
1

Introduction to Analyses of Adaptive 
Stochastic Search Methods for Global 

Optimization

Zelda B. Zabinsky

Industrial Engineering Program
University of Washington, Seattle, WA

September 2001



2

Overview
• Practical global optimization problems in 

engineering design
• Theoretical performance of stochastic 

adaptive search methods
• Algorithms based on Hit-and-Run to 

approximate theoretical performance
• Engineering design problems and 

manufacturing tolerances
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Problems in Engineering Design
• Need to consider manufacturing and cost considerations early in 

the design process, because a large percentage of cost is locked in 
at preliminary design

• Use optimization in preliminary design to quantify tradeoffs

[NASA Contractor Report 4732, April 1997]
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Composite Structures

• Composite laminates
– fibers in a resin, plies bonded together
– e.g. graphite epoxy

• Attractive for light weight structures
– high strength- and stiffness-to-weight ratios
– can design the material as well as the structure
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Aircraft Panels
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Hat Stiffened Panel



7

Decision Variables

θ1, skin 
θ2, skin 
θ3, skin 

Angle of the 
stiffener web

θ1, stiffener 
θ2, stiffner
θ3, stiffener 

Width of the  
stiffener flange

Width of the stiffener cap

Height of the  
stiffener web

Stiffener  
spacing



8

Sandwich Panel
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I-Beams
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Fiber Angle Decision Variables

θ2  θ1θ2 θ1

θ1

θ3 θ3

θ4 θ4

θ3 θ3

θ4 θ4

tg
T
θ1

θ1

θ1

Manufacturing Considerations:
plies extend through both flanges 
and the webs, and may cause an 
abrupt change of fiber angles in 
flanges
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Global Optimization

• Maximize performance, which could be 
margins of safety associated with strain, 
stiffness, strength, and buckling analyses
– maximize fstiffness

– maximize min{fmargin of safety}

[Graesser, Zabinsky, Tuttle, Kim, Composite Structures 18,  1991]
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Stiffness of Laminate

• 4 ply symmetric laminate (θ1, θ2, θ2, θ1)

0 ο

0 ο

+90 ο +90 ο

−90 ο

θ1

θ2

fstiffness

criticalstiffness  -

θ 1

θ 2

θ 2

θ 1
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Beam Stiffness Function

90  090 0

90 90
 0  0

θ1 θ1
θ2 θ2

θ1 θ1

θ2 θ2

90 90
 0  0

Four ply symmetric beam
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Optimization Formulation of I-beam

  

max                                     axial beam stiffness

s.t.     torsional beam stiffness ≥  equivalent Al - beam torsional stiffness
        bending beam stiffnesses ≥  equivalent Al -beam bending stiffnesses
               longitudinal wall stiffness ≥  2 times transverse ply stiffness
                  transverse wall stiffness ≥  2 times transverse ply stiffness

                                     -900 ≤ fiber directions ≤ 900

[Savic, Tuttle, Zabinsky, Composite Structures 53,  2001]
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Hierarchical Multi-objective 
Formulation

• Minimize fweight
Maximize min{fmargin of safety}

• Subject to:
fmargin of safety > 0
-90 < θi < +90
θi takes on discrete values
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How can we solve…?

IDEAL Algorithm:
• optimizes any function quickly
• handles continuous and/or discrete variables
• is easy to implement and use
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Theoretical Performance of 
Stochastic Adaptive Search

• What kind of performance can we hope for?
• Global optimization problems are known to 

be NP-hard
• Sacrifice guarantee of optimality for speed 

in finding a “good” solution
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Two Simple Methods
• Grid Search:  Number of grid points is O((L/ε)n),

where L is the Lipschitz constant, n is the dimension, 
and ε is distance to the optimum

• Pure Random Search:  Expected number of points 
is O(1/p(y*+ε)), where p(y*+ε) is the probability of 
sampling within ε of the optimum y*

• Complexity of both is exponential in dimension
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Pure Adaptive Search (PAS)

• PAS:  chooses points uniformly distributed in 
improving level sets

f(x1,x2)
x2

x1

x2

x1
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Bounds on PAS
• PAS (continuous):

E[N] < 1 + ln (1/p(y*+ε) )
where p(y*+ε)  is the probability of sampling 
within ε of the global optimum y*
• PAS (finite discrete):

E[N] < 1 + ln (1/p1 )
where p1 is the probability of sampling the 
global optimum
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PAS

• Theoretically, PAS is LINEAR in dimension
• Theorem:  

For any global optimization problem in n dimensions, with 
Lipschitz constant at most L, and convex feasible region with 
diameter at most D,  the expected number of PAS points to 
get within ε of the global optimum is:

E[N(y*+ε)] < 1 + n  ln(LD / ε)

[Zabinsky and Smith, 1992]
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Finite PAS

• Analogous LINEARITY result
• Theorem:  

For an n-dimensional lattice {1, ... , k}n with distinct 
objective function values, the expected number of points, 
sampling uniformly, to first reach the global optimum is:

E[N(y*)] < 2 + n  ln ( k )

[Zabinsky, Wood, Steel and Baritompa, 1995]
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Power of Improvement: Combine 
PAS and PRS

• PAS is difficult to implement directly
• How much worse is the performance if we use PAS with 

probability p, and PRS with probability 1-p ?

