Wavelet-Based Analysis for Multispectral Fractal Processes

Don Percival
MathSoft, Inc., Seattle, WA
Applied Physics Lab, Univ. of Washington (UW)

overheads for talk available at

http://www.staff.washington.edu/dbp/talks.html

joint work with:

- Jim Bassingthwaighte, Dept. of Bioeng, UW
- Bill Constantine, MathSoft (PI)
- Peter Craigmile, Dept. of Statistics, UW
- Peter Guttorp, Dept. of Statistics, UW
- Jim Pitton, Applied Physics Lab, UW
- Per Reinhall, Dept. of Mech. Eng., UW (PI)
Introduction and Overview

• motivation: ABL aerothermal turbulence data
 – Fig. 1: 7.5 million points (100 point averages)
 – spatial resolution \(\approx 1.83 \) cm

• will model using time-varying stochastic process

• basic idea: combine wavelets with stochastic fractals
 – wavelets give time/scale decomposition
 (yields multiscale approach to modeling)
 – fractals describe connections across scales
 (will use fractionally differenced processes)
Outline of Talk

- overview of discrete wavelet transform (DWT)
- overview of fractionally differenced (FD) processes
- basic properties of DWT of an FD process
 (DWT acts as decorrelator of FD processes)
- DWT-based estimation of parameters for FD process
 – maximum likelihood and least squares estimators
- application to ABL data
- future work
Overview of DWT: I

• let $X = [X_0, X_1, \ldots, X_{N-1}]^T$ be observed time series (for convenience, assume N integer multiple of 2^{J_0})
• let W be $N \times N$ orthonormal DWT matrix
• $W = WX$ is vector of DWT coefficients
• orthonormality says $X = W^TW$, so $X \Leftrightarrow W$
• can partition W as follows:

$$W = \begin{bmatrix}
W_1 \\
\vdots \\
W_{J_0} \\
V_{J_0}
\end{bmatrix}$$

• W_j contains $N_j = N/2^j$ wavelet coefficients
 – related to changes of averages at scale $\tau_j = 2^{j-1}$ (τ_j is jth ‘dyadic’ scale)
 – related to times spaced 2^j units apart
• V_{J_0} contains $N_{J_0} = N/2^{J_0}$ scaling coefficients
 – related to averages at scale $\lambda_{J_0} = 2^{J_0}$
 – related to times spaced 2^{J_0} units apart
• Fig. 2: DWT of small segment of ABL data
Overview of DWT: II

• obtain DWT via filtering with subsampling

• filter \(X_0, X_1, \ldots, X_{N-1} \) to obtain

\[
2^{j/2} \hat{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \mod N}, \quad t = 0, 1, \ldots, N - 1
\]

- \(h_{j,l} \) is \(j \)th level wavelet filter
- width of \(h_{1,l} \) is \(L_j = (2^j - 1)(L - 1) + 1 \)
- \(\hat{W}_{j,t} \) part of ‘maximal overlap’ DWT (MODWT)

• subsample to obtain DWT wavelet coefficients:

\[
W_{j,t} = 2^{j/2} \hat{W}_{j,2^j(t+1)-1}, \quad t = 0, 1, \ldots, N_j - 1,
\]

where \(W_{j,t} \) is \(t \)th element of \(W_j \)

• Fig. 3: Haar & ‘least asymmetric’ (LA) wavelet filters

• \(j \)th filter is band-pass with pass-band \([2^{j-1}, 1] \)

• similarly, scaling filters yield \(V_{J_0} \)

• Fig. 3: Haar & LA(8) scaling filters

• \(J_0 \)th filter is low-pass with pass-band \([0, 1] \)
Overview of FD Processes

• X_t called fractionally differenced (FD) process if it has a spectral density function (SDF) given by

$$S_X(f) = \frac{\sigma^2}{|2\sin(\pi f)|^{2\delta}},$$

where $\sigma^2 > 0$ and $-\infty < \delta < \infty$

• Fig. 4: for small f, have $S_X(f) \approx C/|f|^{2\delta}$; i.e., ‘$1/f$ type,’ ‘power law’ or ‘fractal’ process

• also called ARFIMA(0,δ,0) process

• special cases
 – stationary if $\delta < \frac{1}{2}$
 * white noise if $\delta = 0$
 * has ‘long memory’ if $0 < \delta < \frac{1}{2}$
 · autocorrelation sequence $s_{X,\tau} \approx C_s \tau^{-1+2\delta}$
 · quite similar to fractional Gaussian noise
 – has stationary increments if $\delta \geq \frac{1}{2}$
 * random walk if $\delta = 1$
 * like fractional Brownian motion if $\frac{1}{2} < \delta < \frac{3}{2}$
 * like $-\frac{5}{3}$ power law (Kolmogorov) if $\delta = \frac{5}{6}$
DWT of FD Processes

