1 Forecasting

Let \(\{ y_t \} \) be a covariance stationary are ergodic process, e.g. an ARMA\((p,q)\) process with Wold representation

\[
y_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}, \quad \varepsilon_t \sim WN(0,\sigma^2) \quad (1)
\]

\[
y_t = \mu + \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \cdots \quad (2)
\]

and let \(I_t = \{ y_t, y_{t-1}, \ldots \} \) denote the information set available at time \(t \). Recall, the mean and variance of \(y_t \) are

\[
E[y_t] = \mu
\]

\[
\text{var}(y_t) = \sigma^2 \sum_{j=0}^{\infty} \psi_j^2
\]

Define \(y_{t+h|t} \) as the forecast of \(y_{t+h} \) based on \(I_t \) and knowledge of the parameters in (1). The forecast error is

\[
\varepsilon_{t+h|t} = y_{t+h} - y_{t+h|t}
\]

and the mean squared error of the forecast is

\[
MSE(\varepsilon_{t+h|t}) = E[\varepsilon_{t+h|t}^2] = E[(y_{t+h} - y_{t+h|t})^2]
\]

Theorem 1 The minimum MSE forecast (best forecast) of \(y_{t+h} \) based on \(I_t \) is

\[
y_{t+h|t} = E[y_{t+h}|I_t]
\]

Proof. See Hamilton pages 72-73. ■

Remarks
The computation of $E[y_{t+h}|I_t]$ depends on the distribution of $\{\varepsilon_t\}$ and may be a very complicated nonlinear function of the history of $\{\varepsilon_t\}$. Even if $\{\varepsilon_t\}$ is an uncorrelated process (e.g. white noise) it may be the case that

$$E[\varepsilon_{t+1}|I_t] \neq 0$$

If $\{\varepsilon_t\}$ is independent white noise, then $E[\varepsilon_{t+1}|I_t] = 0$ and $E[y_{t+h}|I_t]$ will be a simple linear function of $\{\varepsilon_t\}$

$$y_{t+h|t} = \mu + \psi_h \varepsilon_t + \psi_{h+1} \varepsilon_{t-1} + \cdots$$

1.0.1 Linear Predictors

A linear predictor of $y_{t+h|t}$ is a linear function of the variables in I_t.

Theorem 2 The minimum MSE linear forecast (best linear predictor) of y_{t+h} based on I_t is

$$y_{t+h|t} = \mu + \psi_h \varepsilon_t + \psi_{h+1} \varepsilon_{t-1} + \cdots$$

Proof. See Hamilton page 74. ■

The forecast error of the best linear predictor is

$$\varepsilon_{t+h|t} = y_{t+h} - y_{t+h|t}$$

$$= \mu + \varepsilon_{t+h} + \psi_1 \varepsilon_{t+h-1} + \cdots + \psi_{h-1} \varepsilon_{t+1} + \psi_h \varepsilon_t + \cdots$$

$$- (\mu + \psi_h \varepsilon_t + \psi_{h+1} \varepsilon_{t-1} + \cdots)$$

$$= \varepsilon_{t+h} + \psi_1 \varepsilon_{t+h-1} + \cdots + \psi_{h-1} \varepsilon_{t+1}$$

and the MSE of the forecast error is

$$MSE(\varepsilon_{t+h|t}) = \sigma^2(1 + \psi_1^2 + \cdots + \psi_{h-1}^2)$$

Remarks

- $E[\varepsilon_{t+h|t}] = 0$
- $\varepsilon_{t+h|t}$ is uncorrelated with any element in I_t
- The form of $y_{t+h|t}$ is closely related to the IRF
- $MSE(\varepsilon_{t+h|t}) = var(\varepsilon_{t+h|t}) < var(y_t)$
- $\lim_{h \to \infty} y_{t+h|t} = \mu$
- $\lim_{h \to \infty} MSE(\varepsilon_{t+h|t}) = var(y_t)$
1.0.2 Prediction Confidence Intervals

