Present Value Methodology

Econ 422
Investment, Capital & Finance
University of Washington
Eric Zivot
Last updated: April 11, 2010

Present Value Concept

Wealth in Fisher Model:
\[W = Y_0 + Y_1/(1+r) \]
The consumer/producer’s wealth is their current endowment plus the future endowment discounted back to the present by the rate of interest (rate at which present and future consumption can be exchanged).

• Why do this?
 – Purpose of comparison—apples to apples (temporal) comparison with multiple agents or apples to apples comparison of investment/consumption opportunities

• Uniform method for valuing present and future streams of consumption in order for appropriate decision making by consumer/producer

• Useful concept for valuing multiple period investments and pricing financial instruments

Calculating Present Value

Present value calculations are the reverse of compound growth calculations:

Suppose \(V_0 \) = a value today (time 0)
\[r \] = fixed interest rate (annual)
\[T \] = amount of time (years) to future period

The value in \(T \) years we calculate as:
\[V_T = V_0 (1+r)^T \] (Future Value)
Example

• A $30,000 Certificate of Deposit with 5% annual interest in 10 years will be worth:
 \[V_T = V_0 (1 + r)^T = 30,000 \times (1 + 0.05)^{10} = 48,866.84 \]

• Note: Computation is easy to do in Excel
 \[= 30,000 \times (1 + 0.05)^{10} \]

Present Value

In reverse:

\[V_0 = \frac{V_T}{(1+r)^T} \] (Present Value)

The present value amount is the future value discounted (divided) by the compounded rate of interest

Example: A $48,866.84 Certificate of Deposit received 10 years from now is worth today:

\[V_0 = \frac{48,866.84}{(1+0.05)^{10}} = 30,000 \]

Exam Review

• Be able to calculate present and future values

• For any three of four variables: \((V_0, r, T, V_T)\) you should be able to determine the value of the fourth variable.

• How do changes to \(r\) and \(T\) impact \(V_0\) and \(V_T\)?
Example: Rule of 70

• Q: How many years, T, will it take for an initial investment of V_0 to double if the annual interest rate is r?
• A: Solve $V_0 (1 + r)^T = 2V_0$
• => $(1 + r)^T = 2$
• => $T \ln(1 + r) = \ln(2)$
• => $T = \frac{\ln(2)}{\ln(1+r)}$
• = 0.69/ln(1 + r) ≈ 0.70/r for r not too big

Present Value of Future Cash Flows

• A cash flow is a sequence of dated cash amounts received (+) or paid (-): $C_0, C_1, ..., C_T$
• Cash amounts received are positive; whereas, cash amounts paid are negative
• The present value of a cash flow is the sum of the present values for each element of the cash flow

Discount factors: Intertemporal Price of 1 with constant interest rate r

• $1/(1+r) = \text{price of } 1 \text{ to be received 1 year from today}$
• $1/(1+r)^2 = \text{price of } 1 \text{ to be received 2 years from today}$
• $1/(1+r)^T = \text{price of } 1 \text{ to be received } T \text{ years from today}$
Present Value of a Cash Flow

- \{C_0, C_1, C_2, \ldots, C_T\} represents a sequence of cash flows where payment
- \(C_i\) is received at time \(i\). Let \(r\) = the interest or discount rate.

Q: What is the present value of this cash flow?

A: The present value of the sequence of cash flows is the sum of the present values:

\[
P V = C_0 + \frac{C_1}{(1+r)} + \frac{C_2}{(1+r)^2} + \ldots + \frac{C_T}{(1+r)^T}
\]

Summation Notation

\[
PV = \sum_{t=0}^{T} \frac{C_t}{(1 + r)^t}
\]

= \(C_0 + \sum_{t=1}^{T} \frac{C_t}{(1 + r)^t}\)

Example

You receive the following cash payments:
- time 0: -$10,000 (Your initial investment)
- time 1: $4,000
- time 2: $4,000
- time 3: $4,000

The discount rate = 0.08 (or 8%)

\[
P V = -$10,000 + \frac{4,000}{(1+0.08)} + \frac{4,000}{(1+0.08)^2} + \frac{4,000}{(1+0.08)^3}
\]

= -$10,000 + $3,703.70 + $3,429.36 + $3,175.33

= $308.39

See econ422PresentValueProblems.xls for Excel calculations
PV Calculations in Excel

Excel function **NPV**:

\[\text{NPV(rate, value1, value2, \ldots, value29)} \]

- **Rate** = per period fixed interest rate
- **value1** = cash flow in period 1
- **value2** = cash flow in period 2
- \(\ldots \)
- **value29** = cash flow in 29th period

Note: NPV function does not take account of initial period cash flow!