State

0
2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12 14 16 18 20

p=0.0

p=0.25

p=0.5

p=0.75

p=1.0

[Zabinsky and Kristinsdottir, 1997]
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Hesitant Adaptive Search (HAS)
• What if we sample improving level sets with 

bettering probability b(y) ,  and “hesitate” with 
probability 1-b(y) ? 

dρ(t)
b(t) p(t)y* + ε

∞

∫E[N(y*+ε)] = 

[Bulger and Wood, 1998]

where ρ(t) is the underlying sampling distribution and 
p(t) is the probability of sampling t or better
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General HAS

• For a mixed discrete and continuous global 
optimization problem, the expected value of 
N(y*+ε) , the variance, and the complete 
distribution can be expressed using the 
sampling distribution ρ(t) and bettering 
probabilities b(y)

[Wood, Zabinsky, and Kristinsdottir, 2001]
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Backtracking Adaptive Search 
(BAS)

• What if we sometimes accept “worse” points, in 
order to move across a barrier, and reach the 
global optimum?

• Discrete BAS - use Markov chain analysis, 
(I-Q)-1e, to obtain expected number of iterations 
[Kristinsdottir, Zabinsky and Wood, to appear]

• Continuous BAS - define “worsening 
probability” and obtain an integral equation 
[Bulger et al., submitted]
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How can we implement PAS? 

• To obtain the linearity result, can we consistently 
generate uniformly distributed points in improving 
level sets?

• Hit-and-Run can generate asymptotically uniform 
points   [Smith, 1984]

X1

X2

X3
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• Use Hit-and-Run to generate approximately 
uniform points within improving level sets

• How long should each Hit-and-Run sequence be?
if very long (infinite) sequences, then points are 
approximately uniform, thus a linear number of long 
(infinite) sequences

(n)(    )
if very short (1) sequences, then is it efficient?

(?)(1)

Improving Hit-and-Run (IHR)

∞
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IHR

• IHR:  choose a random direction and a random point

f(x1,x2)
x2

x1

x2

x1
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Is IHR efficient in dimension?
• Theorem:  

For any elliptical program in n dimensions, the 
expected number of function evaluations for IHR 
is:  O(n5/2) [Zabinsky, Smith, McDonald, Romeijn, Kaufman, 1993]

f(x1,x2)

x2

x1
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Adaptive Search

• Can we relax PAS slightly and still retain 
linearity?  Yes!

• Adaptive Search:
– generate points over the whole domain using a 

Boltzmann distribution parameterized by 
temperature T, to achieve a probability of 1-α
of hitting the improving region 
[Romeijn and Smith, 1994]
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Sampling Distributions for PAS 
and Adaptive Search

PAS AS

T0=∞

T1
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Implement Adaptive Search
• Generate points in entire domain according to 

Boltzmann distribution, instead of in the 
improving level set

• Modify Hit-and-Run by adding a probabilistic 
Metropolis acceptance/rejection criterion to 
approximate the Boltzmann distribution
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Hide-and-Seek

• Add an acceptance probability with a 
temperature and a cooling schedule to the 
Hit-and-Run generator
– Given current point Xk, accept candidate point Wk with 

probability min{1, exp(f(Xk)-f(Wk))/T}
– Hit-and-Run with this Metropolis criterion as an 

acceptance probability with constant temperature 
converges to a Boltmann distribution with parameter T

[Romeijn and Smith, 1994]
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Cooling Schedules for Hide-and-Seek

• Hide-and-Seek will converge in probability, 
with almost any cooling schedule that 
drives temperature to zero

• Adaptive cooling schedule, based on a 
quadratic function and f*;

Tk+1 = 2(f*-Yk)/ χ2
1−α(n)

[Romeijn and Smith, 1994]
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Cooling Schedules for Hide-and-Seek

• Use a consistent estimator f’ of f*;
f’(X0, …, Xk) = Y(k) - (Y(k-1)-Y(k))/((1-q)-n/2 -1)
and adjust at every record value

• Geometric;  Tk+1 = constant* Tk
and adjust every NT iterations

• IHR; Tk+1 = 0
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Modifications to Direction Generator

