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Abstract

Robust navigation for mobile robots over long distances requires an accurate method for tracking the robot position in the
environment. Promising techniques for position estimation by determining the camera ego-motion from monocular or stereo
sequences have been previously described. However, long-distance navigation requires both a high level of robustness and a
low rate of error growth. In this paper, we describe a methodology for long-distance rover navigation that meets these goals
using robust estimation of ego-motion. The basic method is a maximum-likelihood ego-motion algorithm that models the
error in stereo matching as a normal distribution elongated along the (parallel) camera viewing axes. Several mechanisms are
described for improving navigation robustness in the context of this methodology. In addition, we show that a system based on
only camera ego-motion estimates will accumulate errors with super-linear growth in the distance traveled, owing to increasing
orientation errors. When an absolute orientation sensor is incorporated, the error growth can be reduced to a linear function of
the distance traveled. We have tested these techniques using both extensive simulation and hundreds of real rover images and
have achieved a low, linear rate of error growth. This method has been implemented to run on-board a prototype Mars rover.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The most common method for estimating the posi-
tion of mobile robots is through dead-reckoning. This
technique integrates the velocity history of the robot,
using the estimated speed and direction of travel, to
determine the change in position from the starting lo-
cation. Unfortunately, pure dead-reckoning methods
are prone to errors that grow without bound over time,
so some additional method is necessary to periodi-
cally update the robot position. This can be performed
through global localization of the robot (see, for exam-
ple, [1,7,10,16,19]). In this paper, we concentrate on a
different method called ego-motion (or visual odom-
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etry). Like dead-reckoning, this method accumulates
error as the robot moves, so that some periodic update
is beneficial. However, for most sensor combinations,
ego-motion estimation yields considerably more accu-
rate position estimation.

Visual motion estimation can be viewed as a mid-
dle ground between dead-reckoning and global local-
ization. We demonstrate that, when combined with an
orientation sensor, this technique is able to reduce the
expected growth rate of the error to a small fraction
of the distance traveled. While the use of such an ori-
entation sensor can also be used with dead-reckoning
to achieve (on average) a linear rate of error growth,
the overall rate of growth is typically much greater
with this method. This technique is promising for im-
proving the position estimation capability of a mobile
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robot owing to this reduced error in comparison to
dead-reckoning.

With visual motion estimation, landmarks are
tracked in an image sequence and the change in cam-
era position is determined for each frame by estimat-
ing the relative movement of the tracked landmarks
in the camera frame of reference. Several methods for
the computation of ego-motion have been proposed
using monocular sequences[2,3,8,9,20,24,26]and
stereo sequences[11–13,22,25,27]. However, in order
for these techniques to be effective in long-distance
navigation of a robot, the techniques must be highly
robust to problems such as poor odometry, inaccurate
feature matching, and outliers.

Our goal is to perform robust and accurate rover
navigation autonomously over long distances in order
to reach terrain landmarks with known locations, but
that are not within sight. This is motivated by the high
desirability for Mars rovers to autonomously navigate
to science targets observed in orbital or descent im-
agery. Since communication with such rovers usually
occurs only once per day, navigation errors can result
in the loss of an entire day of scientific activity. On the
other hand, if localization errors during traverses can
be minimized, additional scientific activity is allowed.

We have developed a method that is capable of
achieving accurate navigation over long distances us-
ing incremental stereo ego-motion. The use of stereo
information in this method has been crucial in both
outlier rejection and reducing random errors that occur
due to feature localization and drift in each frame. We
use a maximum-likelihood formulation of motion esti-
mation[13,14]that models error in the landmark posi-
tions more accurately than a least-squares formulation,
and, thus, yields more accurate results. Robustness is-
sues are further addressed through optimized feature
selection, improved motion prediction, and multiple
outlier rejection mechanisms. We show that the reuse
of landmarks between frames significantly improves
the overall accuracy since the errors at successive es-
timation steps become negatively correlated.

For long-range navigation, it is important to con-
sider the rate of error growth as the robot travels. Even
a robust system based solely on ego-motion will ac-
cumulate errors that grow super-linearly (on average)
with the distance traveled, if the absolute orientation is
not corrected periodically. However, the incorporation
of an orientation sensor, such as a compass or sun sen-

sor [21,23], can greatly improve the long-range per-
formance, reducing the expected accumulated error to
a linear function of the distance traveled.