If \(\{\varepsilon_t\} \) is Gaussian then
\[
y_{t+h|t} \sim N(y_{t+h|t}, \sigma^2(1 + \psi_1^2 + \cdots + \psi_{h-1}^2))
\]
A 95% confidence interval for the \(h \)-step prediction has the form
\[
y_{t+h|t} \pm 1.96 \sqrt{\sigma^2(1 + \psi_1^2 + \cdots + \psi_{h-1}^2)}
\]

1.0.3 Predictions with Estimated Parameters

The best linear predictor with estimated parameters is denoted \(\hat{y}_{t+h|t} \) and is given by
\[
\hat{y}_{t+h|t} = \hat{\mu} + \hat{\psi}_h \hat{\varepsilon}_t + \hat{\psi}_{h+1} \hat{\varepsilon}_{t-1} + \cdots
\]
where \(\hat{\varepsilon}_t \) is the estimated residual from the fitted model. The forecast error with estimated parameters is
\[
\hat{\varepsilon}_{t+h|t} = y_{t+h} - \hat{y}_{t+h|t} = \varepsilon_{t+h} + \hat{\psi}_1 \varepsilon_{t+h-1} + \cdots + \hat{\psi}_{h-1} \varepsilon_{t+1}
\]
Because \(\hat{\psi}_1, \ldots, \hat{\psi}_{h-1} \) are random variables,
\[
MSE(\hat{\varepsilon}_{t+h|t}) \neq MSE(\varepsilon_{t+h|t}) = \sigma^2(1 + \psi_1^2 + \cdots + \psi_{h-1}^2)
\]

1.1 Computing the Best Linear Predictor

The best linear predictor \(y_{t+h|t} \) may be computed in many different but equivalent ways. The algorithm for computing \(y_{t+h|t} \) from an AR(1) model is particularly simple and the methodology allows the computation of forecasts for general ARMA models as well as multivariate models.

1.1.1 AR(1) Model

Consider the AR(1) model
\[
y_t - \mu = \phi(y_{t-1} - \mu) + \varepsilon_t
\]
where \(\varepsilon_t \sim WN(0, \sigma^2) \)

with the parameters \(\mu, \phi \) and \(\sigma^2 \) are initially known. The Wold representation is (1) with \(\psi_j = \phi^j \). Starting at \(t \) and iterating forward \(h \) periods gives
\[
y_{t+h} = \mu + \phi^h(y_t - \mu) + \varepsilon_{t+h} + \phi \varepsilon_{t+h-1} + \cdots + \phi^{h-1} \varepsilon_{t+1}
\]
\[
= \mu + \phi^h(y_t - \mu) + \varepsilon_{t+h} + \psi_1 \varepsilon_{t+h-1} + \cdots + \psi_{h-1} \varepsilon_{t+1}
\]
The best linear forecasts of $y_{t+1}, y_{t+2}, \ldots, y_{t+h}$ are computed using the *chain-rule of forecasting* (law of iterated projections)

\[
y_{t+1|t} = \mu + \phi(y_t - \mu) \\
y_{t+2|t} = \mu + \phi(y_{t+1|t} - \mu) = \mu + \phi(\phi(y_t - \mu)) = \mu + \phi^2(y_t - \mu) \\
\vdots \\
y_{t+h|t} = \mu + \phi(y_{t+h-1|t} - \mu) = \mu + \phi^h(y_t - \mu)
\]

The corresponding forecast errors are

\[
\varepsilon_{t+1|t} = y_{t+1} - y_{t+1|t} = \varepsilon_{t+1} \\
\varepsilon_{t+2|t} = y_{t+2} - y_{t+2|t} = \varepsilon_{t+2} + \phi \varepsilon_{t+1} = \varepsilon_{t+2} + \psi_1 \varepsilon_{t+1} \\
\vdots \\
\varepsilon_{t+h|t} = y_{t+h} - y_{t+h|t} = \varepsilon_{t+h} + \phi \varepsilon_{t+h-1} + \cdots + \phi^{h-1} \varepsilon_{t+1} \\
= \varepsilon_{t+h} + \psi_1 \varepsilon_{t+h-1} + \cdots + \psi_{h-1} \varepsilon_{t+1}
\]

