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Abstract

This paper proposes using foreign exchange (FX) options with different strike

prices and maturities (“the term structure of volatility smiles”) to capture both FX

expectations and risks. Using daily options data for six major currency pairs, we

show that the cross section and term structure of options-implied standard deviation,

skewness and kurtosis consistently explain not only the conditional mean but also

the entire conditional distribution of subsequent currency excess returns for horizons

ranging from one week to twelve months. This robust empirical pattern is consistent

with a representative expected utility maximizing investor who, in addition to caring

about the mean and variance, also cares about the skewness and kurtosis of the return

distribution. We also find that exchange rate movements, which are notoriously difficult

to model empirically (“the exchange rate disconnect puzzle”), are in fact well-explained

by the term structures of forward premia and options-implied higher moments. Our

results suggest that the perennial problems faced by the empirical exchange rate

literature are most likely due to overly restrictive assumptions inherent in prevailing

testing methods, which fail to properly account for the forward-looking property of

exchange rates and potential skewness or excess kurtosis in the conditional distribution

of FX movements.
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1 Introduction

The exchange rate economics literature has over the years faced many empirical “puzzles”, or

anomalies that are hard “to explain on the basis of either sound economic theory or practical

thinking” Sarno (2005). As an example, although theory predicts that nominal exchange

rates should depend on current and expected future macroeconomic fundamentals, the

consensus in the literature is that exchange rates are essentially empirically “disconnected”

from the macroeconomic variables that are supposed to determine them. This empirical

disconnect comes in the form of low correlations between nominal exchange rates and their

supposed macro-based determinants and also in the form of poor performance of macro-based

exchange rate models in out-of-sample forecasting (see Engel (2013) for a review).

A related empirical anomaly that has received considerable attention in the literature is

the uncovered interest parity (UIP) puzzle or the forward premium puzzle. The UIP puzzle

is the empirical irregularity showing that the forward exchange rate is a biased predictor

of future spot exchange rates. One manifestation of this empirical (ir) regularity is that

countries with higher interest rates tend to see their currencies subsequently appreciate

and a “carry-trade” strategy exploiting this pattern, on average, delivers excess currency

returns.1 This violation of the UIP condition is commonly attributed to time-varying

risk premia and biases in (measured) market expectations. However, empirical proxies

based on surveyed forecasts or standard measures of risk - for instance, ones built from

consumption growth, stock market returns, or the Fama and French (1993) factors - have

been unsuccessful in explaining the puzzle. 2 As such, while recognizing the presence

of risk, macroeconomic-based approaches to modeling exchange rates often ignore risk in

empirical testing ( see for instance, Engel and West (2005); Mark (1995)). On the finance

1 A carry trade strategy is to borrow low-interest currencies and lend in high-interest currencies, or to
sell forward currencies that are at a premium and buy forward currencies with a forward discount.

2 See, Engel (1996) for a survey of the forward premium literature, as well as recent studies such as
Burnside et al. (2011) and Bacchetta and van Wincoop (2009).
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side, efforts aiming to identify portfolio return-based “risk factors” offer some empirical

success in explaining the cross-sectional distribution of excess FX returns, but have little to

say about bilateral exchange rate dynamics (see for example, Lustig et al. (2011); Menkhoff

et al. (2012); Verdelhan (2012)). 3 The UIP puzzle is taken seriously in the exchange rate

literature because the UIP condition is a property of most open-economy macroeconomic

models.

This paper first links the persistent empirical puzzles faced by the exchange rate economics

literature to overly restrictive preference and distributional assumptions in conventional

testing methods. We argue that these auxiliary assumptions often inadequately account

for either the forward-looking property of nominal exchange rates or potential skewness

and/or fat tails in the distribution of FX returns. We then propose using the term structure

of volatility smiles to capture expectations of future macroeconomic conditions as well as

market perceived volatility, crash and tail risk of future exchange rate realizations.

Conceptually, since payoffs of option contracts depend on the uncertain future realization

of the price of the underlying asset, option prices must reflect market sentiments and beliefs

about the probability of future payoffs. Using prices of a cross section of option contracts

(at-the-money, risk reversals and vega-weighted butterflies at 10 and 25 deltas) which deliver

payoffs under differential future realizations of the spot exchange rate, we uncover ex-ante

standard deviations, skewness, and kurtosis of the distribution of expected future exchange

rate movements.