We have constructed a simulator in order to evaluate
changes in the ego-motion methodology with respect
to navigation performance. The simulator indicates
that, with our improvements, ego-motion performance
with error below 0.5% of the distance traveled is po-
tentially feasible. We have further evaluated the ro-
bustness of these techniques using real rover images
captured in rocky terrain, similar to the terrain that a
rover would encounter on Mars. Experiments on hun-
dreds of real images have achieved errors of slightly
above 1% of the distance traveled.

An alternative to the method that we present here
is the SLAM (simultaneous localization and mapping)
methodology[4,5]. While both methods detect land-
marks in order to update the position estimate of a
mobile robot, the methods are somewhat different. In
contrast to the SLAM method, we do not maintain
a map of the environment. Landmark identification
is performed in our method by matching image fea-
tures within stereo pairs and between successive stereo
pairs, making this task simple and efficient. Hundreds
of landmarks can be identified at each position of the
robot with this technique.

2. Motion estimation

Our motion estimation method is based upon
the maximum-likelihood ego-motion formulation of
Matthies and Shafer[13,14]. This method determines
the observer motion between two (or more) pairs of
stereo images captured by calibrated cameras. The
basic elements of the method are as follows:

• Feature selection: The first step is to select land-
marks for which the 3D position can be precisely
measured in successive stereo pairs. The initial land-
marks are selected by finding easily trackable fea-
tures in the left image of the first stereo pair. We
select the features using a variation of the Förstner
interest operator[6], with an additional constraint
such that no two features that are selected have a
pairwise distance that is below a selected threshold.

• Stereo matching (1): An estimate of the 3D po-
sition of the landmarks is obtained by perform-
ing stereo matching in the initial stereo pair. This
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procedure searches the right image of the stereo
to find the corresponding location for each of the
selected landmarks. A multi-resolution pyramid is
used to for efficiency and the best match is selected
using normalized correlation. Triangulation is then
performed using the known relative position be-
tween the cameras to determine the position of the
landmark with respect to the camera frame. This
step also provides a covariance matrix that models
the error in the position estimate.

• Feature tracking: Landmarks are located in subse-
quent stereo pairs using a method similar to the
search performed in stereo matching. However, in
this case the relative position between the cameras
is not known precisely. This has two implications.
First, there is more uncertainty in the match loca-
tion. Second, the match is not constrained to lie on a

Fig. 1. Steps performed for motion estimation.

one-dimensional epipolar line. Together these make
the search for correct match more time-consuming
than stereo matching and more likely to fail. We use
prior knowledge of the approximate robot motion
to select the search space for the feature tracking.

• Stereo matching (2): A second stereo matching step
is performed to estimate the 3D positions of the
landmarks with respect to the new camera frame. As
in the previous steps, this uses a correlation-based
search and triangulation is performed to estimate
the position.

• Motion estimation: Motion estimation is performed
using Gaussian error distributions for the landmark
positions [13]. This yields better robustness than
weighted least-squares minimization, which im-
plies a rotationally symmetric error distribution.
Maximum-likelihood estimation of the new robot
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position requires an iterative optimization. How-
ever, convergence is fast and this step requires neg-
ligible computation time compared to the previous
steps.

These steps are performed for each pair of consecu-
tive stereo frames, retaining the same set of landmarks,
but replenishing those that were not found or dis-
carded. The overall motion estimate is determined as
the combination of motions from each pair of frames.
Fig. 1 shows the steps in the process to estimate the
motion between two frames.

3. Maximum-likelihood ego-motion

Given the noisy landmark positions from stereo
data, we use a maximum-likelihood formulation for
motion estimation. An early version of this method
was given in[13]. Further details can be found in[14].

Let Lb andLa be 3× n matrices of then observed
landmark positions before and after a robot motion.
The three-dimensional position of each landmark is es-
timated using stereo triangulation. For each landmark
we have

La
i = RLb

i + T + ei, (1)

whereR andT are the rotation and translation of the
robot ande combines the errors in the observed posi-
tions of the landmarks at both locations. Matthies and
Shafer[13] has found that stereo errors are well ap-
proximated by a two-dimensional Gaussian distribu-
tion with the major axis aligned with the camera axis.
We will assume, for the moment, that the pre-move
landmark positions are errorless and the post-move
landmark positions are corrupted by Gaussian noise.
In this case, the joint conditional probability density
of the observed post-move landmark positions, given
R andT , is Gaussian:

f(La
1, . . . , La

n|R, T) ∝ e−(1/2)
∑n

i=0 rT
i Wiri , (2)

where ri = La
i − RLb

i − T and Wi is the inverse
covariance matrix ofei. The maximum-likelihood
estimate forR and T is given by minimizing the
exponent

∑n
i=0 rT

i Wiri. Note that this reduces to the
least-squares solution if we letWi = wiI.

