Data for Examples

Load libraries
> library(tseries)
> library(PerformanceAnalytics)

Get adjusted closing price data from Yahoo!
> MSFT.prices = get.hist.quote(instrument="msft", start="1998-01-01",
+ end="2012-05-31", quote="AdjClose",
+ provider="yahoo", origin="1970-01-01",
+ compression="m", retclass="zoo")

> SP500.prices = get.hist.quote(instrument="^gspc", start="1998-01-01",
+ end="2012-05-31", quote="AdjClose",
+ provider="yahoo", origin="1970-01-01",
+ compression="m", retclass="zoo")

• Note: **MSFT.prices** and **SP500.prices** are “zoo” objects. “zoo” is a special time series class (from the zoo package) that is very useful for financial data.
• See the document “Working with Financial Time Series Data in R” on the class syllabus page.

© Eric Zivot 2006
Price Data

Adjusted Closing Prices

> plot(MSFTSP500.prices, main="Adjusted Closing Prices", lwd=2, col="blue")

© Eric Zivot 2006
Monthly Continuously Compounded Returns

Q: What common features do you see?
MSFT and S&P 500 tend to move together.

S&P 500 has much lower volatility than MSFT.
Compare Cumulative Returns: Equity Curve

© Eric Zivot 2006
Are Monthly Returns Gaussian White Noise?

```r
> set.seed(123)
> gwn = rnorm(length(MSFT), mean=mean(MSFT), sd=std(MSFT))
```
Estimating the pdf: Histogram

> hist(MSFT, main="Histogram of MSFT monthly cc returns",
+ col="slateblue1")
> hist(gwn, main="Histogram of simulated Gaussian data",
+ col="slateblue1")

Note: Simulated data has the same mean and variance as the returns on Microsoft
> hist(SP500, main="Histogram of SP500 monthly cc returns",
+ col="slateblue1")
Note: MSFT has larger SD (volatility) than S&P 500
> MSFT.density = density(MSFT)
> plot(MSFT.density,type="l",xlab="monthly return",
+ ylab="density estimate",main="Smoothed histogram for MSFT
+ monthly cc returns\n"", col="orange", lwd=2)
```r
> hist(MSFT, main="Histogram and smoothed density of MSFT monthly returns", probability=T, col="slateblue1", ylim=c(0,5))
> points(MSFT.density, type="l", col="orange", lwd=2)
```
Computing quantiles

> quantile(MSFT.ret.mat)
0% 25% 50% 75% 100%
-0.421081 -0.050019 0.008343 0.055535 0.342188

1% and 5% empirical quantiles
> quantile(MSFT.ret.mat, probs=c(0.01,0.05))
1% 5%
-0.2110 -0.1473

compare to 1% and 5% normal quantiles
> qnorm(p=c(0.01,0.05), mean=mean(MSFT.ret.mat),
+ sd=sd(MSFT.ret.mat))
[1] -0.2291 -0.1608

SP500 empirical and normal quantiles
> quantile(SP500.ret.mat, probs=c(0.01,0.05))
1% 5%
-0.12846 -0.08538
> qnorm(p=c(0.01,0.05), mean=mean(SP500.ret.mat),
+ sd=sd(SP500.ret.mat))
[1] -0.11107 -0.07804

1% and 5% quantiles are used for Value-at-Risk calculations
Monthly VaR Using Empirical Quantiles

> q.01 = quantile(MSFT.ret.mat, probs=0.01)
> q.05 = quantile(MSFT.ret.mat, probs=0.05)
> q.01
 1%
 -0.211
> q.05
 5%
 -0.1473

Monthly VaR on $100,000 investment
> VaR.01 = 100000*(exp(q.01) - 1)
> VaR.05 = 100000*(exp(q.05) - 1)
> VaR.01
 1%
 -19020
> VaR.05
 5%
 -13694
Summary Statistics

> mean(MSFT.ret.mat)
MSFT
0.004127

> var(MSFT.ret.mat)
MSFT
MSFT 0.01005

> sd(MSFT.ret.mat)
MSFT
0.1003

> skewness(MSFT.ret.mat)
[1] -0.09073

Skewness() function is in package PerformanceAnalytics

> kurtosis(MSFT.ret.mat)
[1] 2.082

kurtosis() function is in package PerformanceAnalytics and computes excess kurtosis

© Eric Zivot 2006
Summary Statistics by Column

```r
> apply(MSFTSP500.ret.mat, 2, mean)
     MSFT   SP500
 0.004127 0.001687

> apply(MSFTSP500.ret.mat, 2, sd)
     MSFT   SP500
 0.10026 0.04847

> apply(MSFTSP500.ret.mat, 2, skewness)
     MSFT   SP500
-0.09073 -0.73988

> apply(MSFTSP500.ret.mat, 2, kurtosis)
     MSFT   SP500
   2.082  1.068
```

Note: MSFT has a higher mean and higher SD than SP500.
Empirical CDF of Gaussian data

> n1 = length(gwn)
> plot(sort(gwn),(1:n1)/n1,type="s",ylim=c(0,1), col="slateblue1"
+ main="Empirical CDF of Gaussian data", ylab="#x(i) <= x")
Empirical CDF vs. Normal CDF for Gaussian data

- Normal CDF
- Empirical CDF

standardized gwn
QQ-plots against Normal Distribution

Nice and straight!

