Introduction to Analyses of Adaptive Stochastic Search Methods for Global Optimization

Zelda B. Zabinsky

Industrial Engineering Program University of Washington, Seattle, WA

September 2001

Overview

- Practical global optimization problems in engineering design
- Theoretical performance of stochastic adaptive search methods
- Algorithms based on Hit-and-Run to approximate theoretical performance
- Engineering design problems and manufacturing tolerances

Problems in Engineering Design

- Need to consider manufacturing and cost considerations early in the design process, because a large percentage of cost is locked in at preliminary design
- Use optimization in preliminary design to quantify tradeoffs

[NASA Contractor Report 4732, April 1997]

Composite Structures

- Composite laminates
 - fibers in a resin, plies bonded together
 - e.g. graphite epoxy
- Attractive for light weight structures
 - high strength- and stiffness-to-weight ratios
 - can design the *material* as well as the structure

Aircraft Panels

Hat Stiffened Panel

Decision Variables

Sandwich Panel

I-Beams

Fiber Angle Decision Variables

Manufacturing Considerations: plies extend through both flanges and the webs, and may cause an abrupt change of fiber angles in flanges

Global Optimization

- Maximize performance, which could be margins of safety associated with strain, stiffness, strength, and buckling analyses
 - maximize $f_{stiffness}$
 - maximize min{ $f_{margin of safety}$ }

[Graesser, Zabinsky, Tuttle, Kim, Composite Structures 18, 1991]

Stiffness of Laminate

• 4 ply symmetric laminate $(\theta_1, \theta_2, \theta_2, \theta_1)$

Beam Stiffness Function

Optimization Formulation of I-beam

max axial beam stiffness

S.t. torsional beam stiffness \geq equivalent Al - beam torsional stiffness bending beam stiffnesses \geq equivalent Al - beam bending stiffnesses longitudinal wall stiffness \geq 2 times transverse ply stiffness transverse wall stiffness \geq 2 times transverse ply stiffness $-90^0 \leq$ fiber directions $\leq 90^0$

[Savic, Tuttle, Zabinsky, Composite Structures 53, 2001]

Hierarchical Multi-objective Formulation

• Minimize Maximize

 f_{weight} min{ $f_{margin of safety}$ }

• Subject to:

$$\begin{split} & f_{margin \ of \ safety} \geq 0 \\ & -90 \leq \theta_i \leq +90 \\ & \theta_i \ takes \ on \ discrete \ values \end{split}$$

How can we solve...?

IDEAL Algorithm:

- optimizes any function quickly
- handles continuous and/or discrete variables
- is easy to implement and use

Theoretical Performance of Stochastic Adaptive Search

- What kind of performance can we hope for?
- Global optimization problems are known to be NP-hard
- Sacrifice guarantee of optimality for speed in finding a "good" solution

Two Simple Methods

- Grid Search: Number of grid points is O((L/e)ⁿ), where L is the Lipschitz constant, n is the dimension, and e is distance to the optimum
- Pure Random Search: Expected number of points is O(1/p(y*+e)), where p(y*+e) is the probability of sampling within e of the optimum y*
- Complexity of both is exponential in dimension

Pure Adaptive Search (PAS)

• PAS: chooses points uniformly distributed in improving level sets

 \mathbf{X}_1

Bounds on PAS

• PAS (continuous):

 $E[N] \leq 1 + \ln\left(1/p(y^* + \boldsymbol{e})\right)$

where $p(y^*+e)$ is the probability of sampling within e of the global optimum y^*

• PAS (finite discrete):

 $E[N] \le 1 + ln(1/p_1)$

where p_1 is the probability of sampling the global optimum

PAS

- Theoretically, PAS is LINEAR in dimension
- Theorem:

For any global optimization problem in n dimensions, with Lipschitz constant at most L, and convex feasible region with diameter at most D, the expected number of PAS points to get within e of the global optimum is:

$$E[N(y^*+\boldsymbol{e})] \leq 1 + n \ln(LD / \boldsymbol{e})$$

[Zabinsky and Smith, 1992]

Finite PAS

• Analogous LINEARITY result

• Theorem:

For an *n*-dimensional lattice $\{1, ..., k\}^n$ with distinct objective function values, the expected number of points, sampling uniformly, to first reach the global optimum is:

$$E[N(y^*)] \le 2 + n \ln(k)$$

[Zabinsky, Wood, Steel and Baritompa, 1995]

Power of Improvement: Combine PAS and PRS

- PAS is difficult to implement directly
- How much worse is the performance if we use PAS with probability *p*, and PRS with probability *1-p* ?

