARCH-Based Models

- For BEKK, DVEC and matrix diagonal models, the conditional covariance matrix is modeled directly.
 - This approach can result in a large number of parameters since the covariance terms need to be modeled separately.

- Another approach in multivariate GARCH modeling is to first model individual series using univariate GARCH and then model the conditional correlations between the series. The main types of models are
 - Constant conditional correlation (CCC) model, Dynamic conditional correlation (DCC) model, and orthogonal principal component (OGARCH) model.
Constant Conditional Correlation (CCC) Model

- Given that $\sigma_{ij} = \rho_{ij}\sigma_i\sigma_j$ a $k \times k$ covariance matrix Σ can be decomposed into:

$$\Sigma = DRD$$

where R is the correlation matrix, D is a diagonal matrix with the vector $(\sigma_1, \cdots, \sigma_k)'$ on the diagonal, and σ_i is the standard deviation of the i-th series.

$$R = \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1k} \\ \rho_{12} & 1 & \cdots & \rho_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1k} & \rho_{2k} & \cdots & 1 \end{bmatrix}, \quad D = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{bmatrix}$$
• Based on the observation that the correlation matrix of foreign exchange rate returns is usually constant over time, Bollerslev (1990) suggested modelling the time varying covariance matrix as:

\[\Sigma_t = D_t R D_t \]

where \(R \) is the constant conditional correlation matrix, and \(D_t \) is a diagonal matrix:

\[D_t = \begin{bmatrix} \sigma_{1t} & \cdots \\ \vdots & \ddots \\ \sigma_{kt} \end{bmatrix} \]

with \(\sigma_{it} \) following any univariate GARCH process, for \(i = 1, \cdots, k \). Here, the conditional correlations \(\rho_{ij} \) are constant but the conditional covariances \(\sigma_{ij,t} = \rho_{ij} \sigma_{it} \sigma_{jt} \) are time varying.

• \(R \) can be the sample correlation matrix or a matrix of specified values
Dynamic Conditional Correlation (DCC) Model

Engle (2002) extended Bollerslev’s CCC model to allow the conditional correlations to be time varying.

\[r_t = \mu + \varepsilon_t, \quad \varepsilon_t|I_{t-1} \sim iid \ N(0, \Sigma_t) \]

\[\text{var}(\varepsilon_t|I_{t-1}) = \Sigma_t = D_t R_t D_t \]

\[R_t = \begin{bmatrix}
1 & \rho_{12,t} & \cdots & \rho_{1k,t} \\
\rho_{12,t} & 1 & \cdots & \rho_{2k,t} \\
\vdots & \ddots & \ddots & \vdots \\
\rho_{1k,t} & \rho_{2k,t} & \cdots & 1
\end{bmatrix}, \quad D_t = \begin{bmatrix}
\sigma_{1t} & 0 & \cdots & 0 \\
0 & \sigma_{2t} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{kt}
\end{bmatrix} \]
For each univariate series \((i = 1, \ldots, k)\), we have

\[
\varepsilon_{it} = \sigma_{it} z_{it}, \quad z_{it} \sim N(0, 1)
\]

\[
\text{var}(\varepsilon_{it} | I_{t-1}) = \sigma_{it}^2
\]

Define the vector of standardized errors (returns) \(z_t = (z_{1t}, \ldots, z_{kt})'\). Then

\[
E[z_t z_t' | I_{t-1}] = R_t \neq I_k
\]

Why? Consider

\[
\text{cor}(\varepsilon_{it}, \varepsilon_{jt} | I_{t-1}) = \frac{\text{cov}(\varepsilon_{it}, \varepsilon_{jt} | I_{t-1})}{\sigma_{it} \sigma_{jt}} = \frac{\text{cov}(\sigma_{it} z_{it}, \sigma_{jt} z_{jt} | I_{t-1})}{\sigma_{it} \sigma_{jt}} = \frac{\sigma_{it} \sigma_{jt} \text{cov}(z_{it}, z_{jt} | I_{t-1})}{\sigma_{it} \sigma_{jt}} = \text{cov}(z_{it}, z_{jt} | I_{t-1}) = E[z_{it} z_{jt}]
\]
Idea behind DCC:

- Estimate univariate GARCH models (e.g. GARCH(1,1)) for each ε_{it} ($i = 1, \ldots, k$)

$$\hat{\sigma}_{it}^2 = \hat{a}_0 + \hat{a}_1 \hat{\varepsilon}_{it-1}^2 + \hat{b}_1 \hat{\sigma}_{it-1}^2$$

and form estimated standardized residuals

$$\hat{z}_{it} = \frac{\hat{\varepsilon}_{it}}{\hat{\sigma}_{it}}$$

- Model the pairwise conditional covariances between the standardized residuals

$$\hat{\rho}_{ij,t} = \text{cov}(\hat{z}_{it}, \hat{z}_{jt}|I_{t-1})$$
• Estimate the conditional covariance matrix from the univariate volatility estimates and bivariate conditional correlation estimates

\[\hat{\Sigma}_t = \hat{D}_t \hat{R}_t \hat{D}_t \]
Modeling Conditional Correlations