With daily options data for six major currency pairs and seven tenors, we show that these

market-based ex-ante measures of FX volatility, crash and tail risk can explain the conditional

means of excess currency returns or ex-post deviations from UIP for horizons ranging from

one week to twelve months. We then use quantile regression analysis to demonstrate that

3Lustig et al. (2011) and Verdelhan (2012) for example, identify a “carry factor” based on cross sections
of interest rate-sorted currency returns and a “dollar factor” based on cross sections of beta-sorted currency
returns.
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the options-based FX risk measures not only explain the conditional mean but also the

entire conditional distribution of subsequent deviations from UIP . Additionally, we find that

proxies for options-implied FX global risks show significant explanatory power for quarterly

excess returns.

We carry out a battery of robustness checks that include robust least squares regression

analysis, regression analysis using non-overlapping data and option-implied moments extracted

from 10-delta options (instead of the 25-delta options used in the main regressions) as well as

sub-sample analyses. Our main empirical findings survive these robustness tests, suggesting

that the strong empirical relationship between excess returns and options-based measures of

FX higher moment risks is not being driven by issues such as our use of data with overlapping

observations or the presence of outliers in our sample.

We then move beyond matched-frequency analysis and extend the approach pioneered by

Hansen and Hodrick (1980) and later used in Clarida and Taylor (1997) and Chen and Tsang

(2013), that uses the forward rates or interest differentials over time and across currency pairs

to model excess returns. The term structure component adds significant explanatory power,

shown by the huge increases in the adjusted R2s when compared to results from matched

frequency analyses.4

We further show that exchange rate movements, which have proved notoriously hard

to model empirically over the years, are in fact well-explained by the term structures of

option-implied first moments and higher order moments. Standard UIP analyses regress

exchange rate movements on the first moment of the perceived distribution of exchange rate

movements for the same tenor, and the explanatory power of such are usually very low.

For quarterly exchange rate movements, we find that augmenting such regressions by also

including information from the term structure of first moments as well as the term structure

of option-implied second to fourth moments yields R2s ranging from 70% to 85% and fit

4 That is, comparing columns A and B of table (7)
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remarkably well. The good fit of our multi-moment term structure specifications, shown in

figures (4a)-(4e), can be contrasted to the poor fit of the standard UIP regressions shown in

figures (5a)-(5e).

On one hand, there is a huge literature linking the term structure of interest rate

rates (or yield curve) to expected future dynamics of macroeconomic fundamentals such

as monetary policy, inflation and output (for example, Ang and Piazzesi (2003), Diebold

et al. (2006) and Ang et al. (2006)). Chen and Tsang (2013) extend this strand of literature

to the open economy context by noting that the term structure of interest rate differentials

(relative yield curve) contain information about the expected future dynamics of differences

in macroeconomic fundamentals. On the other hand, we argue in section (2) that the

term structure of option-implied first moments captures the same information as the term

structure of interest rate differentials. Therefore, to the extent that the relative yield curve

contains information about expected future path of domestic and foreign macroeconomic

conditions, our findings that the term structure of first moments help explain exchange

rate movements suggest that exchange rates are not disconnected from macroeconomic

fundamentals. On one hand, studies that focus on term structure dynamics tend to only

concentrate on forward exchange rates or interest rate differentials, which are first moments

of the distributions of future spot rates (for example Hansen and Hodrick (1980), Clarida

and Taylor (1997) and Chen and Tsang (2013)). On the other hand, studies that focus on

higher moment risks tend to conduct matched-frequency analyses (for example, Malz (1997)

and Lyons (1998)).

The robust empirical findings in this paper suggest that both expectations and risk

should be carefully accounted for in structural and empirical modeling of exchange rates. In

addition, our results suggest that over-the-counter FX options market captures both concepts

in practice. These results also demonstrate that the perennial problems faced by the exchange

rate economics literature are most likely due to overly restrictive auxiliary assumptions in
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the empirical testing of the models rather than to limitations of the theoretical models

themselves.