[Zabinsky and Kristinsdottir, 1997]

Hesitant Adaptive Search (HAS)

• What if we sample improving level sets with bettering probability *b*(*y*), and "hesitate" with probability *1-b*(*y*)?

$$E[N(y^*+\boldsymbol{e})] = \int_{y^*+\boldsymbol{e}} \frac{d\boldsymbol{r}(t)}{b(t)p(t)}$$

where $\mathbf{r}(t)$ is the underlying sampling distribution and p(t) is the probability of sampling t or better [Bulger and Wood, 1998]

General HAS

For a mixed discrete and continuous global optimization problem, the expected value of N(y*+e), the variance, and the complete distribution can be expressed using the sampling distribution r(t) and bettering probabilities b(y)

[Wood, Zabinsky, and Kristinsdottir, 2001]

Backtracking Adaptive Search (BAS)

- What if we sometimes accept "worse" points, in order to move across a barrier, and reach the global optimum?
- **Discrete BAS** use Markov chain analysis, (I-Q)⁻¹e, to obtain expected number of iterations [Kristinsdottir, Zabinsky and Wood, to appear]
- **Continuous BAS** define "worsening probability" and obtain an integral equation [Bulger et al., submitted]

How can we implement PAS?

- To obtain the linearity result, can we consistently generate uniformly distributed points in improving level sets?
- Hit-and-Run can generate asymptotically uniform

points [Smith, 1984]

Improving Hit-and-Run (IHR)

- Use Hit-and-Run to generate approximately uniform points within improving level sets
- How long should each Hit-and-Run sequence be? if very long (infinite) sequences, then points are approximately uniform, thus a linear number of long (infinite) sequences

 $(n)(\infty)$

if very short (1) sequences, then is it efficient?

(?)(1)

IHR

• IHR: choose a random direction and a random point

Is IHR efficient in dimension?

• Theorem:

For any elliptical program in *n* dimensions, the expected number of function evaluations for IHR is: $O(n^{5/2})$ [Zabinsky, Smith, McDonald, Romeijn, Kaufman, 1993]

Adaptive Search

- Can we relax PAS slightly and still retain linearity? Yes!
- Adaptive Search:
 - generate points over the whole domain using a Boltzmann distribution parameterized by temperature *T*, to achieve a probability of *1-a* of hitting the improving region [Romeijn and Smith, 1994]

Sampling Distributions for PAS and Adaptive Search

PAS

 $T_0 = \infty$ T_1

AS

Implement Adaptive Search

- Generate points in entire domain according to Boltzmann distribution, instead of in the improving level set
- Modify Hit-and-Run by adding a probabilistic Metropolis acceptance/rejection criterion to approximate the Boltzmann distribution

Hide-and-Seek

- Add an acceptance probability with a temperature and a cooling schedule to the Hit-and-Run generator
 - Given current point X_k , accept candidate point W_k with probability $min\{1, exp(f(X_k)-f(W_k))/T\}$
 - Hit-and-Run with this Metropolis criterion as an acceptance probability with constant temperature converges to a Boltmann distribution with parameter *T*

[Romeijn and Smith, 1994]

Cooling Schedules for Hide-and-Seek

- Hide-and-Seek will converge in probability, with almost any cooling schedule that drives temperature to zero
- Adaptive cooling schedule, based on a quadratic function and f*;

$$T_{k+1} = 2(f^* - Y_k) / c^2_{1-a}(n)$$

[Romeijn and Smith, 1994]

Cooling Schedules for Hide-and-Seek

- Use a consistent estimator f' of f*; $f'(X_0, ..., X_k) = Y_{(k)} - (Y_{(k-1)} - Y_{(k)})/((1-q)^{-n/2} - 1)$ and adjust at every record value
- Geometric; $T_{k+1} = constant * T_k$ and adjust every N_T iterations
- IHR; $T_{k+1} = 0$