Present Value Calculation Short-cuts

PERPETUITY:

A perpetuity pays an amount \(C \) starting next period and pays this same constant amount \(C \) in each period forever:

\[C_1 = C, C_2 = C, C_3 = C, C_4 = C, \ldots \]

\[\text{PV(Perpetuity)} = \frac{C}{(1+r)} + \frac{C}{(1+r)^2} + \ldots + \frac{C}{(1+r)^n} + \ldots \]

\[= \sum_{t=1}^{\infty} \frac{C}{(1+r)^t} = \frac{C}{r} \]

PV of Perpetuity

Based on the infinite sum property, we can write PV as:

\[\text{PV} = \text{Initial Term} \cdot \frac{1 - \text{Common Ratio}}{1 - \text{Common Ratio}} \]

\[= \frac{C}{(1+r)} \cdot \frac{1 - (1/(1+r))}{1 - (1/(1+r))} \]

\[= \frac{C}{r} \]

Initial Term = \(C/(1 + r) \)

Common Ratio = \(1/(1 + r) \)
PV(Perpetuity) = C/(1 + r) + C/(1 + r)^2 + C/(1 + r)^3 + \ldots + C/(1 + r)^t + \ldots

Let \(a = C/(1 + r) \) = initial term
\(x = 1/(1 + r) \) = common ratio
Rewriting:
\[PV = a (1 + x + x^2 + x^3 + \ldots) \] (1.)
Post multiplying by \(x \):
\[PVx = a(x + x^2 + x^3 + \ldots) \] (2.)
Subtracting (2.) from (1.):
\[PV(1 - x) = a \]
\[\rightarrow PV = a/(1 - x) \]
Multiplying through by \((1 + r) \):
\[PV = C/r \]

Example
The *preferred stock* of a secure company will pay the owner of the stock $100/year forever, starting next year.

Q: If the interest rate is 5%, what is the share worth?

A: The share should be worth the value to you as an investor today of the future stream of cash flows.

This share of preferred stock is an example of a perpetuity, such that

\[\text{PV(preferred stock)} = \frac{100}{0.05} = 2,000 \]

Example Continued

- Q: What if the interest rate is 10%?

\[\text{PV(preferred stock)} = \frac{100}{0.10} = 1,000 \]

- Notice: That when the interest rate doubled, the present value of the preferred stock decreased by \(\frac{1}{2} \).
The preferred stock of a secure company will pay the owner of the stock $100/year forever, starting this year.

Q: If the interest rate is 5%, what is the share worth?

A: The share should be worth the value to you as an investor today of the future stream of cash flows (perpetuity component) plus the $100 received this year.

\[PV(\text{preferred stock}) = \$100 + \$100 \times 0.05 = \$100 + \$2,000 = \$2,100 \]

GROWING PERPETUITY

Suppose the cash flow starts at amount \(C \) at time 1, but grows at a rate of \(g \) thereafter, continuing forever:

\[C_1 = C, \ C_2 = C(1+g), \ C_3 = C(1+g)^2, \ldots \]

\[PV(\text{Perpetuity}) = \frac{C}{(1+r)} \frac{(1+g)}{(1+r)} + \frac{(1+g)^2}{(1+r)^2} + \cdots + \frac{(1+g)^t}{(1+r)^t} + \cdots \]

\[= \sum_{t=1}^{\infty} \frac{(1+g)^t}{(1+r)^t} \]

Based on the infinite sum property, we can write this as:

\[PV = \frac{\text{Initial Term}}{1 - \text{Common Ratio}} \]

\[= \frac{C}{(1 + r)} \left[1 - ((1 + g)/(1 + r)) \right] \]

\[= \frac{C}{(r - g)} \]

Note: This formula requires \(r > g \).
Example

• Your next year’s cash flow or parental stipend will be $10,000. Your parents have generously agreed to increase the yearly amount to account for increases in cost of living as indexed by the rate of inflation.

• Your parents have established a trust vehicle such that after their death you will continue to receive this cash flow, so effectively this will continue forever.

• Assume the rate of inflation is 3%.

• Assume the market interest rate is 8%.

• Q: What is the value to you today of this parental support?