Solving for the maximum-likelihood motion esti-
mate is a nonlinear minimization problem, which we

solve through linearization and iteration. We linearize
the problem by taking the first-order expansion with
respect to the rotation angles. LetΘ0 be the initial
angle estimates andR0 be the corresponding rotation
matrix. The first-order expansion is

La
i ≈ R0L

b
i + Ji(Θ − Θ0) + T + ei, (3)

whereJi is the Jacobian for theith landmark andei is
a Gaussian noise vector with covarianceΣi = Σa

i +
R0Σ

b
i R

T
0.

We can now determine a maximum-likelihood es-
timate forΘ andT usingri = La

i − R0L
b
i − Ji(Θ −

Θ0) − T andWi = (Σa
i + R0Σ

b
i R

T
0)−1. Differentiat-

ing the objective function with respect toΘ andT and
setting the derivatives to zero yields[

n∑
i=0

HT
i WiHi

] [
Θ

T

]
=

[
n∑

i=0

HT
i WiLi

]
, (4)

whereHi = [JiI] andLi = La
i − R0L

b
i + JiΘ0. The

covariance matrix is given by

Σ =
[∑

i

HT
i WiHi

]−1

. (5)

After solving (4), the new motion estimate is used as
an initial estimate for the next step and the process is
iterated until convergence. Further details, and a tech-
nique to estimate onlyΘ withoutT , so that estimation
of T can be removed from the iteration, can be found
in [14].

4. Simulator experiments

One of the goals of our work has been to study the
long-range performance of ego-motion techniques un-
der controlled conditions. To this end, we have devel-
oped a simulator that tracks randomly generated land-
marks for motion estimation. The initial landmarks
are generated by selecting random image locations in
the left image of the first (pre-move) stereo pair. The
positions of the landmarks are backprojected into 3D
using a random (uniformly distributed) height. Each
landmark is then reprojected into the right image of
the stereo pair, with Gaussian noise (σ = 0.3 pixels)
added in order to simulate feature matching error.
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Fig. 2. The ego-motion error varies as a function of the camera field-of-view.

A second (post-move) stereo pair is generated using
the same set of landmarks, but using camera models
translated and rotated to a new position (simulating
robot motion). The left image of the pair is generated
by projecting the landmarks according to the new cam-
era model and adding more Gaussian noise (σ = 0.5
pixels) in order to simulate the feature tracking error.
The new image features are again backprojected into
3D (with the same heights) and reprojected into the
right image of the post-move stereo pair with addi-
tional noise (σ = 0.3 pixels).

The incremental robot motion estimate is computed
using the maximum-likelihood ego-motion method de-
scribed above. Long-distance navigation is simulated
by chaining many of the incremental moves together.
At each step, the second set of landmark positions is
saved for use as the initial set in the next step and
new landmark positions are generated as above. When
landmarks move out of the robot field-of-view, they
are replenished with randomly positioned landmarks
within the field-of-view.

4.1. Optimal field-of-view

We have used the simulator to perform an exper-
iment determining the effect of changing the cam-
era field-of-view on the ego-motion performance. Our
expectation was that error in the ego-motion perfor-
mance would be better for smaller field-of-view cam-
era, if the other parameters remained the same, due
to the improved angular resolution of the camera. Of

course, at some point, this must break down due to
the field-of-view becoming too small to track the fea-
tures effectively.Fig. 2 shows the result of an experi-
ment where the camera field-of-view was varied from
15◦ to 90◦. The baseline of the stereo pair was main-
tained at 10 cm with a camera height of 1.4 m and a
downward tilt of 30◦. The rover moved 50 cm between
each ego-motion calculation. The total course length
was 500 m for this experiment and no orientation in-
formation from other sensors was incorporated. With
these parameters, the optimal camera field-of-view is
approximately 35◦. The optimal field-of-view changes
when other parameters of the system change, but not
by a large amount. When the rover movement was var-
ied between 30 and 70 cm between ego-motion cal-
culations, the optimal field-of-view remained between
30◦ and 40◦. Similar results were also obtained with
a varying baseline and camera elevation. Our conclu-
sion is that decreasing the field-of-view helps up to a
point, but when the field-of-view becomes less than
30◦ the improvement is reversed by other effects. In
particular, the limited field-of-view over which land-
marks can be tracked results in poor sensitivity with
respect to the orientation of the cameras.