The forecast error variances are

\[
\text{var}(\varepsilon_{t+1|t}) = \sigma^2 \\
\text{var}(\varepsilon_{t+2|t}) = \sigma^2(1 + \phi^2) = \sigma^2(1 + \psi_1^2) \\
\vdots \\
\text{var}(\varepsilon_{t+h|t}) = \sigma^2(1 + \phi^2 + \cdots + \phi^{2(h-1)}) = \sigma^2 \frac{1 - \phi^{2h}}{1 - \phi^2} \\
= \sigma^2(1 + \psi_1^2 + \cdots + \psi_{h-1}^2)
\]

Clearly,

\[
\lim_{h \to \infty} y_{t+h|t} = \mu = E[y_t] \\
\lim_{h \to \infty} \text{var}(\varepsilon_{t+h|t}) = \frac{\sigma^2}{1 - \phi^2} \\
= \sigma^2 \sum_{h=0}^{\infty} \psi_h^2 = \text{var}(y_t)
\]

1.1.2 AR(p) Models

Consider the AR(p) model

\[
\phi(L)(y_t - \mu) = \varepsilon_t, \ \varepsilon_t \sim WN(0, \sigma^2) \\
\phi(L) = 1 - \phi_1 L - \cdots - \phi_p L^p
\]
The forecasting algorithm for the AR\((p)\) models is essentially the same as that for AR\((1)\) models one we put the AR\((p)\) model in state space form as a vector AR\((1)\) model. The AR\((p)\) in state space form is
\[
\begin{pmatrix}
y_t - \mu \\
y_{t-1} - \mu \\
\vdots \\
y_{t-p+1} - \mu
\end{pmatrix} = \begin{pmatrix}
\phi_1 & \phi_2 & \cdots & \phi_p \\
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0
\end{pmatrix} \begin{pmatrix}
y_{t-1} - \mu \\
y_{t-2} - \mu \\
\vdots \\
y_{t-p} - \mu
\end{pmatrix} + \begin{pmatrix}
\varepsilon_t \\
0 \\
\vdots \\
0
\end{pmatrix}
\]
or
\[
\xi_t = F\xi_{t-1} + w_t \\
\text{var}(w_t) = \Sigma_w
\]

Starting at \(t\) and iterating forward \(h\) periods gives

\[
\xi_{t+h} = F^h \xi_t + w_{t+h} + Fw_{t+h-1} + \cdots + F^{h-1}w_{t+1}
\]

Then the best linear forecasts of \(y_{t+1}, y_{t+2}, \ldots, y_{t+h}\) are computed using the chain-rule of forecasting (law of iterated projections) are

\[
\begin{align*}
\xi_{t+1|t} &= F\xi_t \\
\xi_{t+2|t} &= F\xi_{t+1|t} = F^2\xi_t \\
&\vdots \\
\xi_{t+h|t} &= F\xi_{t+h-1|t} = F^h\xi_t
\end{align*}
\]

The forecast for \(y_{t+h}\) is given by \(\mu\) plus the first row of \(\xi_{t+1|t} = F^h\xi_t\).

The forecast errors are given by

\[
\begin{align*}
w_{t+1|t} &= \xi_{t+1} - \xi_{t+1|t} = w_{t+1} \\
w_{t+2|t} &= \xi_{t+2} - \xi_{t+2|t} = w_{t+2} + Fw_{t+1} \\
&\vdots \\
w_{t+h|t} &= \xi_{t+h} - \xi_{t+h|t} = w_{t+h} + Fw_{t+h-1} + \cdots + F^{h-1}w_{t+1}
\end{align*}
\]

and the corresponding forecast MSE matrices are

\[
\begin{align*}
\text{var}(w_{t+1|t}) &= \text{var}(w_t) = \Sigma_w \\
\text{var}(w_{t+2|t}) &= \text{var}(w_{t+2}) + F\text{var}(w_{t+1})F' \\
&= \Sigma_w + F\Sigma_w F' \\
&\vdots \\
\text{var}(w_{t+h|t}) &= \sum_{j=0}^{h-1} F^j \Sigma_w F'^j
\end{align*}
\]