Answer

This is a growing perpetuity with

\[C = 10,000, \quad r = 0.08, \quad g = 0.03 \]

Therefore,

\[PV = \frac{10,000}{0.08 - 0.03} = 200,000 \]

FINITE ANNUITY

A finite annuity will pay a constant amount \(C \) starting next period through period \(T \), so that there are \(T \) total payments (e.g., financial vehicle that makes finite number of payments based on death of owner or joint death or term certain number of payments, etc.)

\[C_1 = C, \quad C_2 = C, \quad C_3 = C, \quad \ldots, \quad C_T = C \]

\[
PV(\text{Finite Annuity}) = \sum_{t=1}^{T} \frac{C}{(1+r)^t} = C \sum_{t=1}^{T} \frac{1}{(1+r)^t}
\]
Finite Annuity

Formula Result:

\[PV \text{ (Finite Annuity)} = C \left(\frac{1}{r} \right) \left[1 - \frac{1}{(1+r)^T} \right] \]

where

\[PVA(r, T) = \left(\frac{1}{r} \right) \left[1 - \frac{1}{(1+r)^T} \right] \]

= PV of annuity that pays $1 for T years

Value of Finite Annuity = Difference Between Two Perpetuities

Consider the Finite Annuity cash flow: \(C_1 = C, \ C_2 = C, \ C_3 = C, \ C_4 = C, \ldots \ C_T = C \)
Suppose you want to determine the present value of this future stream of cash.

Recall a perpetuity cash flow (#1):

\(C_1 = C, \ C_2 = C, \ C_3 = C, \ C_4 = C, \ldots C_T = C, C_{T+1} = C, \ldots \)
From our formula, the value today of this perpetuity = \(\frac{C}{r} \)

Consider a second perpetuity (#2) starting at time \(T+1 \):

\(C_{T+1} = C, \ C_{T+2} = C, \ C_{T+3} = C, \ldots \)
The value today of this perpetuity starting at \(T+1 \):

\[= \frac{C}{r} \left(\frac{1}{1+(1+r)} \right) \] (why?)

Note: The Annuity = Perpetuity #1 – Perpetuity #2

\[= \frac{C}{r} - \frac{C}{r} \left(\frac{1}{1+(1+r)} \right) \]
\[= \frac{C}{r} \left(1 - \frac{1}{1+(1+r)} \right) \]

PV (Finite Annuity) = \(C \left(\frac{1}{1+r} \right) + C \left(\frac{1}{1+r} \right)^2 + C \left(\frac{1}{1+r} \right)^3 + \ldots + C \left(\frac{1}{1+r} \right)^{T-1} \)
Let \(a = \frac{C}{1+r} \)
\(x = \left(\frac{1}{1+r} \right) \)
Rewriting:

\[PV = a \left(1 + x + x^2 + x^3 + \ldots + x^{T-1} \right) \] (1.)

Multiplying by \(x \):

\[PVx = \left(x + x^2 + x^3 + \ldots + x^T \right) \] (2.)

Subtracting (2.) from (1.):

\[PV(1-x) = a \left(1-x \right) \]
\[PV = a \left(\frac{1-x^T}{1-x} \right) \]
\[\frac{PV}{(1+r)} = a \left(1-x^T \right) \]
\[PV = a \left(\frac{1-x^T}{1-x} \right) \]
\[PV(1+r) = \frac{a}{1-x} \]

Multiplying the \(1+r \) in the denominator thru:

\[PV \text{ (Finite Annuity)} = C \left(\frac{1}{1+(1+r)} \right) \]
Example
Find the value of a 5 year car loan with annual payments of $3,600 per year starting next year (i.e., 5 payments of $3,600 in the future). The cost of capital or opportunity cost of capital is 6%.

\[PV = \frac{3,600}{0.06}[1 - \frac{1}{(1.06)^5}] \]
\[= 15,164.51 \]

Example Continued
Suppose you had also made a down-payment for the car of $5,000 to lower your monthly loan payments. The total cost/value of the car you purchased is then:

\[PV(\text{down payment}) + PV(\text{loan annuity}) = 5,000 + 15,164.51 = 20,164.51 \]

Computing Present Value of Finite Annuities in Excel
Excel function PV:
\[PV(\text{Rate}, \text{Nper}, \text{Pmt}, \text{Fv}, \text{Type}) \]
- Rate = per period interest rate
- Nper = number of annuity payments
- Fv = cash balance after last payment
- Type = 1 if payments start in first period; 0 if payments start in initial period
Example