Simple derivatives such as the forwards and futures have been used extensively in explaining

excess currency returns or exchange rate movements.5 Payoffs from forward contracts,

however, are linear in the return on the underlying currency and as such do not contain as

useful a set of information as the non-linear contracts we examine. Indeed, FX options have

been used to proxy variance or tail risk in various specific contexts such as testing the portfolio

balance model of exchange rate determination (Lyons (1998)), measuring announcements

effects (Grad (2010)), evaluating rare events theory (Farhi et al. (2009)) and conducting

density forecasts (Christoffersen and Mazzotta (2005)). To the best of our knowledge,

however, there has been no systematic and comprehensive testing of whether the ex-ante

information contained in the term structure of volatility smiles indeed predicts ex-post excess

currency returns. Our paper aims to bridge this gap. 6

Our use of options price data and related empirical methodologies has a number of

motivating factors. First, options are forward-looking by construction, which means option

prices should therefore be able to incorporate information such as forthcoming regime switches

or the presence of a peso problem.7 Second, option prices are deeply rooted in market

participant behavior because they are based on what market participants do instead of what

they say. 8 Furthermore, cross sections of option prices imply a subjective probability

5See for example, Hansen and Hodrick (1980) and Clarida and Taylor (1997) among many others.
6 This paper also contributes more generally to bridging the gap between the literature on currency

derivative pricing and that on the economics of exchange rates. Chen (1998) comments that “Most students
of financial economics focus on the mathematical tools of the option pricing models with little emphasis on
the economics of exchange rate determination, while traditional macro-international economics tend to shy
away from the technicality of the currency derivative, despite its obvious importance in practice. This gap
in academic research and training has created a problem for practitioners” .

7 The peso problem refers to the effects on inferences caused by low-probability events that do not occur
in the sample, which can lead to positive excess return.

8As discussed earlier, forward contracts are forward-looking by construction, but for a given currency
pair and tenor, there is only one forward price with linear dependency on future spot realization. The
multiple option prices for options with different strikes offer a much richer information set. Lastly, standard
constructions of market expectations and perceived risks based on macro fundamentals or finance factors do
not work well.
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distribution of future spot exchange rates, which captures both market participants’ beliefs

and preferences. 9Third, modern techniques such as the Vanna-Volga method (see Castagna

and Mercurio (2005)) and the methodology of Bakshi et al. (2003) facilitate elegant and

model-free computation of options-implied higher order moments of future exchange rate

changes. Lastly, option-implied moments can be extracted at a higher frequency, the options

approach gives us genuinely conditional estimates and avoids a trade-off problem encountered

when estimating higher moments from historical returns data. When using historical returns

data, longer windows are required to increase precision, while shorter windows are required

to obtain conditional rather than unconditional estimates.

2 Why Higher Order Moments and Term Structure?

2.1 Forward Premium Puzzle and Excess Currency Returns

The efficient market condition for the foreign exchange markets, under rational expectations,

equates cross border interest differentials it − i∗t with the expected rate of home currency

depreciation, adjusted for the risk premium associated with currency holdings, ρt:
10

iτt − i
τ ,∗
t = Et∆st+τ + ρt+τ . (2.1)

This condition is expected to hold for all investment horizons τ , with interest rates that are

at matched maturities. Ignoring the risk premium term, numerous papers have tested this

9This distribution is commonly referred to as the “risk-neutral distribution”, though it does NOT
imply that the distribution is derived under risk-neutrality. On the contrary, it incorporates both the
expected physical probability distribution of future exchange rate realization as well as the risk premium, or
compensation required to bear the uncertainty.

10 In this paper, we define the exchange rate as the domestic price of foreign currency. A rise in the
exchange rate indicates a depreciation of the home currency. However, “home”does not have a geographical
significance but follow the FX market conventions. See table (1A)
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equation since Fama (1984), and find systematical violations of this UIP condition:

st+τ − st = α + β(iτt − i
∗,τ
t ) + εt+τ ; Et[εt+τ ] = 0,∀ t,

H0 : β = 1
(2.2)

with an estimated β < 0 and R2s that are usually close to zero. This is the so-called

uncovered interest rate parity puzzle or the forward premium puzzle (see Engel (1996), for

a survey of the literature). To see the connection with forward rates, we note that the

covered interest parity condition, an empirically valid no-arbitrage condition, equates the

forward premium f t+τt − st, with interest differentials. The risk-neutral UIP condition above

thus implies that the forward rate should be an unbiased predictor for future spot rate:

Etst+τ = f t+τt or st+τ = f t+τt + ut+τ , where Et[ut+τ ] = 0∀ t.