Experiments with different distances between im-
age pairs over the same distance course indicated that
a step size of at least 50 cm may be desirable in or-
der to limit the number of steps that introduce error.
However, these experiments do not take into account
the increased difficulty of tracking the features over
longer distances, so it is likely that these experiments
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significantly overestimate the optimal distance be-
tween image pairs. Further testing using real images
is expected to resolve this issue.

4.2. Long-range error growth

Since we are interested in long-range navigation
for Mars rovers, we have performed experiments ex-
amining the error growth of the stereo ego-motion
techniques by applying them to a long sequence of
simulated data. Our goal here is to understand the
asymptotic growth of the error over long distances.

We performed an experiment with a 500 m traverse.
Ego-motion estimates were computed every 50 cm us-
ing cameras with a 45◦ field-of-view and 512× 480
pixels (corresponding to the values on our research
prototype rover).Fig. 3 shows the error growth in the
robot position for this experiment. It can be observed
that the growth in the error is greater than linear in
the distance traveled. The explanation for this is that
the expected error in the orientation parameters grows
approximately proportional to the square root of the
distance traveled (since the overall variance is the sum
of the individual variances). The overall position error
grows as the sum of two terms. First, the individual po-
sition errors contribute a term that is expected to grow
with the square root of the distance traveled. Second,

Fig. 3. Expected position error as a function of distance traveled.

the accumulating orientation errors contribute a term
that grows with the integral of the orientation error.
We, thus, expect a super-linear contribution from this
term, which has O(d3/2) asymptotic growth, whered
is the distance traveled. The contribution from the ori-
entation error dominates the overall position error for
long-range navigation.

In order to eliminate the super-linear error growth,
we have examined the use of an absolute orientation
sensor to provide periodic updates to the orientation
estimate. For example, accelerometers can be used to
provide roll and pitch information, while a compass,
sun sensor, or even a panoramic camera could be used
to determine the robot yaw. We have simulated such
sensors as providing periodic orientation updates with
Gaussian noise having zero mean and 1◦ standard de-
viation. Fig. 3 shows that this results in linear error
growth in the distance traveled when the orientation
updates are used and, in general, the growth is much
slower than when only the ego-motion estimates are
used. In this experiment, the simulations indicate that
error less than 1% of the distance traveled is achiev-
able with the error variances described above.

From these experiments, we conclude that an abso-
lute orientation sensor is critical for navigation over
long distances, unless some other means is used to pe-
riodically update the robot position. If no orientation
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sensor is used, the robot may navigate safely over short
distances. However, over long distances the increasing
orientation errors will build until the position estimate
is useless.

5. Robust estimation

In order to achieve accurate navigation over long
distances, errors in the landmark position estimation
and matching process must have a very small effect
on each computed motion estimate. Landmarks must
be chosen such that they are easy to track and yield
little stereo error. Tracking must be performed such
that mismatches are rare. When mismatches occur,
there must be mechanisms for detecting and discarding
them. We describe techniques for performing these
steps here, while managing the overall error buildup
over time and dealing with camera roll as the robot
moves.

5.1. Optimized feature selection

Intuitively, one would expect for errors in stereo
matching to produce larger errors in the motion esti-
mate than errors in the landmark tracking. (Here we
refer to the subpixel localization errors rather than

Fig. 4. Comparison of the effect of variation in stereo correlation error versus tracking correlation error.

mismatches.) The reason for this is that stereo error
produces a larger effect in the estimation of each land-
mark position than error in feature tracking. A stereo
mismatch by one pixel can yield a large change in the
estimated position of the landmark, while a feature
tracking error of one pixel usually results in a small
change in the estimated position.

Our simulations have verified this effect.Fig. 4
shows the variation in the motion error over long dis-
tances as the stereo and feature tracking errors vary.
For each plot, the error standard deviation for one of
the matching steps was held constant at 0.3 pixels,
while the other was varied. It can be observed that the
navigation error varies much faster as the stereo error
is changed than as the tracking error is changed.

While it is important to minimize both the stereo er-
ror and the tracking error, we conclude that navigation
error is improved by performing landmark selection
such that the localization precision along thex-axis
has more weight than localization precision along the
y-axis, since error in they-direction has a lesser effect
on the stereo error.