Modifications to Direction Generator

- Modify the direction choice sampling distribution within Hit-and-Run
 - HD: hyperspherical directions
 - CD: coordinate directions [Berbee, et al., 1987]
 - Reflection Generator: uses hyperspherical directions that bounce off boundary [Romeijn, Zabinsky, Graesser, Neogi, 1999]
 - Artifical Centering Hit-and-Run: non-uniform direction that uses the Hessian information and optimizes the rate of convergence [Kaufman and Smith, 1998]

Compare HD and CD Direction Generators

- Theoretical Comparison:
 - Use a Markov chain analysis to find the expected number of iterations
- Numerical Comparison:
 - Computational results

[Kristinsdottir, 1997]

Markov Chain Analysis

- Compare expected number of iterations until first reaching optimum, $E[N(y^*)] = (I-Q)^{-1}e$
- States are discrete points in domain

Test on Discretized Quadratic Problem

• Minimize $f(x_1, x_2) = x_1^2 + x_2^2$ subject to x_1, x_2 in $\{-1, 0, 1\}$

IHR - CD Generator

 Starting at (1,1), the expected number of iterations until first sampling optimum is
 E[N(y*)] = 9.0

	-1,1	0,1	1,1	-1,0	1,0	-1,-1	0,-1	1,-1	0,0
-1,1	2 / 6	1 / 6	1/6	1 / 6	0	1 / 6	0	0	0
0,1	0	4 / 6	0	0	0	0	1/6	0	1 / 6
1,1	1/6	1 / 6	2 / 6	0	1 / 6	0	0	1 / 6	0
-1,0	0	0	0	4 / 6	1 / 6	0	0	0	1 / 6
1,0	0	0	0	1/6	4 / 6	0	0	0	1 / 6
-1,-1	1/6	0	0	1 / 6	0	2 / 6	1/6	1 / 6	0
0,-1	0	1 / 6	0	0	0	0	4 / 6	0	1 / 6
1,–1	0	0	1 / 6	0	1 / 6	1 / 6	1/6	2 / 6	0
0,0	0	0	0	0	0	0	0	0	1

IHR - HD Generator

 Starting at (1,1), the expected number of iterations until first sampling optimum is E[N(y*)] = 10.4

	- 1,1	0,1	1,1	-1,0	1,0	-1,-1	0,-1	1,-1	0,0
-1,1	0.446	0.111	0.055	0.111	0.049	0.055	0.049	0.039	0.079
0,1	0	0.703	0	0.072	0.072	0	0.050	0	0.102
1,1	0.055	0.111	0.446	0.049	0.111	0.039	0.049	0.055	0.079
-1,0	0	0.072	0	0.703	0.050	0	0.072	0	0.102
1,0	0	0.072	0	0.050	0.703	0	0.072	0	0.102
-1,-1	0.055	0.049	0.039	0.111	0.049	0.446	0.111	0.055	0.079
0,–1	0	0.050	0	0.072	0.072	0	0.703	0	0.102
1,—1	0.039	0.049	0.055	0.049	0.111	0.055	0.111	0.446	0.079
0,0	0	0	0	0	0	0	0	0	1

Compare HD and CD Analytically and Empirically

• Discretized quadratic problem (20 runs each)

				CD	Н	D
Domain	Dim	# states	Model	Empirical	Model	Empirical
3×3 5×5	2 3 10 30 50 2 3	3^{2} 3^{3} 3^{10} 3^{50} 5^{2} 5^{3}	9 17 - - - 15 27	12 20 84 334 763 19 37	10 32 - - - 19 55	9 26 273 1657 4330 16 36
	10 30 50	5^{10} 5^{30} 5^{50}		134 616 1125	- - - -	488 3869 8824
11×11	2 3 10 30 50	112 113 1110 1130 1150	55 61 - -	54 71 304 1439 2512	47 77 - - -	32 104 1343 8453 21651
51×51	2 3 10 30 50	$51^{2} \\ 51^{3} \\ 51^{10} \\ 51^{30} \\ 51^{50} $	153 - - - -	129 315 1370 6565 11799	228 	202 471 5526 ⁽¹⁾ 32487 **
101×101	2 3 10 30 50	$ \begin{array}{r} 101^2 \\ 101^3 \\ 101^{10} \\ 101^{30} \\ 101^{50} \end{array} $		281 619 2961 10844 24473		438 944 13422 ⁽³⁾ 44213 **

43

Compare HD and CD on a Global Problem

 Minimize f(x₁, x₂) subject to x₁, x₂ in {-1,0,1}

 \mathbf{X}_1

CD Generator Doesn't Converge!