We should next define FX excess returns as the rate of return across borders net of

currency movement, and one can see that the UIP or forward premium puzzle can be

expressed as a non-zero averaged excess return over time:

xrt+τ = f t+τt − st+τ = (iτt − i
τ ,∗
t )−∆st+τ = ρt+τ + ut+τ (2.3)

It is natural then to note that the empirical failure of the risk-neutral UIP condition can be

attributable to either the presence of a time-varying risk premium, ρt+τ , or that expectation

error, ut, may not be i.i.d. mean zero over time. If the distribution of either of these is

not mean zero over the time series, empirical estimates of the slope coefficient in regression

equation (2.2) would likely suffer omitted variable bias or other complications.

2.1.1 Some issues with conventional tests of UIP

The forward unbiasedness hypothesis is true for a given distribution of st+τ at each point in

time. If the conditional distribution of st+τ is, however, not i.i.d. over time -as suggested by
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the extracted option-implied moments and sample distributions in figure ( 1) below - then

testing the hypothesis Etst+τ = f t+τt using time series data might not be appropriate. The

OLS regression-based testing framework in equation (2.2) makes the auxiliary assumption

that shocks to ∆st+τ are i.i.d. normal over time. However, FX returns are well documented

to have fatter tails than normal, and in some cases skewed. 11

INSERT FIGURE (1) HERE

2.2 Why higher order moments? 12

In this subsection we show that in addition to risk neutrality and rational expectations

assumptions, the UIP condition also hinges on the rather restrictive auxiliary assumptions

that FX returns are i.i.d. normal over time and that investors have constant absolute

risk aversion (CARA) utility. These two additional assumptions reduce the representative

investor’s optimal asset allocation problem to a mean-variance optimization problem.

We start with the problem of an investor who, in each period, allocates her portfolio

among risky assets with the goal of maximizing the expected utility of next period wealth.

In each period, the investor has n risky assets to choose from. The vector of gross returns is

given by rt+1 = (r1,t+1, ..., rn,t+1). If we suppose Wt is arbitrarily set to 1, then Wt+1 = α
′
trt+1

, where α is an n by 1 vector of portfolio weights.

The investors problem is to choose αt to maximize the expression

Et[U(Wt+1)] = Et[U(α
′
trt+1)]

=
∫
...
∫
U(Wt+1)f(rt+1)dr1,t+1dr2,t+1...drn,t+1

(2.4)

11Cincibuch and Vavra (2004) write: “It is common knowledge that financial returns are not normal, that
they usually have heavy tails and that they might be skewed. Therefore it seems odd to test efficiency, which
involves the notion that rational market players utilize all available information, and restrict the expectation
error to be normal. ”

12Material in this subsection is from Mark (2001)
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subject to the condition that
∑n

i=1 αi,t = 1, where f(rt+1) is the joint probability distribution

of rt+1.

2.2.1 CARA and Normality reduce problem to mean-variance optimization

Let us further assume that the investor has CARA utility and that returns are conditionally

normally distributed. The CARA utility assumption means the utility is given by

U(Wt+1) = −e−γWt+1 , where γ ≥ 0 is the coefficient of absolute risk aversion. The

distributional assumption rt+1 ∼ N(µt+1,Σt+1) implies that Wt+1 ∼ N(µp,t+1, σ
2
p,t+1), where

µp,t+1 = α
′
tµt+1 and σ2

p,t+1 = α
′
tΣt+1αt

With the above two assumptions, expression (2.4) reduces to13

Et[U(Wt+1)] = −Et[e−γWt+1 ] = γµp,t+1 −
1

2
γ2σ2

p,t+1 (2.5)

Equation (eq:MVOptim) demonstrates that under the assumptions of CARA utility

function and conditional normality of returns, the general portfolio allocation problem (2.4)

reduces to the mean-variance optimization problem.14

If we further assume that our investor has a 2-asset portfolio made up of a nominally

safe domestic bond and a foreign bond, and that she allocates a fraction α of her wealth to

the domestic bond, then next period wealth expressed in local currency units is given by

Wt+1 =

[
α(1 + it) + (1− α)(1 + i∗t )

St+1

St.