This has been implemented using a variation of the
Förstner interest operator[6]. A feature is selected if
the covariance ellipse of the feature localization is not
highly elliptical, the precision of the feature localiza-
tion is strong (with higher weighting on the horizontal
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precision), and there is no better feature within some
bounded distance.

Further improvements can be achieved through the
use of feature tracking measure that is more robust
than the SSD measure[15]. However, we have not,
yet, incorporated this measure into our robot imple-
mentation.

5.2. Improved feature tracking

In many environments, it is common for the land-
marks that are selected to look somewhat similar to
each other and other image locations. If a large search
space is necessary for each feature, incorrect matches
occur frequently, since the difference in the appear-
ance of the landmarks after the camera motion may be
greater than the difference in appearance between the
landmark and other image locations. For this reason,
it is important to limit the search space over which we
search for landmarks. Of course, we cannot limit the
search space to be so small that it does not contain the
correct match.

An a priori estimate of each landmark position is
obtained using the robot odometry estimate. However,
errors in the odometry incur the need for a large search
window. In order to decrease the size of this search
window, we estimate the robot pitch and yaw errors
by first detecting a landmark near the top of the im-
age (and thus relatively far away for our applications)
using a large template window. In this case, we use
a large search window, but since the landmark is also
large, we are able to avoid mismatches in the image.
After correcting the robot pitch and yaw estimates
such that the initial landmark match is correct, we can
reduce the search windows for the later correlation
steps, thereby reducing the chance of a false positive.

Within the reduced search windows, our ex-
periments have indicated that correlation using a
two-resolution pyramid with decimation by a factor of
4 provides the best combination of speed and tracking
performance.

5.3. Outlier rejection

We use several methods to reject outliers in the mo-
tion estimation process. Initially, matches in both the
stereo matching and feature tracking steps are elimi-
nated if the correlation score is too low. This helps to

filter out cases where a landmark is not present in the
new image and cases where the change in appearance
is so large that correct matching is not possible.

For each stereo match, the rays from the cameras
through the image features are computed to determine
if they are consistent. The consistency is measured by
the distance between the rays at the location of small-
est separation. (If there was no error, the rays would
intersect.) If this gap is not in front of the cameras,
or if the projection of the gap into the image is larger
than a pixel or two, the match can be rejected, since
it is not geometrically feasible.

After all of the matches have been found and tracked
in both stereo pairs, a rigidity test is applied to pre-
vent gross errors. Here, we use a constraint that the
landmarks must be stationary. If a landmark moves
between stereo frames, the landmark is not useful for
determining the robot motion. This test repeatedly re-
jects the landmark that appears to have moved the
most, by examining the pairwise distances between the
landmarks before and after the robot motion. Land-
marks are rejected until all remaining deviations are
small enough to be considered noise.

Finally, outlier rejection is performed within the
maximum-likelihood motion estimation procedure.
After computing a motion estimate, the residual er-
ror for each landmark is determined. Once again,
the worst matching landmarks are rejected if they
have a residual greater than some threshold and the
estimation is continued.

5.4. Multi-frame tracking

Matthies[14] has shown that the errors between suc-
cessive motions are negatively correlated if the same
landmarks are tracked through the images. We thus
expect to have lower error when the same landmarks
are tracked, rather than selecting new landmarks at
each step. Of course, some landmarks must be replen-
ished at each step, since some will move out of the
field-of-view and some will be rejected as outliers.
Our simulator experiments indicate that this effect is
significant, even when there is only partial overlap be-
tween the landmark sets. The experiments showed a
27.7% reduction in navigation error when multi-frame
tracking is used, rather than considering each pair of
frames separately. This effect is thus useful in main-
taining accurate navigation over long distances.
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5.5. Camera roll

Camera roll (rotation about the viewing axis) due
to traversing rough terrain is a significant problem for
robots that operate outdoors. While pitch and yaw are
reasonably approximated by translation of the features
in the image, roll causes the features to be rotated
and makes tracking significantly more difficult. Our
experiments indicate that correlation scores degrade
approximately linearly with the camera roll. In most
terrains, camera roll of less than 10◦ can be tolerated
without difficulty to the feature tracking.