• Borrow $200,000 to buy a house.
• Annual interest rate = 10%
• Loan is to be paid back in 30 years
• Q: What is the annual payment?
• PV = $200,000 = C*PVA(0.10, 30)
• =>$C = \frac{200,000}{PVA(0.10, 30)}$
• PVA(0.10, 30) = \left(\frac{1}{0.10}\right)[1 - \frac{1}{(1.10)^{30}}] = 9.427
• =>$C = \frac{200,000}{9.427} = 21,215.85$

Computing Payments from Finite Annuities in Excel

Excel function PMT:
PMT(Rate, Nper, Pv, Fv, Type)
Rate = per period interest rate
Nper = number of annuity payments
Pv = initial present value of annuity
Fv = future value after last payment
Type = 1 if payments are due at the beginning of the period; 0 if payments are due at the end of the period

Example

• You win the $5 million lottery!
• 25 annual installments of $200,000 starting next year
• Q: What is the PV of winnings if r = 10%?
• PV = $200,000 * PVA(0.10, 25)
• PVA = \left(\frac{1}{0.10}\right)[1 - \frac{1}{(1.10)^{25}}] = 9.07704
• =>$PV= \frac{200,000 \times 9.07704}{9.07704} = 1,815,408 < $5M!$
Future Value of an Annuity

- Invest C every year, starting next year, for T years at a fixed rate r
- How much will investment be worth in year T?
- Trick: $FVA(r, T) = PVA(r, T)(1+r)^T$
 - $= \frac{1}{r} \left[1 - \frac{1}{(1+r)^T} \right] \times (1+r)^T$
- Therefore
 - $FV = C \times FVA(r, T)$
- where $FVA(r, T)$ = FV of 1 invested every year for T years at rate r

Example

- Save $1,000 per year, starting next year, for 35 years in IRA
- Annual rate = 7%
- Q: How much will you have saved in 35 years?
- $FV = 1,000 \times FVA(0.07, 35)$
- $FVA(0.07, 35) = \frac{1}{0.07} \times \left[(1.07)^{35} - 1 \right] = 138.23688$
- $\Rightarrow FV = 1,000 \times (138.23688) = 138,236.88$

Computing Future Value of Finite Annuities in Excel

Excel function FV:

$FV(\text{Rate, Nper, Pmt, Pv, Type})$

- Rate = per period interest rate
- Nper = number of annuity payments
- Pmt = payment made each period
- Pv = present value of future payments
- Type = 1 if payments start in first period; 0 if payments start in initial period
Finite Growing Annuities

• Similar to how we amended the Perpetuity formula for ‘Growing’ Perpetuities, we can amend the Annuity formula to account for a ‘Growing’ Annuity.

• The cash flow for a finite growing annuity pays an amount C, starting next period, with the cash flow growing thereafter at a rate of g, through period T:

\[PV = \frac{C}{(1+r)} + \frac{C(1+g)}{(1+r)^2} + \frac{C(1+g)^2}{(1+r)^3} + \ldots + \frac{C(1+g)^{T-1}}{(1+r)^T}\]

\[= \sum_{t=1}^{T} \frac{C(1+g)^{t-1}}{(1+r)^t}\]

\[= \frac{C}{r-g} \left[1 - \frac{(1+g)^T}{(1+r)^T}\right]\]

Class Example

• An asset generates a cash flow that is $1 next year, but is expected to grow at 5% per year indefinitely.
• Suppose the relevant discount rate is 7%.

Q: After receiving the third payment, what can you expect to sell the asset for?

Q: What is the present value of the asset you held?

Compounding Frequency

• Cash flows can occur annually (once per annum), semi-annually (twice per annum), quarterly (four times per annum), monthly (twelve times per annum), daily (365 times per annum), etc.