Empirical quantiles don’t match normal quantiles in the tails!

> par(mfrow=c(2,2))
> qqnorm(gwn)
> qqline(gwn)
> qqnorm(MSFT.ret)
> qqline(MSFT.ret)
> qqnorm(SP500.ret)
> qqline(SP500.ret)
> par(mfrow=c(1,1))
Out, liar!

Your theory is wrong!
Effect of Outliers on Descriptive Statistics
Summary statistics of polluted data

```r
> tmp = cbind(gwn, gwn.new)
> apply(tmp, 2, mean)
  gwn  gwn.new
0.0043420 -0.0006391

> apply(tmp, 2, sd)
  gwn  gwn.new
0.09515  0.11746

> apply(tmp, 2, skewness)
  gwn  gwn.new
0.2842  -2.3751

> apply(tmp, 2, kurtosis)
  gwn  gwn.new
0.1557  18.3707

> apply(tmp, 2, median)
  gwn  gwn.new
-0.0009163 -0.0009163

> apply(tmp, 2, IQR)
  gwn  gwn.new
0.1200   0.1219
```

Notice how sample statistics are influenced by the single outlier.

outlier robust measures
Boxplot of monthly cc returns on Microsoft

> boxplot(MSFT, outchar=T, main="Boxplot of monthly cc returns on Microsoft", ylab="monthly cc return")
> boxplot(gwn, MSFT, SP500, names=c("gwn", "MSFT", "SP500"), outchar=T,
+ main="Comparison of return distributions", ylab="monthly cc return")
Four Graph Summary

fourPanelPlot = function(ret) {
 retName = colnames(ret)
 ret.den = density(ret)
 par(mfrow=c(2,2))
 hist(ret, main=paste(retName, " monthly returns", sep=""),
 xlab=retName, probability=T, col="cornflowerblue")
 boxplot(ret, outchar=T,col="cornflowerblue")
 plot(ret.den, main="smoothed density",
 type="l", lwd=2, xlab="monthly return",
 ylab="density estimate")
 lines(ret.den$x, dnorm(ret.den$x, mean=mean(ret), sd=sd(ret)),
 col="cornflowerblue", lwd=2)
 legend(x="topleft", legend=c("smoothed", "normal"),
 lty=c(1,1), col=c("black", "blue"), lwd=2)
 qqnorm(ret, col="cornflowerblue", pch=16)
 qqline(ret)
 par(mfrow=c(1,1))
}
Scatterplot

> plot(MSFT.mat,SP500.mat,main="Monthly cc returns on MSFT and SP500", pch=16, cex=1.5, col="blue")
> abline(h=mean(SP500)) # horizontal line at SP500 mean
> abline(v=mean(MSFT)) # vertical line at MSFT mean

Cov(MSFT,SP500)=0.0028
Corr(MSFT,SP500)=0.60
Pairwise Scatterplots

> pairs(cbind(gwn, MSFT, SP500), col="blue", pch=16,
+ cex=1.5, cex.axis=1.5)
Sample Covariances and Correlations

\[
\text{var(cbind(gwn,MSFT.mat,SP500.mat))}
\]

\[
\begin{array}{ccc}
gwn & MSFT & SP500 \\
\hline
gwn & 0.0090534 & -0.001856 & -0.0009685 \\
MSFT & -0.0018563 & 0.010044 & 0.0029993 \\
SP500 & -0.0009685 & 0.002999 & 0.0023494 \\
\end{array}
\]

\[
\text{cor(cbind(gwn,MSFT.mat,SP500.mat))}
\]

\[
\begin{array}{ccc}
gwn & MSFT & SP500 \\
\hline
gwn & 1.0000 & -0.1947 & -0.2100 \\
MSFT & -0.1947 & 1.0000 & 0.6174 \\
SP500 & -0.2100 & 0.6174 & 1.0000 \\
\end{array}
\]
Monthly returns are essentially uncorrelated; i.e., unpredictable!
Sample ACF for MSFT

Small negative 1st order autocorrelation – possibly MA(1) model
Stylized Facts for Monthly CC Returns

- Returns appear to be approximately normally distributed
 - Some noticeable negative skewness and excess kurtosis
- Individual asset returns have higher SD than diversified portfolios
- Many assets are contemporaneously correlated
- Assets are approximately uncorrelated over time (no serial correlation)