Overview

- Multilingual grammar engineering
- Assumptions
- Data: Armenian, Farsi, Swedish
- MRS primer and the problem
- Proposed solution
- Conclusions

Multilingual Grammar Engineering

- Monolingual grammar engineering tests linguistic analyses
- for consistency
- against corpora
- Multilingual grammar engineering tests cross-linguistic hypotheses
- LinGO Grammar Matrix: precision grammar starter-kit

Cross-linguistic Hypotheses

- HPSG notions of headedness and valence
- Semantic compositionality (so-called “Frege’s Principle”) (Pelletier 2001)
- Minimal Recursion Semantics for typed feature structure based semantic composition (Copestake et al 2003, Flickinger and Bender 2003)

Assumption 1

- A monotonic system for compositional semantics is desirable.
 - bidirectionality
 - partial interpretation from partial parses

Assumption 2

- In an adequate semantic representation, all nominal indices are bound by quantifiers.
Assumption 3

- Scopal adjectives exist.
 - Type 1: fake, alleged, former
 - Type 2: probable, likely
 - By contrast, most adjectives are intersective: good, red, tired

Assumption 4

- Quantifiers can take scope between scopal adjectives and the nouns they modify.
 - The most probable winner of every medal was disqualified.

Assumption 4 (cont)

- every > the > probable: Different probable winners for each medal, all disqualified.
- the > every > probable: One super athlete is favored in each competition individually and disqualified.
- the > probable > every: No one person dominated all events, but if anyone were to win all the medals, it would X, who was disqualified.

Assumption 5

- Determiners combine with nominal expressions to produce quantifier-expressing constituents.

Armenian

- Indefinite article is a separate word, while the definite article appears to be an affix:
 a. դղայ մեն ե բոյ INDEF be.3sg
 ‘He is a boy.’ (Bardakjian and Thomson 1977:18)
 b. դուն-ե մեճ ե հուս-DEF big be.3sg
 ‘The house is big.’ (Andonian 1966:22)
Armenian

- There are also what appear to be scopal adjectives:

 - hawanagan k'ayleri masin
 - probable step.pl.gen about
 - ‘... concerning probable steps'

Farsi

- ro/-o appears on definite direct objects
- or, in combination with -i, on specific indefinite direct objects

 - mi xahæ nd xane-i-ro bexæ ræ nd
 - preswant.3pl house-indef-acc/def buy
 - ‘They want to buy a house. (A certain house)’ (Mace 2003)

French

- -i marks NPs as indefinite and non-generic
- -i marks NPs as indefinite and non-generic

 - ketab: the book
 - ketab-i: a book, books in general

Swedish

- There are also what appear to be scopal adjectives:

 - mest troligaorsakentillhjärtafarkt
 - the most probable-cause-def of heart attack

 - IGLO: http://www.hum.uib.no/cvenonius/lingua/
The Problem

Syntax suggests Compositional semantics requires

(a) NP (b) NP
 A A
 | N
 NP N
 probable probable
 winner-def winner-def

The Problem

MRS Primer

- MRS representations are underspecified for scope
- Fixed scopal relations are represented as constraints on possible complete scopings
- Quantifiers are free to ‘float’ into any space

Constraints on Scope

top
every(y)
 medal(y) def_q(z)
 probable disqualify(z,x)
 winner(x,y)

Constraints on Scope

def_q(z)
top every(y)
 medal(y) probable
 disqualify(z,x)
 winner(x,y)

Constraints on Scope

def_q(z)
probable disqualify(z,x)
 medal(y)
 winner(x,y)

Constraints on Scope

def_q(z)
top
 every(y)
 medal(y) winner(x,y)
The Problem Again

\[
\text{def}_q(x) = \ldots \text{probable}\ldots \text{winner}(x, y)
\]

Solutions

- Loosen the tight coupling between syntax and semantics
- Reject the assumptions that require treating the (in)definiteness markers as contributing semantic quantifiers

More Flexible Interfaces

- CLLS (Constraint Language for Lambda Semantics) uses more flexible dominance relations plus semantic types to reduce ambiguity (Egg et al. 2001)
- GLUE Semantics formalizes 'weak compositionality', semantic representations projected off complete syntactic representations (Asudeh et al. 2002)

(In)definiteness Markers as Non-Quantifiers

- Definiteness affixes contribute other information about NP semantics (givenness, specificity) (cf. Borthe and Hauge to appear)
- Actual quantifier built by non-branching construction
(In)definiteness Markers as Non-Quantifiers

\[
\begin{align*}
\text{NP} & \quad \quad = \\
N' & \quad \queue
Conclusions

- *MRS makes interesting cross-linguisitic predictions*
- *Grammar engineering supports linguistic hypothesis testing*
- *Computational linguistic resources should be designed to be cross-linguistically applicable*

Acknowledgments

- *Thanks to Markus Egg, Dan Flickinger, Ann Copestake for helpful discussion*
- *Thanks to Arman Maghbouleh, Tom Johnson, and Oskar Gjertsson for assistance with data*