• Fig. 5: DWT of realization of FD process ($\delta = 0.4$)
• sample ACSs suggest random variables (RVs) in W_j are approximately uncorrelated
• ignoring ‘boundary’ coefficients, W_j is stationary
• Fig. 6: SDFs for W_j, $j = 1, 2, 3, 4$
 – quite close to white noise
 – remaining structure close to SDF for first or second order autoregressive process
• $W_j \& W_{j'}$, $j \neq j'$, approximately uncorrelated (can improve approximation by increasing L)
• DWT acts as a whitening transform (basis for wavelet-based maximum likelihood scheme)
• have $\nu^2_{X}(\tau_j) \equiv \text{var}\{\widetilde{W}_{j,t}\} \propto \tau_j^{2\delta-1}$ approximately
 – implies $\log(\nu^2_{X}(\tau_j)) \approx \zeta + (2\delta - 1) \log(\tau_j)$
 – $\nu^2_{X}(\tau_j)$ called wavelet variance (note: based on MODWT $\tilde{W}_{j,t}$ rather than DWT $W_{j,t}$)
 – basis for wavelet-based least squares scheme
ML Estimation for FD Processes: I

- suppose we are given U_0, \ldots, U_{N-1} such that
 \[U_t = T_t + X_t \]

 where $T_t \equiv \sum_{j=0}^{r} a_j t^j$ is polynomial trend & X_t is FD process

- width L wavelet filter has embedded differencing operation of order $L/2$

- if $\frac{L}{2} \geq r + 1$, reduces polynomial trend to 0

- can partition DWT coefficients as
 \[W = W_s + W_b + W_w \]

 where
 - W_s has scaling coefficients and 0s elsewhere
 - W_s has boundary-dependent wavelet coefficients
 - W_w has boundary-independent wavelet coefficients
ML Estimation for FD Processes: II

• since $U = \mathcal{W}^T W$, can write
 $$U = \mathcal{W}^T (W_s + W_b) + \mathcal{W}^T W_w \equiv \bar{T} + \bar{X}$$

• can use values in W_w to form likelihood:
 $$L(\delta, \sigma^2_\epsilon) \equiv \prod_{j=1}^{J_0} \prod_{t=1}^{N'_j} \frac{1}{(2\pi \sigma^2_j)^{1/2}} e^{-W_{j,t}^2 + L'_j - 1/(2\sigma^2_j)}$$

where
 $$\sigma^2_j \equiv \int_{-1/2}^{1/2} \mathcal{H}_j(f) \frac{\sigma^2_\epsilon}{|2\sin(\pi f)|^{2\delta}} df,$$

and $\mathcal{H}_j(f)$ is squared gain for $h_{j,l}$

• leads to maximum likelihood estimator $\hat{\delta}^{(ml)}$ for δ

• $\hat{\delta}^{(ml)}$ asymptotically normal with mean δ and
 $$\text{var} \{\hat{\delta}^{(ml)}\} = 2\left[\sum_{j=1}^{J_0} N'_j \gamma_j^2 - \frac{1}{N'} (\sum_{j=1}^{J_0} N'_j \gamma_j)^2 \right]^{-1},$$

where $N' \equiv \sum_{j=1}^{J_0} N'_j$ and

$$\gamma_j \equiv \frac{d\text{var} \{W_{j,t}\}}{d\delta} \left[\frac{4\sigma^2_\epsilon}{\text{var} \{W_{j,t}\}} \int_0^{1/2} \mathcal{H}_j(f) \frac{\log (2\sin(\pi f))}{[2\sin(\pi f)]^{2\delta}} df \right]$$

• works well in Monte Carlo simulations
LS Estimation for FD Processes: I

- define unbiased estimator of wavelet variance $\nu_X^2(\tau_j)$:
 \[
 \hat{\nu}_X^2(\tau_j) \equiv \frac{1}{M_j} \sum_{t=L_j-1}^{N-1} \tilde{W}_{j,t}^2, \quad \text{where } M_j \equiv N - L_j + 1
 \]

- $\hat{\nu}_X^2(\tau_j)$ is approximately distribution as $\nu_X^2(\tau_j)\chi_{\eta_j}^2/\eta_j$, where
 - $\chi_{\eta_j}^2$ is chi-square RV with η_j degrees of freedom
 - can approximate η_j by $\max\{M_j/2^j, 1\}$

- using $\log (\nu_X^2(\tau_j)) \approx \zeta + \beta \log (\tau_j)$ with $\beta \equiv 2\delta - 1$, can formulate regression model; with
 \[
 Y(\tau_j) \equiv \log (\hat{\nu}_X^2(\tau_j)) - \psi(\frac{\eta_j}{2}) + \log (\frac{\eta_j}{2}),
 \]
 have $Y(\tau_j) = \zeta + \beta \log (\tau_j) + e_j$, where
 \[
 e_j \equiv \log \left(\frac{\hat{\nu}_X^2(\tau_j)}{\nu_X^2(\tau_j)} \right) - \psi(\frac{\eta_j}{2}) + \log (\frac{\eta_j}{2})
 \]
 has distribution $\log (\chi_{\eta_j}^2) - \psi(\frac{\eta_j}{2}) - \log (2)$