]
Wt (2.6)

In this 2-asset example and CARA utility and conditionally normal returns the expressions

13The second equality follows from the fact that e−γWt+1 ∼ LN(−γµp,t+1, γ
2σ2
p,t+1) , so Et[e−γWt+1 ] =

−γµp,t+1 + γ2σ2
p,t+1

14The quadratic utility function imply mean variance optimization for arbitrary return distribution.
However, the quadratic utility implies increasing absolute risk aversion and satiation (Jondeau et al. (2010),
page 352).
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for the conditional mean and variance of next period wealth are given by:

µp,t+1 =
[
α(1 + it) + (1− α)(1 + i∗t )

EtSt+1

St

]
Wt,

σ2
p,t+1 =

(1−α)2(1+i∗t )2V art(St+1)W 2
t

S2
t

(2.7)

Plugging the expressions in equation (2.7) into objective function (2.5), taking the first

order condition with respect to α and rearranging the first order condition yields the following

equation which implicitly determines the optimal α:

(1 + it)− (1 + i∗t )
EtSt+1

St
=
−γWt(1− α)(1 + i∗t )

2V art(St+1)

S2
t

. (2.8)

Equation (2.8) reduces to the UIP condition if we assume that all investors are risk-neutral

(γ = 0):15

1 + it
1 + i∗t

=
EtSt+1

St
. (2.9)

The Fama regression in equation (2.2) tests a logarithmic version of equation (2.9). The

key steps in deriving the testable restrictions in equation (2.9) are the joint assumptions of

CARA utility and conditional normality of next period wealth, which reduce the investor’s

optimization to mean-variance. The above discussion illustrates that deriving the UIP

equation tested through expression (2.2) depends on other assumptions beyond rational

expectations and risk-neutrality. If the normality assumption is dropped, for example, then

expression (2.9) will most likely include higher order moments. In fact, Jondeau et al. (2010)

note that under CARA utility, if we drop the normality assumptions, then the investor would

prefer positive skewness and low kurtosis, such that the investor’s objective function in

equation (2.5) will also include the third and fourth moments of the FX return distribution.

Scott and Horvath (1980) show that a strictly risk-averse individual who always prefers more

to less (U (1) > 0) and likes positive skewness at all wealth levels will necessarily dislike high

15UIP will also hold if α = 1, regardless of investors’ degree of risk Aversion.
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kurtosis.

2.3 Why term structure?

The term structure of option prices allows us to extract information about expected future

macroeconomic conditions. Going back to UIP equation (2.1), rearranging and iterating

forward, one can show that the nominal exchange rate depends on current and expected

future interest rate differentials as well as on expected risk. The interest rates are monetary

policy variables, and thus depend on macroeconomic fundamentals.

st = −
∞∑
j=0

Et(it+j − i∗t+j)︸ ︷︷ ︸
Expected future interest differentials

−
∞∑
j=0

Etρt+j︸ ︷︷ ︸
Expected Future FX risk

(2.10)

Writing the exchange rate in the form in equation (2.10) demonstrates the importance

of capturing expectations and risks in testing exchange rate models. Standard empirical

approaches, however, impose distributional assumptions that reduce the sum of expected

future fundamentals to equal current fundamentals and also ignore risk (see Engel and West

(2005), Mark (1995)).

Chen and Tsang (2013) propose using information contained in the term structure of

interest rate differentials to side-step these distributional assumptions. They exploit information

in the term structure of relative interest rate differentials to proxy for expected changes in

future macro fundamentals and show that Nelson and Siegel (1987) factors extracted from

relative yield curves predict bilateral FX returns and explain excess currency returns one

month to two years ahead. Clarida and Taylor (1997) and Clarida et al. (2003) show that even

if the forward rate is a biased predictor of future spot rate (the forward premium puzzles), the

term structure of forward premia still contains information useful for predicting subsequent

exchange rate changes.

This recent success of term structure empirical models further demonstrates the importance
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of capturing expectations. We propose to use information contained in the term structure of

option prices to capture the first part of (2.10) and use the cross section of option prices to

capture the expected risk component. In subsection (3.1), we argue that the term structure

of volatility smile contains information about expected future macro conditions and FX risks

beyond that contained in either the relative yield curve or term structure of forward premia.

3 Information Content of Currency Options

Option prices provide (at least) three distinct pieces of information about market participants’

expectations and preferences: options with the same underlying currency pair and tenor

but different strike prices (volatility smile), options with the same strike price and same

underlying currency pair but different tenors (term structure of implied volatility) and lastly,

prices of options with the same strike price tenor but different underlying currency pairs. In

section (3) we explain the information theoretically contained in the volatility smile, term

structure of option prices and cross correlations of option prices with different underlying

currency pairs. We then describe a methodology for extracting this information.