Notice that

\[
\text{var}(w_{t+h|t}) = \Sigma_w + F\text{var}(w_{t+h-1|t})F'
\]
2 The Diebold-Mariano Statistic for Comparing Predictive Accuracy

Let \(\{y_t\} \) denote the series to be forecast and let \(y_{t+h|t}^1 \) and \(y_{t+h|t}^2 \) denote two competing forecasts of \(y_{t+h} \) based on \(I_t \). For example, \(y_{t+h|t}^1 \) could be computed from an AR(p) model and \(y_{t+h|t}^2 \) could be computed from an ARMA(p,q) model. The forecast errors from the two models are

\[
\varepsilon_{t+h|t}^1 = y_{t+h} - y_{t+h|t}^1 \\
\varepsilon_{t+h|t}^2 = y_{t+h} - y_{t+h|t}^2
\]

The \(h \)-step forecasts are assumed to be computed for \(t = t_0, \ldots, T \) for a total of \(T_0 \) forecasts giving

\[
\{\varepsilon_{t+h|t}^1\}_{t_0}^T, \{\varepsilon_{t+h|t}^2\}_{t_0}^T
\]

Because the \(h \)-step forecasts use overlapping data the forecast errors in \(\{\varepsilon_{t+h|t}^1\}_{t_0}^T \) and \(\{\varepsilon_{t+h|t}^2\}_{t_0}^T \) will be serially correlated.

The accuracy of each forecast is measured by a particular loss function

\[
L(y_{t+h}, y_{t+h|t}^i) = L(\varepsilon_{t+h|t}^i), \ i = 1, 2
\]

Some popular loss functions are

- Squared error loss: \(L(\varepsilon_{t+h|t}^i) = (\varepsilon_{t+h|t}^i)^2 \)
- Absolute error loss: \(L(\varepsilon_{t+h|t}^i) = |\varepsilon_{t+h|t}^i| \)

To determine if one model predicts better than another we may test null hypotheses

\[
H_0 : E[L(\varepsilon_{t+h|t}^1)] = E[L(\varepsilon_{t+h|t}^2)]
\]

against the alternative

\[
H_1 : E[L(\varepsilon_{t+h|t}^1)] \neq E[L(\varepsilon_{t+h|t}^2)]
\]

The Diebold-Mariano test is based on the loss differential

\[
d_t = L(\varepsilon_{t+h|t}^1) - L(\varepsilon_{t+h|t}^2)
\]

The null of equal predictive accuracy is then

\[
H_0 : E[d_t] = 0
\]

The Diebold-Mariano test statistic is

\[
S = \frac{\bar{d}}{(\text{avar}(\bar{d}))^{1/2}} = \frac{\bar{d}}{(LRV_d/T)^{1/2}}
\]
where

\[\bar{d} = \frac{1}{T_0} \sum_{t=t_0}^{T} d_t \]

\[LRV_{\bar{d}} = \gamma_0 + 2 \sum_{j=1}^{\infty} \gamma_j, \quad \gamma_j = cov(d_t, d_{t-j}) \]

and \(\widehat{LRV}_{\bar{d}} \) is a consistent estimate of the asymptotic (long-run) variance of \(\sqrt{T} \bar{d} \). The long-run variance is used in the statistic because the sample of loss differentials \(\{d_t\}_{t_0}^T \) are serially correlated for \(h > 1 \). Diebold and Mariano (1995) show that under the null of equal predictive accuracy

\[S \sim A^{\mathcal{N}}(0, 1) \]

So we reject the null of equal predictive accuracy at the 5% level if

\[|S| > 1.96 \]

One sided tests may also be computed.