1. Problem 7.1 in your textbook.

2. Problem 7.7 in your textbook.

3. Problem 7.8 in your textbook.

4. Problem 7.10 in your textbook.

5. Problem 7.11 in your textbook.

6. A battery that provides an EMF, \mathcal{E}, has an internal resistance, r, such that the voltage, V, produced by the battery is given by $V = \mathcal{E} - Ir$, where I is the current being produced by the battery. (This is true for batteries and power supplies in general.) If we connect an external resistor, R, across the battery, what value should R have to produce the greatest possible power dissipation in the resistor, R? (ie the most efficient transfer of energy from the battery to R)