Bootstrapping Estimates of the CER Model

Econ 424/Amath 462
Eric Zivot
Summer 2013
Updated: July 23, 2013

© Eric Zivot 2006
Data for Examples

returns.z

- T = 100 months

© Eric Zivot 2006
Estimated Standard Errors

\[\text{se.muhat} = \frac{\text{sigmahat.vals}}{\sqrt{nobs}} \]

\[\text{se.muhat} = \frac{\text{sigmahat.vals}}{\sqrt{2 \times nobs}} \]

\[\text{se.sigma2hat} = \frac{\text{sigma2hat.vals}}{\sqrt{nobs}} \]

\[\text{se.sigma2hat} = \frac{\text{sigma2hat.vals}}{\sqrt{2 \times nobs}} \]

\[\text{se.sigmahat} = \frac{\text{sigmahat.vals}}{\sqrt{2 \times nobs}} \]

\[\text{se.sigmahat} = \frac{\text{sigmahat.vals}}{\sqrt{4 \times nobs}} \]
R function `sample()`

random permutations of the index vector 1:5
> sample(5)
[1] 1 3 2 5 4

> sample(5)
[1] 4 2 3 5 1

random sample of size 5 from MSFT return with replacement
> sample(MSFT, 5, replace=TRUE)
[1] -0.02904 0.12130 -0.01890 -0.15332 -0.14627
Brute Force Bootstrap

Same idea as Monte Carlo Simulation but instead of generating random data from an assumed distribution, you generate random data by sampling with replacement from the observed data.

```r
# bootstrap distribution for \( \hat{\mu} \)
> B = 999  # why use 999?
> muhat.boot = rep(0, B)
> nobs = length(MSFT)
> for (i in 1:B) {
+   boot.data = sample(MSFT, nobs, replace=TRUE)
+   muhat.boot[i] = mean(boot.data)
}
Brute Force Bootstrap

# bootstrap bias
> mean(muhat.boot) - muhat.MSFT
[1] -0.0005643

# bootstrap SE
> sd(muhat.boot)
[1] 0.01045

# analytic SE
> sigmahat.MSFT/sqrt(length(MSFT))
[1] 0.01068

Bootstrap SE is very close to analytic SE
Brute Force Bootstrap

par(mfrow=c(1,2))
hist(muhat.boot, col="slateblue1")
abline(v=muhat.MSFT, col="white", lwd=2)
qqnorm(muhat.boot)
qqline(muhat.boot)
par(mfrow=c(1,1))
R Package boot

- Implements a variety of bootstrapping functions
- Main functions are:
  - `boot()` bootstrap user supplied function
  - `boot.ci()` compute bootstrap confidence interval

© Eric Zivot 2006
Example: Bootstrapping sample mean

```r
function for bootstrapping sample mean
mean.boot = function(x, idx) {
 # arguments:
 # x data to be resampled
 # idx vector of scrambled indices created by boot() function
 # value:
 # ans mean value computed using resampled data
 ans = mean(x[idx])
 ans
}
```

© Eric Zivot 2006
Example: Bootstrapping sample mean

```r
> MSFT.mean.boot = boot(MSFT, statistic = mean.boot, R=999)
> class(MSFT.mean.boot)
[1] "boot"
> MSFT.mean.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = MSFT, statistic = mean.boot, R = 999)

Bootstrap Statistics :
 original bias std. error
 t1* 0.02756 -0.00013 0.01052
```

Sample mean
Bootstrapping estimate of bias
Bootstrap estimate of SE
> plot(MSFT.mean.boot)
Compare Bootstrap Statistics with Analytic Formulas

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = MSFT, statistic = mean.boot, R = 999)

Bootstrap Statistics :

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>bias</th>
<th>std. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1*</td>
<td>0.02756</td>
<td>-0.00013</td>
<td>0.01052</td>
</tr>
</tbody>
</table>

# compare boot SE with analytic SE
> se.muhat.MSFT = sigmahat.MSFT/sqrt(length(MSFT))
> se.muhat.MSFT

[1] 0.01068

© Eric Zivot 2006
Bootstrap Confidence Intervals

> boot.ci(MSFT.mean.boot, conf = 0.95, type =
+     c("norm","perc"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

CALL : boot.ci(boot.out = MSFT.mean.boot, conf = 0.95, type =
+     c("norm","perc"))

Intervals :
Level     Normal          Percentile
95% ( 0.0071, 0.0483 ) ( 0.0065, 0.0471 )

Calculations and Intervals on Original Scale
Example: Bootstrapping Sample SD

```r
function for bootstrapping sample standard deviation
sd.boot = function(x, idx) {
 # arguments:
 # x data to be resampled
 # idx vector of scrambled indices created by boot() function
 # value:
 # ans sd value computed using resampled data
 ans = sd(x[idx])
 ans
}
```

© Eric Zivot 2006
Example: Bootstrapping Sample SD

```r
> MSFT.sd.boot = boot(MSFT, statistic = sd.boot, R=999)
> MSFT.sd.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = MSFT, statistic = sd.boot, R = 999)

Bootstrap Statistics :
 original bias std. error
 t1* 0.1068 -0.00145 0.01078

compare boot SE with analytic SE based on CLT
> se.sigmahat.MSFT = sigmahat.MSFT/sqrt(2*length(MSFT))
> se.sigmahat.MSFT

[1] 0.00755
```

© Eric Zivot 2006
> plot(MSFT.sd.boot)
Example: Booststrapping Normal VaR

ValueAtRisk.boot = function(x, idx, p=0.05, w=100000) {
  # x.mat  data to be resampled
  # idx    vector of scrambled indices created by # boot() function
  # p      probability value for VaR calculation
  # w      value of initial investment
  # ans    Value-at-Risk computed using resampled data
  
  q = mean(x[idx]) + sd(x[idx]) * qnorm(p)
  VaR = (exp(q) - 1) * w
  VaR

}
Example: Boostrapping Normal VaR

```r
> MSFT.VaR.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = MSFT, statistic = ValueAtRisk.boot, R = 999)

Bootstrap Statistics :
 original bias std. error
t1* -13769.40 210.2801 1886.953

Sample VaR estimate: -13769.40
Bootstrap SE: 1886.953
```

© Eric Zivot 2006
Histogram of $t$

> plot(MSFT.VaR.boot)

© Eric Zivot 2006
Example: Boostrapping Normal VaR

```r
> boot.ci(MSFT.VaR.boot, conf=0.95, type=c("norm", "perc"))
```

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

CALL :
boot.ci(boot.out = MSFT.VaR.boot, conf = 0.95, type = c("norm", "perc"))

Intervals :
Level       Normal               Percentile
95%  ( -17678,  -10281 )   ( -17212,  -10009 )

\[
\hat{\theta} \pm 2 \times SE_{boot}(\hat{\theta}) \quad \left[ q_{0.025}, \quad q_{0.975} \right]
\]