Engle proposed two ways to model $\hat{\rho}_{ij,t} = \text{cov}(\hat{z}_{it}, \hat{z}_{jt}|I_{t-1})$

1. EWMA covariance matrix for $\hat{z}_t = (\hat{z}_{1t}, \ldots, \hat{z}_{kt})'$

\[
\hat{Q}_{t}^{EWMA} = (1 - \lambda)\hat{z}_{t-1}\hat{z}'_{t-1} + \lambda\hat{Q}_{t-1}^{EWMA}
\]

Then re-scale EWMA covariances to get EWMA correlations

\[
\hat{\rho}_{ij,t}^{EWMA} = \frac{\hat{q}_{ij,t}^{EWMA}}{\left(\hat{q}_{ii,t}^{EWMA} \times \hat{q}_{jj,t}^{EWMA}\right)^{1/2}}
\]

Note: re-scaling is necessary because the elements of \hat{Q}_{t}^{EWMA} are not guaranteed to lie between -1 and 1.

Note: We use the same λ to model all conditional covariances. This greatly reduces the number of parameters to estimate!
2. Common GARCH(1,1) model for $\hat{q}_{ij,t} = \text{cov}(\hat{z}_{it}, \hat{z}_{jt}|I_{t-1})$

$$\hat{q}_{ij,t} = \omega_{ij} + \alpha \cdot \hat{z}_{i,t-1} \hat{z}_{j,t-1} + \beta \cdot \hat{q}_{ij,t-1}, \text{ for all } i, j$$

$$\Rightarrow \hat{Q}_t^{DCC} = \Omega + \alpha \cdot \hat{z}_{t-1} \hat{z}'_{t-1} + \beta \cdot \hat{Q}_{t-1}^{DCC}$$

- Use the same values of α and β for all $\hat{q}_{ij,t}$! This reduces the number of estimated parameters like in EWMA.

- Use covariance targeting to eliminate ω_{ij} in each equation

$$\omega_{ij} = \hat{E}[\hat{z}_{it}\hat{z}_{jt}](1 - \alpha - \beta)$$

$$\hat{E}[\hat{z}_{it}\hat{z}_{jt}] = \text{sample covariance b/w } \hat{z}_{it} \text{ and } \hat{z}_{jt} = \hat{s}_{ij}$$

$$\Rightarrow \Omega = (1 - \alpha - \beta) \times \hat{S}$$
• Re-scale to get conditional correlation matrix

\[
\hat{R}_t^{DCC} = \hat{D}_t^{-1/2} \hat{Q}_t^{DCC} \hat{D}_t^{-1/2}
\]

\[
\hat{D}_t = \begin{bmatrix}
\hat{q}_{11,t}^{DCC} & 0 & \cdots & 0 \\
0 & \hat{q}_{22,t}^{DCC} & 0 & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \hat{q}_{kk,t}^{DCC}
\end{bmatrix}
\]
Conditional Portfolio Risk Analysis

Let \(I_t \) denote information known at time \(t \).

Definition 1 *(Conditional Modeling)* Conditional modeling of \(\mathbf{r}_{t+1} = (r_{1t}, \ldots, r_{kt})' \) is based on the conditional distribution of \(\mathbf{r}_{t+1} \) given \(I_t \). That is, risk measures are computed from the conditional distribution \(F_{\mathbf{r}|I_t} \)

\[
\mathbf{r}_{t+1} \sim F_{\mathbf{r}|I_t}, \quad E[\mathbf{r}_{t+1}|I_t] = \mu_{t+1|t},
\]

\[
\text{var}(\mathbf{r}_{t+1}|I_t) = \Sigma_{t+1|t} = D_{t+1|t} R_{t+1|t} D_{t+1|t}
\]

Define

\[
\mathbf{z}_{t+1} = \Sigma_{t+1|t}^{-1/2}(\mathbf{r}_{t+1} - \mu_{t+1|t}), \quad \mathbf{z}_{t+1} \sim F_{\mathbf{z}}, \quad E[\mathbf{z}_{t+1}] = 0, \quad \text{var}(\mathbf{z}_{t+1}) = \mathbf{I}_k
\]

So that

\[
\mathbf{r}_{t+1} = \mu_{t+1|t} + \Sigma_{t+1|t}^{1/2} \times \mathbf{z}_{t+1}
\]
Conditional Mean and Covariance