• Based on the cash flows, the formulas for compounding and discounting can be adjusted accordingly:

General formula: For stated annual interest rate \(r\) compounded for \(T\) years \(n\) times per year:

\[FV = V_0 \times [1 + \frac{r}{n}]^{nT}\]
Compounding Frequency

Effective Annual Rate (annual rate that gives the same FV with compounding n times per year):

\[
\left[1 + \frac{r_{\text{EAR}}}{n}\right]^n = \left[1 + \frac{r}{n}\right]^{nT}
\]

\[
=> r_{\text{EAR}} = \left[1 + \frac{r}{n}\right]^n - 1
\]

Example

- Invest $1,000 for 1 year
- Annual rate (APR) $r = 10\%$
- Semi-annual compounding: semi-annual rate = $0.10/2 = 0.05$
- FV = $1,000 \times (1 + 0.05)^2 = $1,102.50$
- Note: $1,000 \times (1 + 0.05)^2 = 1,000 \times (1 + 2 \times (0.05) + (0.05)^2)$
- $= $1,000 + $100 + 2.5
- $= \text{principal} + \text{simple interest} + \text{interest on interest}$
- Effective annual rate:
 - $(1 + r_{\text{EAR}}) = (1 + \text{APR}/2)^2$
 - $=> r_{\text{EAR}} = (1.05)^2 - 1 = 0.1025 \ or \ 10.25\%$

Example: The Difference In Compounding

<table>
<thead>
<tr>
<th>Compounding Frequency</th>
<th>Times per Annum</th>
<th>One plus Effective Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yearly</td>
<td>1</td>
<td>1.05</td>
</tr>
<tr>
<td>Semi-Annual</td>
<td>2</td>
<td>1.050625</td>
</tr>
<tr>
<td>Quarterly</td>
<td>4</td>
<td>1.05094537</td>
</tr>
<tr>
<td>Monthly</td>
<td>12</td>
<td>1.051161898</td>
</tr>
<tr>
<td>Daily</td>
<td>365</td>
<td>1.051267496</td>
</tr>
<tr>
<td>Hourly</td>
<td>8,760</td>
<td>1.051270946</td>
</tr>
<tr>
<td>By the minute</td>
<td>525,600</td>
<td>1.051271094</td>
</tr>
<tr>
<td>By the second</td>
<td>31,536,000</td>
<td>1.051271093</td>
</tr>
</tbody>
</table>
Example
• Take out (borrow) $300,000 30 year fixed rate mortgage
• Annual rate = 8%, monthly rate = 0.08/12 = 0.0067
• 30*12 = 360 monthly payments
• Q: What is the monthly payment?

\[\text{PV} = \frac{300,000}{C \cdot \text{PVA}(0.08/12, 360)} \]
\[\text{PVA}(0.0067, 360) = 136.283 \]
\[\Rightarrow C = \frac{300,000}{136.283} = \$2,201.30 \]
\[\text{Note: total amount paid over 30 years is} \]
\[360 \times \$2,201.30 = \$792,468 \]

Example
• Consider previous 30 year mortgage
• Suppose the day after the mortgage is issued, the annual rate on new mortgages shoots up to 15%
• Q: How much is the old mortgage worth?

\[\text{PV} = \frac{2,201}{C \cdot \text{PVA}(0.15/12, 360)} \]
\[\text{PVA}(0.15/12, 360) = 79.086 \]
\[\Rightarrow \text{PV} = \frac{2,201 \times 79.086}{79.086} = \$174,092 < \$300,000! \]

Continuous Compounding
Increasing the frequency of compounding to continuously:
\[\lim_{n \to \infty} [1 + \frac{r}{n}]^n = (2.718)^r = e^r \]

Effective Annual Rate:
\[[1 + r_{\text{EAR}}]^r = e^r \]
\[\Rightarrow r_{\text{EAR}} = e^r - 1 \]
Example

• $r =$ annual (simple) interest rate $= 10\%$, $T =$ 1 year
• FV of 1$ with annual compounding:
 • $FV = 1(1+r) = 1.10$
• FV of 1$ with continuous compounding:
 • $FV = 1* e^r = 2.71818^{0.10} = 1.10517$
• Effective annual rate
 • $1 + \text{r}_{\text{EAR}} = 1.10517 \Rightarrow \text{r}_{\text{EAR}} = 0.10517 = 10.517\%$

Further Insight on Continuous Compounding

Example: Invest V_0 for 1 year with annual rate r and continuous compounding

$$V_1 = V_0 e^{rt} \Rightarrow \left(\frac{V_1}{V_0}\right) = e^r$$

$$\Rightarrow \ln \left(\frac{V_1}{V_0}\right) = r$$

$$\Rightarrow \ln V_1 - \ln V_0 = r$$

Test/Practical Tips

• General formula will always work by may be tedious
• Short-cuts exist if you can recognize them
• Use short-cuts!
• Break down complicated problems into simple pieces