• Modify the direction choice sampling 
distribution within Hit-and-Run
– HD:  hyperspherical directions

– CD:  coordinate directions [Berbee, et  al., 1987]

– Reflection Generator:  uses hyperspherical directions that 
bounce off boundary      [Romeijn, Zabinsky, Graesser, Neogi, 1999]

– Artifical Centering Hit-and-Run:  non-uniform direction that 
uses the Hessian information and optimizes the rate of 
convergence [Kaufman and Smith, 1998]
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Compare HD and CD Direction 
Generators

• Theoretical Comparison: 
– Use a Markov chain analysis to find the 

expected number of iterations

• Numerical Comparison:
– Computational results

[Kristinsdottir, 1997]
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Markov Chain Analysis

• Compare expected number of iterations 
until first reaching optimum, 

E[N(y*)]=(I-Q)-1e
• States are discrete points in domain

∗xxx L21

10000

p
p            

2,

1,

L

M

∗

∗

∗x

x
x

M

2

1
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Test on Discretized Quadratic Problem

• Minimize f(x1, x2) = x1
2 + x2

2

subject to x1, x2 in {-1,0,1}

2

2

2

2

1

1

1

1

0

x1

x2

-1

-1

0

0 1

1
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IHR - CD Generator
• Starting at (1,1), the expected number of 

iterations until first sampling optimum is
E[N(y*)] = 9.0

0,01,11,01,10,1  0,11,1  1,01,1 −−−−−−

100000000
06/26/1 6/1 6/106/100

6/106/4 0 0006/10
06/16/1 6/2 06/1006/1

6/100 0 6/46/1000
6/100 0 6/16/4000

06/10 0 6/106/26/16/1
6/1 06/1 0 0006/40

0006/1    06/16/16/16/2

0,0
1,1
1,0
1,1
0,1
0,1
1,1
1,0
1,1

−
−
−−

−

−
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IHR - HD Generator
• Starting at (1,1), the expected number of 

iterations until first sampling optimum is
E[N(y*)] = 10.4

0,01,11,01,10,1  0,11,1  1,01,1 −−−−−−

0 .446 0 .111 0 .055 0 .111 0 .049   0 . 055 0 .049 0 .039 0 .079
0 0 .703 0 0 .072 0 .072  0 0 .050 0 0 .102

0 .055 0 .111 0 .446 0 .049 0 .111  0 .039  0 .049 0 .055 0 .079
0 0 .072 0 0 .703 0 .050  0  0 .072 0 0 .102
0 0 .072 0 0 .050 0 .703  0  0 .072 0 0 .102

0 .055 0 .049 0 .039 0 .111 0 .049  0 .446  0 .111 0 .055 0 .079
0 0 .050 0 0 .072 0 .072  0  0 .703 0 0 .102

0 .039 0 .049 0 .055 0 .049 0 .111  0 .055  0 .111 0 .446 0 .079
0 0 0 0 0 0 0 0 10, 0

1, 1
1,0
1,1
0, 1
0, 1
1, 1
1, 0
1, 1

−
−
−−

−

−



43

Compare HD and CD Analytically and Empirically

• Discretized quadratic problem (20 runs each)

CD
Domain Dim # states Model

HD

Empirical Model Empirical

3 × 3

50
30
10

3
2

5× 5

11×11

51 × 51

101×101

50

30

10

3

2

3
3

3
3

3

50
30
10

3
2

50
30

10
3

2

50
30

10
3

2

50
30

10
3

2

50

30

10

3

2

5
5

5
5

5

50

30

10

3

2

11
11
11

11
11

50

30

10

3

2

51
51
51

51
51

50

30

10

3

2

101
101

101
101

101

−
−

−
17

9

−
−
−

27
15

−
−

−
61

33

−
−
−

−
153

−
−
−

−
−

763
334

84
20

12

1125
616
134

37
19

2512
1439

304
71

34

11799
6565

1370
315

129

24473
10844

2961
619

281

4330
1657

273
26

9

8824
3869

488
36

16

21651
8453
1343

104
32

∗∗
32487

5526
471

202

)11(

∗∗
44213

13422
944

438

)3(

−
−

−
32

10

−
−

−
55

19

−
−

−
77

47

−
−

−
−

228

−
−
−

−
−
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Compare HD and CD on a Global Problem

• Minimize f(x1, x2) 
subject to x1, x2 in {-1,0,1}

1

1

1

1

2

2

2

2

0

x1

x2

-1

-1

0

0 1

1

CD Generator Doesn’t Converge!