- \(E[r_{t+1}|I_t] = \mu_{t+1|t} \) = conditional mean vector

- \(var(r_{t+1}|I_t) = \Sigma_{t+1|t} \) = conditional covariance matrix

- \(R_{t+1|t} = D_{t+1|t}^{-1} \Sigma_{t+1|t} D_{t+1|t}^{-1} \) = conditional correlation matrix

Intuition: As \(I_t \) changes over time so does \(\mu_{t+1|t}, \Sigma_{t+1|t} \) and \(R_{t+1|t} \)
Conditional Portfolio Return Distribution

- \(r_{p,t+1} = w' r_{t+1} = \sum_{i=1}^{k} w_i r_{i,t+1} \)

\[- r_{p,t+1} \sim F_{r_p|I_t} \] which depends on the joint distribution \(F_{r|I_t} \)

- \(\mu_{p,t+1|t} = w' \mu_{t+1|t} \),

- \(\sigma^2_{p,t+1|t} = w' \Sigma_{t+1|t} w \) and \(\sigma_{p,t+1|t} = \left(w' \Sigma_{t+1|t} w \right)^{1/2} \)
Conditional Portfolio Risk Measures Based on Returns

\[\sigma_{p,t+1|t} = \left(w' \Sigma_{t+1|t} w \right)^{1/2} = \text{conditional volatility} \]

\[\text{VaR}_{\alpha,t+1|t}(w) = q_{\alpha}^{r_{p,t+1|t}} = \text{conditional quantile} \]

\[\text{ES}_{\alpha,t+1|t}(w) = E[r_{p,t+1} | r_{p,t+1} \leq q_{\alpha}^{r_{p,t+1|t}}] = \text{conditional return shortfall} \]
Conditional Risk Budgets

\[
\frac{\partial \sigma_{p,t+1|t}(w)}{\partial w_i} = \frac{1}{\sigma_{p,t+1|t}(w)} \Sigma_{t+1|t} w_i = MCR^\sigma_{i,t+1|t}
\]

\[
\frac{\partial VaR_{\alpha,t+1|t}(w)}{\partial w_i} = E[r_{i,t+1}|r_{p,t+1} = VaR_{\alpha,t+1|t}(w)] = MCR^{VaR}_{i,t+1|t}
\]

\[
\frac{\partial ES_{\alpha,t+1|t}(w)}{\partial w_i} = E[r_{i,t+1}|r_{p,t+1} \leq VaR_{\alpha,t+1|t}(w)] = MCR^{ES}_{i,t+1|t}
\]
Parametric Estimation of Portfolio Risk Measures: Normal-DCC Model for r_t

\[r_t \mid I_{t-1} \sim iid N(0, \Sigma_t) \]

\[\text{var}(r_t \mid I_{t-1}) = \Sigma_t = D_t R_t D_t \]

\[R_t = \begin{bmatrix}
1 & \rho_{12,t} & \cdots & \rho_{1k,t} \\
\rho_{12,t} & 1 & \cdots & \rho_{2k,t} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{1k,t} & \rho_{2k,t} & \cdots & 1
\end{bmatrix}, \quad D_t = \begin{bmatrix}
\sigma_{1t} & 0 & \cdots & 0 \\
0 & \sigma_{2t} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{kt}
\end{bmatrix} \]

Estimates from DCC model

\[\hat{\Sigma}_t^{DCC} = \hat{D}_t^{DCC} \hat{R}_t^{DCC} \hat{D}_t^{DCC} \]
Estimates of portfolio Risk Measures

\[
\hat{\sigma}^{DCC}_{p,t+1|t} = (w' \hat{\Sigma}^{DCC}_{t+1|t} w)^{1/2}
\]

\[
\hat{\eta}_{p,DCC} = \hat{\sigma}^{DCC}_{p,t+1|t} \times q^{Z}_{1-\alpha} = \hat{\sigma}^{DCC}_{p,t+1|t} \times q^{Z}_{1-\alpha}
\]

\[
E[r_{p,t+1|r_{p,t+1}} \leq q^{r_{p,t+1}}_{1-\alpha}] = - \left(\hat{\sigma}^{DCC}_{p,t+1|t} \times \frac{\phi(q^{Z}_{1-\alpha})}{1-\alpha} \right)
\]

Remark:

- Analytic formulas exist for risk budgets (see homework 2)
Estimating Risk Measures and Risk Budgets from Simulated Returns

- Generate B simulated values from fitted DCC model denoted $\{\tilde{r}_t\}_1^B$

- Create B simulated portfolio returns $\tilde{r}_{p,t} = w'\tilde{r}_t, \ t = 1, \ldots, B$

- Estimate VaR and ES nonparametrically using $\{\tilde{r}_{p,t}\}_1^B$ and portfolio weights

- Estimate risk budgets nonparametrically using $\{\tilde{r}_t\}_1^B$ and $\{\tilde{r}_{p,t}\}_1^B$