Clearly, a robust motion estimation system for out-
door navigation must consider the effects of camera
roll. The simplest solution to this problem is to en-
sure that image pairs are captured frequently enough
that the robot does not roll by more than 10◦ between
frames. For some systems, this solution is adequate.
An alternative, for cases where large amounts of cam-
era roll are possible, is the use of an orientation sen-
sor, such as a gyro or accelerometer. If the approxi-
mate roll of the camera is known, then the correlation
window for each landmark can be rotated to the ap-
propriate orientation for tracking.

6. Results

These techniques have been tested on hundreds of
real stereo pairs in outdoor terrain with the robot un-
dergoing six degree-of-freedom motion.Fig. 5 shows
one complete cycle of the motion estimation process
for a simple example of forward motion. Landmarks
were selected automatically in the left image of the
initial stereo pair. The selected landmarks appear to
be well distributed in the area of the image expected
to be seen after movement, although relatively few
landmarks are selected close to the robot. The match-
ing locations were then detected in the correspond-
ing right image using stereo matching. Few, if any, of
landmarks were discarded at this step through exam-
ination of the correlation score and the gap between
the rays from the cameras. Next, the locations of the
landmarks were predicted in the next image of the
sequence. This step used an estimate of the camera
motion and the estimated positions of the landmarks
(from the stereo matching) in the prediction of the new
image locations.

After correcting for pitch and yaw error, the actual
locations of the landmarks were detected in the left
and right images of the new stereo pair using the pre-
diction positions to limit the search area for each land-
mark. Several landmarks were eliminated at this stage
using the rigidity constraint. The remaining landmarks
were used to determine the motion of the robot us-
ing the maximum-likelihood method described above.
Finally, the landmark set was reduced by eliminating
those features that were expected to move out of the
field-of-view in the next step and replenished with new
landmarks.

Fig. 6 shows landmark tracking for six consecutive
frames of forward motion in rocky terrain. (Fig. 5cor-
responds to the third step in this sequence.) Despite
errors in the nominal camera movements and features
that occur on occluding boundaries (making them dif-
ficult to track), it can be observed that the final track-
ing is highly robust, with no outliers in the tracking
process. For this data set, the overall error was 1.3%
of the distance traveled.

In order to test the performance of these techniques
on an extended sequence, we have applied them to
images from a rover traverse consisting of 210 stereo
pairs (among others). This traverse was performed
with a small rover and a wide field-of-view, so the
cameras were close to the ground and there was con-
siderable distortion in the appearance of close-range
locations.Fig. 7 shows an example of consecutive
stereo pairs with 320× 240 resolution. The rover tra-
versed approximately 20 m, taking images about every
10 cm. For cameras with a higher viewpoint and nar-
rower field-of-view, the techniques could be executed
less frequently. However, for this rover, small motions
between stereo pairs are necessary to track the fore-
ground landmarks.Fig. 8 shows the results for this
traverse. It can be observed that the ego-motion track
closely follows the ground-truth from GPS, while the
odometry estimate diverges from the true position. The
error in this run was approximately 1.2%.

7. Summary

We have examined techniques to perform stereo
ego-motion robustly for long-distance robot naviga-
tion. Techniques for performing robust feature se-
lection and tracking with outlier rejection have been
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Fig. 5. One cycle of robust feature matching: (a) landmarks selected; (b) landmarks matched in right image; (c) predicted positions in next
image; (d) matched positions in left image; (e) matched positions in right image; (f) landmarks after replenishment.
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Fig. 6. Several cycles of robust feature matching for ego-motion. The squares indicate the tracked landmarks and the lines show the motion
of the landmark from the previous frame.
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Fig. 7. Consecutive stereo pairs from a rover traverse sequence.



C.F. Olson et al. / Robotics and Autonomous Systems 43 (2003) 215–229 227

Fig. 8. An extended run consisting of 210 stereo pairs. The solid line is the GPS position of the rover. The dotted line is the ego-motion
estimate. The dashed line is the odometry estimate.

developed in order to ensure accurate motion estima-
tion at each step. An important result of our investiga-
tion is that an absolute orientation sensor is necessary
to perform accurate navigation over long distances,
since estimation based on ego-motion alone has error
that grows super-linearly with the distance traveled.
The use of an orientation sensor reduces the error
growth to linear in the distance traveled and results in
a much lower error in practice. The use of stereo data
was also critical to elimination of outliers and accurate
motion estimation. We believe that this combination of
techniques results in a method with greater robustness
than previous techniques and that is capable of accu-
rate motion estimation for long-distance navigation.
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