HD Generator:  12.7 iterations
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Try CD Generator with 
Acceptance Probability

• Add a constant probability p of accepting a 
non-improving point

0,01,11,01,10,1          0,1     1,11,01,1 −−−−−−

0,0
1,1
1,0
1,1

0,1
0,1
0,1

1,1
1,0
1,1

−
−
−−

−
−

−

6/1  0     06/6/16/)1(26/20  0  6/

6/1  0     006/16/40  0  0

ppp −+
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CD Generator Varying 
Acceptance Probability

• Expected number of iterations:
CD HD

Quadratic problem 9.0 10.4 
Global problem       +infinity 12.7

Acceptance probability
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Reflection Generator
• Modification of HD to reduce jamming 

when in a corner or close to a boundary
• If reflection generator gives

a well-defined transition
density, the algorithm will
converge w.p.1

[Romeijn, et al., 1999]
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Optimal Direction Choice

• Choose a non-uniform direction distribution 
that optimizes the rate of convergence of 
Hit-and-Run to its target distribution

• Best choice is based on knowing the 
Hessian at the optimum

• Artificial Centering Hit-and-Run is a 
heuristic adaptive direction choice rule 
based on this optimal choice
[Kaufman and Smith, 1998]
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Adapt Hit-and-Run to Discrete
• Modify Hit-and-Run generator to work in a 

mixed domain of continuous / discrete variables 
• Use a step function approach

[Romeijn, Zabinsky, Graesser, Neogi, 1999]
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Discretized Version

• When generating the next point, either round to the nearest 
discrete value, or use its value creating a step function

• Convergence with probability 1 to a broad class of 
problems

[Romeijn, Zabinsky, Graesser and Neogi, 1999]

• • • • •
• • • • •
• • • • •
• • • • •
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Does it work on engineering 
design problems?
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Applications to Aircraft Design
• Applied to the design of a crown panel

[Swanson, et al., 1991]

• Applied to the design of a keel panel
[Mabson, et al., 1994]

• Applied to the design of a window belt
[Metschan, et al., 1994]

• Applied to the design of a full barrel
[Neogi, 1997]

• Applied to the design of I-beams
[Savic, et al., 2001]
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Manufacturing Tolerances

• Manufacturing processes are not able to 
reproduce the optimal design exactly, and 
may have +δ tolerances

• The intended design may be feasible, but 
the actual design within +δ may fail

• We seek a near-optimal design with feasible 
+δ tolerances
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Illustrate Tolerance Box
• Optimization problem

minimize   f(x) = weight
s.t.  
gj(x) = margin of safety > 0

for   j=1,…,m

Optimum is x*, f(x*)
Tolerance box is
X = [x*i-δ, x*i+δ]

  Feasible
  region

 X

 f(x*)

 x1

 x2

 x*
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Find a Near-Optimal Feasible 
Tolerance Box

• Find a design 
with +δ
tolerances

• Tradeoffs 
between weight, 
margin of safety, 
and size of 
tolerances

  Feasible
  region

 x*  X

 f(x*)

 x1

 x2

 X

 X
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Methodology
• Use Improving Hit and Run algorithm to 

optimize (minimize weight)
• Use interval optimization to analyze 

feasibility of a tolerance box
• Iteratively:

– Raise the margin of safety
– Find an optimal solution
– Analyze feasibility of tolerance box

[Kristinsdottir, Zabinsky, Tuttle, Csendes, 1996]
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Multi-objective: weight, 
tolerances, and margin of safety

ms=0

ms=0
ms=0.1

ms=0.1
ms=0.2

ms=0.2

ms=0.3

ms=0.3f(x )
f(x )

f(x )

x 1

x2

x *

*
1

2

x1

x2
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Analyze Tolerance Box

δmin δmax δδmin δmax1

δδmin δmaxN

Iteration 0 Iteration 1

Iteration 2

.....

Iteration N

δmin δ maxδ2 δ 1 δ 2 δ 3

x~ x~

x~x~
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Analyze Tolerances: Check Box

• Interval checking routine:
– Can guarantee feasibility, may be overcautious

• IHR checking routine:
– Can guarantee infeasibility, may miss an 

infeasible point

• Hybrid algorithm:
– Combines IHR to quickly identify infeasibility, 

with interval optimization  which uses 
partitioning to guarantee feasibility
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Tradeoff Study
• Identify dominating designs
• Consider tradeoffs between weight, tolerances, 

and margin of safety

Weight (lb/in^2)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0.004 0.005 0.006 0.007 0.008 0.009

ms=0.1 ms=0.2 ms=0.3 ms=0.4 ms=0.5
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Summarize Manufacturing 
Tolerances

• Developed optimization methodology using 
interval methods and IHR to consider 
manufacturing tolerances during preliminary 
structural design

• Engineer can evaluate tradeoffs between 
weight, tolerances, and performance

• Engineer can select the appropriate design 
from a set of dominating designs