3.1 Volatility Smile, Term Structure and Cross Correlations

Breeden and Litzenberger (1978) show that in complete markets, the call option pricing

function (C) and the exercise price K are related as follows:

∂2C

∂K2
= e−r

dτπQt (St+τ ), (3.1)

where rd and rf are the domestic and foreign risk-free interest rates and πQt (St+τ ) is the

risk-neutral probability density function (pdf) of future spot rates. Equation (3.1) implies

that, in principle, we can estimate the whole pdf of time St+τ spot exchange rate from time

t volatility smile. Once the distribution is available, it becomes possible to get empirical
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estimates of the standard deviation, skewness , kurtosis and even higher order moments of

the market perceived probability density of St+τ given information available at time t.

In addition to the Breeden and Litzenberger (1978) result in equation (3.1), we note that

although market participants can be treated as if they are risk-neutral for the purpose of

option-pricing, option prices theoretically contain information about both investor beliefs

and risk preferences, as shown from the following formula for the price of a European-style

call option:

C(t,K, T ) =

∫ ∞
K

Mt,T (ST −K)︸ ︷︷ ︸
Preferences

πPt (ST )︸ ︷︷ ︸
Beliefs

dST = e−r
dτ

∫ ∞
K

(ST −K) πQt (ST )︸ ︷︷ ︸
Both

dST . (3.2)

In equation (3.2), Mt,t+τ is the pricing kernel, which captures the investor’s degree of risk

aversion and πPt (St+τ ) is the physical probability density function of future spot exchange

rates 16.

A forward contract can in fact be viewed as a European-style call option with a strike

price of zero. To see this, we recall that, on one hand, the theoretical forward exchange rate

is given by the formula:

Ft,T = e−r
dτ

∫ ∞
0

STπ
Q
t (ST )dST = e−r

dτEQt (ST ). (3.3)

On the other hand, evaluating equation (3.2) at K=0 yields:

C(t, 0, T ) = e−r
dτ

∫ ∞
0

STπ
Q
t (ST )dST = Ft,T . (3.4)

The relationship between options and forwards in equation (3.4) suggests that the cross

section of option prices should, at a minimum, contain as much information about investor

beliefs and preferences as that contained in forward prices.

16 In the second expression, the pricing kernel is performing both the risk-adjustment and discounting

functions, while in the third expression these functions are divided between πQt and e−r
dτ .
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Moving on to the term structure of option prices, one way to motivate the theoretical

information content of the term structure of option prices is to start from equation (2.10):

st = −
∞∑
j=0

Et(it+j − i∗t+j)︸ ︷︷ ︸
Expected future interest differentials

−
∞∑
j=0

Etρt+j︸ ︷︷ ︸
Expected Future FX risk

. (3.5)

Now, under the empirically valid CIP condition, interest rate differential is equal to the

forward premium for all tenors j:17

it+j − i∗t+j = f t+jt − st = −rdτ + EQ
t

[
ln

(
St+j
St

)]
︸ ︷︷ ︸
First moment of πQt

+ ωt︸︷︷︸
Jensen’s inequality term

,∀ tenor j. (3.6)

Equation (3.6) thus says that, ignoring the Jensen’s inequality term ωt and the constant

term −rdτ , the interest rate differential equals the first moment of the option-implied

risk-neutral distribution of ln
(
St+j
St

)
for any given tenor j. The interest rates are monetary

policy variables and therefore depend on macroeconomic fundamentals such as unemployment

and inflation. When combined, equations (3.6) and (3.5) demonstrate that just like the

yield curve, the term structure of the first moments of implied distributions also captures

information about current and expected future macroeconomic fundamentals.

A second motivation for the information content of the term structure of option prices

comes from the expectation hypothesis for implied volatility. If the expectations hypothesis

holds in the FX market, then the implied volatility for long dated options should be consistent

with the implied volatility of short dated options quoted today and in the future. For

example, if the current six month implied volatility is 10% and the current three month

implied volatility is 5%, then, under the expectation hypothesis, then the three month implied

17The second equality follows from dividing (3.3) by St and taking logarithms
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volatility three months from now should be 13.2% because

0.5(0.1)2 = 0.25(0.05)2 + 0.25(0.132)2.

The expectation hypothesis therefore suggests that the term structure of option-implied

volatility contain information about the market’s perception about the future dynamics of

short term implied volatility. Starting from the Hull and White (1987) stochastic volatility

model, Campa et al. (1998b) test the expectation hypothesis for FX implied volatility and

fail to reject the hypothesis.