- have $E\{e_j\} = 0$ and $\text{var} \{e_j\} = \psi'(\frac{\eta_j}{2})$, where $\psi'(\cdot)$ is trigamma function

- e_j approximately Gaussian if $\eta_j \geq 10$
LS Estimation for FD Processes: II

• weighted least squares (LS) estimator for β:

$$
\hat{\beta}^{(wls)} = \frac{\sum w_j \sum w_j \log (\tau_j) Y(\tau_j) - \sum w_j \log (\tau_j) \sum w_j Y(\tau_j)}{\sum w_j \sum w_j \log^2(\tau_j) - (\sum w_j \log (\tau_j))^2},
$$

where $w_j \equiv 1/\psi'(\eta_j^2)$

• have

$$
\text{var} \{ \hat{\delta}^{(wls)} \} = \frac{\sum w_j}{\sum w_j \sum w_j \log^2(\tau_j) - (\sum w_j \log (\tau_j))^2}
$$

• use $\delta = \frac{1}{2}(\beta + 1)$ to get $\hat{\delta}^{(wls)} \equiv \frac{1}{2}(\hat{\beta}^{(wls)} + 1)$ with

$$
\text{var} \{ \hat{\delta}^{(wls)} \} = \frac{1}{4} \text{var} \{ \hat{\beta}^{(wls)} \}
$$

• works well in Monte Carlo simulations
Analysis of ABL Data: I

• initial approach: divide into nonoverlapping blocks
 – each block has 10,000 points
 – blocks are contiguous
 – allows analysis out to $\tau_{10} = 9.37$ meters

• Fig. 7: wavelet variance estimates for ‘typical’ block
 – based upon LA(8) wavelet filter
 – single δ (i.e., power law) inadequate
 – will combine 3 adjacent scales via separate FD models

• Fig. 8, lower left-hand portion: scatter plots for $\log(\hat{\nu}_{X,b}^2(\tau_j))$
 – b is block index
 – $\log(\hat{\nu}_{X,b}^2(\tau_j))$ versus $\log(\hat{\nu}_{X,b}^2(\tau_k))$ for different j, k
 – lines shows expected pattern if σ^2 held fixed, but δ is changing across blocks
 – reasonable agreement at higher scales when $k = j \pm 1$ or $k = j \pm 2$
Analysis of ABL Data: II

- Fig. 8, upper right-hand portion: ‘slope differential’ plots
 - plot for \((j, j + 1)\) with \((k, k + 1)\) defined as
 \[
 \frac{\log (\hat{\nu}_X^2 X, b(\tau_{j+1})) - \log (\hat{\nu}_X^2 X, b(\tau_j))}{\log (\hat{\nu}_X^2 X, b(\tau_{k+1})) - \log (\hat{\nu}_X^2 X, b(\tau_k))} - 1 \text{ versus } b
 \]
 - above is zero if estimated slopes are identical
 - box plots assess significance of deviations from 0

- conclusion: reasonable to combine scales as suggested by ‘typical’ block

- Fig. 9: blocked WLS estimates of power law exponent \(\alpha \equiv -2\delta\)
 - scale \(\tau_4\) has periodic burst (artifact?)
 - scales \(\tau_5, \tau_6, \tau_7\) swing from \(\alpha = 0\) to \(-\frac{5}{3}\)
 - 95% confidence intervals say variations in \(\alpha\) are significant
Analysis of ABL Data: III

• Fig. 10: comparison of WLS estimates for scales τ_5, τ_6, τ_7 and $\tau_8, \tau_9, \tau_{10}$

 - two groups do not track each other

 - largest scales generally consistent with $-\frac{5}{3}$ power law, but show significant deviations at times

• Figs. 11–2: corresponding plots for ML estimates

 - very good agreement with WLS estimates (except for τ_1, τ_2, τ_3 – not surprising)

 - 95% confidence intervals similar to those for WLS (but now block dependent)
Future Work

• ‘instantaneous’ LS and ML estimates
 – designed to get away from block dependence
 – Fig. 13: use MODWT coefficients co-located across scales (one coefficient per scale)
 – easy to modify LS and ML estimators
 – Fig. 14: preliminary LS results for scales τ_5, τ_6, τ_7
 * individual estimates very noisy, so have smoothed
 * good agreement with blocked estimates
 – need to study distributional properties of instantaneous estimates
 – need to study ways to denoise instantaneous estimates (waveshrink)

• need to study ways to model evolution of α

• need to study ways of combining multiscale models
Papers, Thesis and Book

http://www.staff.washington.edu/dbp/wmtsa.html