1. **Instrument Review**
 - Pitot tube
 - Pressure measurement (U-tube, magnehelic gauge, digital micromanometer)
 - Hot wire anemometer
 - Tachometer

2. **Calculations Review**
 \[Q = V \cdot A \]
 \[TP = SP + VP \]

3. **Lab Exercises**
 A. Enclosing hood
 - Measure the face velocity for the hood.
 - What is the \(Q \) for the hood? ________
 - What is the hood static pressure? ________
 - What is the coefficient of entry for the hood?
 - Is this a compound hood?
 - What happens when you remove the grill in the hood?
 - How is data interpreted? What would results be compared to?

 B. Capture hood
 - Determine the capture velocity for a plain open duct hood at distances of \(x = d/2 \) and \(x = d \)
 - Measure the face velocity for the hood.
 - What is the \(Q \) for the hood? ________
 - Measure the hood static pressure? ________
 - What is the coefficient of entry for the hood?
 - Can you measure the vena contracta region?
 - How does the \(C_e \) you determined compare to a value from a text book?
 - What simple baffle modification would allow for greater capture velocity?
 Try your idea and measure the result.

 C. System modeling & measurement
 - Measure the velocity static and total pressure, in each branch by a pitot traverse.
 - Measure the velocity static and total pressure in the main duct after the junction by a pitot traverse.
- Compute the average velocity in each section.

Unequal increments, equal areas
- Does the total Q add up? Does the TP add up?
- What happens if you partially close off the blast gate?
- How is the air flow redistributed in the branches as you close the blast gate?
- Measure the static and total pressure at 3 points in the main duct.
- Estimate the loss coefficient for this pipe? Is your measurement reliable?
- Make a table to summarize the VP, SP and TP at different points in the system. Graph the system.

- Homework assignment: take your measurements and make a model for this system in the spreadsheet provided on the web site. Compare your measurements with the predictions.

Extra:
Experiment with different velocity measuring devices, the Alnor and the hot wire meter.