A third source of information from currency options is by using correlations of options on

different currency pairs to construct global measures of FX risk. Option-implied correlations

arise from three way arbitrage arguments. For example: if the exchange rates at time t are

given by SAB,t , SAC,t and SBC,t and assuming they follow stationary processes, we have that

ln(SAB,t) = ln(SAC,t)− ln(SBC,t) = sAC,t − sBC,t (3.7)

Equation (3.7) above implies that

V art(sAB) = V art(sAC) + V art(sBC)− 2Corrt(sAC , sBC)V art(sAC)
1
2V art(sBC)

1
2 , (3.8)

which can be rearranged to give:

Corrt(sAC , sBC) =
V art(sAC) + V art(sBC)− V art(sAB)

2V ar
1
2
t (sAC)V art(sBC)

1
2

(3.9)

If we use option-implied variance to estimate the right hand side of equation (3.9), then

the resulting estimate of ρt(sAC , sBC) is option-implied correlation. Siegel (1997) points

out that this option-implied correlation reveals market sentiment regarding how closely the

currencies are expected to move in the future. The average option-implied correlation can
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be interpreted as capturing global FX correlation risk.

Recently, efforts aiming to identify portfolio return-based global “risk factors” offer some

empirical success in explaining the cross-sectional distribution of excess FX returns. 18 19

The majority of existing research in this line of literature, however, use proxies of global

risk constructed from historical returns and focus on matched-frequency analysis. Given

the advantages of using option price data outlined in section (1), a natural question to ask

is whether options-based measures of FX global risk add further insights to the strand of

literature using global FX risk to explain FX excess returns and FX returns.

3.2 Extracting Option-Implied Moments20

We use the methodology of Bakshi et al. (2003) (henceforth BKM) to extract model-free

option-implied standard deviation, skewness and kurtosis from the volatility smile. Grad

(2010) and Jurek (2009) also use the BKM methodology to extract FX options-implied

higher order moments. 21

The extracted moments using the BKM methodology are model-free because we make no

assumptions regarding the time series process governing the underlying spot exchange rate.

The model-free nature of the methodology is attractive because it means the methodology

is equally applicable to all exchange rate regimes. Campa et al. (1998a) argue that having a

methodology that does not presuppose a stochastic process followed by the underlying spot

exchange rate is especially useful in situations where the FX regime is unknown or changing,

18Verdelhan (2012)and Lustig et al. (2011) , for example, identify a “carry factor” based on cross section
of interest rate-sorted currency returns, and a “dollar factor” based on cross-section of beta-sorted currency
returns. Rafferty (2011) constructs a global skewness risk factor using historical returns from carry trade
portfolios and shows that higher average excess returns co-vary more positively with global skewness.

19 Menkhoff et al. (2012) investigate the role of global volatility risk in explaining cross-sections of carry
trade returns, and conclude that carry trade returns are compensation for exposure to global volatility risk.
Mueller et al. (2012) investigate the role of global correlation risk as a driver of currency returns. Cenedes
et al. (2012) show that higher average is significantly related to large future carry trade losses, while lower
average correlation is significantly related to large gains.

20Extraction of moments done in the R statistical language R Core Team (2013).
21In this section we closely follow the exposition and notation in Grad (2010).
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or when the degree of government intervention is unclear. The BKM methodology rests on

the results of Carr and Madan (2001), which show that if we have an arbitrary claim with

a pay-off function H[S] with finite expectations, then H[S] can be replicated if we have a

continuum of option prices. They also show that if H[S] is twice-differentiable, then it can

be spanned algebraically by the following expression

H[S] = (H[S̄] + (S − S̄HS[S̄]) +

∫ ∞
S̄

HSS[K](S −K)+ +

∫ S̄

0

HSS[K](K − S)+dK, (3.10)

where HS = ∂H
∂S

and HSS = ∂2H
∂S2 . Assuming no arbitrage opportunities, the price of a claim

with pay-off H[S] is given by the expression

pt = (H[S̄]−S̄HS[S̄])e−r
dτ +HS[S̄]Se−r

dτ +

∫ ∞
S̄

HSS[K]C(t, τ ,K)+

∫ S̄

0

HSS[K]P (t, τ ,K)dK

(3.11)

where K is the strike price, C(t, τ ,K) and P (t, τ ,K) are, respectively, the prices of a

European-style call and put options. S̄ is some arbitrary constant, usually chosen to equal

current spot price.