HD Generator: 12.7 iterations

Try CD Generator with Acceptance Probability

• Add a constant probability *p* of accepting a non-improving point

	- 1,1	0,1	1,1	- 1,0		1,0	-1,-1	0, -1	1,-1	0,0
-1,1										
0,1										
1,1										
-1,0	0	0	0	4 / 6		1 /	6 0	0	0	1 / 6
-1,0	<i>p</i> / 6	0	0	2 / 6 + 2 (1 -	p)/6	1 /	6 <i>p</i> / 6	0	0	1 / 6
1,0										
-1,-1										
0,—1										
1,—1										
0,0										

CD Generator Varying Acceptance Probability

• Expected number of iterations:

Reflection Generator

- Modification of HD to reduce jamming when in a corner or close to a boundary
- If reflection generator gives a well-defined transition density, the algorithm will converge w.p.1

[Romeijn, et al., 1999]

Optimal Direction Choice

- Choose a non-uniform direction distribution that optimizes the rate of convergence of Hit-and-Run to its target distribution
- Best choice is based on knowing the Hessian at the optimum
- Artificial Centering Hit-and-Run is a heuristic adaptive direction choice rule based on this optimal choice [Kaufman and Smith, 1998]

Adapt Hit-and-Run to Discrete

- Modify Hit-and-Run generator to work in a mixed domain of continuous / discrete variables
- Use a step function approach

[Romeijn, Zabinsky, Graesser, Neogi, 1999]

Discretized Version

- When generating the next point, either round to the nearest discrete value, or use its value creating a step function
- Convergence with probability 1 to a broad class of problems

[Romeijn, Zabinsky, Graesser and Neogi, 1999]

Does it work on engineering design problems?

Applications to Aircraft Design

- Applied to the design of a crown panel [Swanson, et al., 1991]
- Applied to the design of a keel panel [Mabson, et al., 1994]
- Applied to the design of a window belt [Metschan, et al., 1994]
- Applied to the design of a full barrel [Neogi, 1997]
- Applied to the design of I-beams [Savic, et al., 2001]

Manufacturing Tolerances

- Manufacturing processes are not able to reproduce the optimal design exactly, and may have $\pm \delta$ tolerances
- The intended design may be feasible, but the actual design within $\pm \delta$ may fail
- We seek a near-optimal design with feasible $\pm \delta$ tolerances

Illustrate Tolerance Box

• Optimization problem

minimize f(x) = weights.t. $g_j(x) = margin of safety \ge 0$ for j=1,...,mOptimum is x^* , $f(x^*)$ Tolerance box is $X = [x^*_i - \delta, x^*_i + \delta]$

Find a Near-Optimal Feasible Tolerance Box

- Find a design with $\pm \delta$ tolerances
- Tradeoffs
 between weight, margin of safety, and size of tolerances

Methodology

- Use Improving Hit and Run algorithm to optimize (minimize weight)
- Use interval optimization to analyze feasibility of a tolerance box
- Iteratively:
 - Raise the margin of safety
 - Find an optimal solution
 - Analyze feasibility of tolerance box

[Kristinsdottir, Zabinsky, Tuttle, Csendes, 1996]

Multi-objective: weight, tolerances, and margin of safety

 \mathbf{x}_2

Analyze Tolerance Box

Analyze Tolerances: Check Box

- Interval checking routine:
 - Can guarantee feasibility, may be overcautious
- IHR checking routine:
 - Can guarantee infeasibility, may miss an infeasible point
- Hybrid algorithm:
 - Combines IHR to quickly identify infeasibility, with interval optimization which uses partitioning to guarantee feasibility

Tradeoff Study

- Identify dominating designs
- Consider tradeoffs between weight, tolerances, and margin of safety

Summarize Manufacturing Tolerances

- Developed optimization methodology using interval methods and IHR to consider manufacturing tolerances during preliminary structural design
- Engineer can evaluate tradeoffs between weight, tolerances, and performance
- Engineer can select the appropriate design from a set of dominating designs