Equation (3.11) indicates that any pay-off function H[S] can be replicated by a position

of (H[S̄] − S̄HS[S̄]) in the domestic risk-free bond, a position of H[S̄] in the stock, and

combinations of out-of-the-money calls and puts, with weights HSS[K]. Suppose we have

contracts with the following pay-off functions:22

H[S] =

[Rt(St+τ )]
2, Volatility Contract

[Rt(St+τ )]
3, Cubic Contract

[Rt(St+τ )]
4, Quartic Contract,

(3.12)

where Rt(St+τ ) = ln(St+τ
St

)
. BKM show that the variance, skewness and kurtosis of the

22One can use the framework to price contracts with higher order payoffs and therefore extract moments
of order higher than 4. The point that we want to emphasize, that higher order moments matter, is
demonstrated even if we only stop at 4th order.

17



distribution of Rt+τ can be calculated using the following formulas:

Stdev(t, τ) =
√
erdτV (t, τ)− µ(t, τ)2 (3.13a)

Skew(t, τ) = er
dτW (t,τ)−3V (t,τ)µ(t,τ)er

dτ+2µ(t,τ)3

[erdτV (t,τ)−µ(t,τ)2]
3
2

(3.13b)

Kurt(t, τ) = er
dτX(t,τ)−4er

dτµ(t,τ)W (t,τ)+6er
dτµ(t,τ)2V (t,τ)−3µ(t,τ)4

[erdτV (t,τ)−µ(t,τ)2]2
, (3.13c)

where the expressions for V (t, τ),W (t, τ) and X(t, τ) and µ(t, τ) are given in appendix (A).

Derivations of equations in (3.13) and expressions for µ(t, τ), V (t, τ),W (t, τ) and X(t, τ) can

be found in Bakshi et al. (2003) and Grad (2010).

The BKM methodology described above requires a continuum of exercise prices. However,

in the OTC FX options market implied volatilities are observed for only a discrete number

of exercise prices. We therefore need a way to estimate the entire volatility smile from a few

(K−σ) pairs by interpolation and extrapolation. To this end, we use the Vanna Volga (VV)

method described in Castagna and Mercurio (2007). The procedure allows us to build the

entire volatility smile using only three points. Castagna and Mercurio (2007) note that if we

have three options with implied volatility σ1,σ2, σ3 and corresponding exercise prices K1,K2

and K3 such that K1 < K2 < K3, then the implied volatility of an option with arbitrary

exercise price K can be accurately approximated by the following expression:

σ(K) = σ2 +
−σ2 +

√
σ2

2 + d1(K)d2(K)(2σ2D1(K) +D2(K))

d1(K)d2(K)
, (3.14)

where

D1(K) =
ln
[
K2

K

]
ln
[
K3

K

]
ln
[
K2

K1

]
ln
[
K3

K1

]σ1 +
ln
[
K
K1

]
ln
[
K3

K

]
ln
[
K2

K1

]
ln
[
K3

K2

]σ2 +
ln
[
K
K1

]
ln
[
K
K2

]
ln
[
K3

K1

]
ln
[
K3

K2

]σ3 − σ2,
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D2(K) =
ln
[
K2

K

]
ln
[
K3

K

]
ln
[
K2

K1

]
ln
[
K3

K1

]d1(K1)d2(K1)(σ1 − σ2)2 +
ln[ K

K1
]ln[ K

K2
]

ln[K3

K1
]ln[K3

K2
]
d1(K3)d2(K3)(σ3 − σ2)2

and

d1(x) =
log[St

x
] + (rd − rf + 1

2
σ2

2)τ

σ2

√
τ

, d2(x) = d1(x)− σ2

√
τ , x ∈ K,K1, K2, K3.

Expression (3.14) allows us to find the implied volatility of an option with an arbitrary

strike price. We use K1 = K25δp, K2 = KATM and K3 = K25δc. The VV methodology has a

number of attractive features, which are explained in Castagna and Mercurio (2007). First,

it is parsimonious because it uses only three option combinations to build an entire volatility

smile. This is the minimum number that can be used if one wants to capture the three most

prominent movements in the volatility smile: change in level, change in slope, and change in

curvature.23 The VV method also has a solid financial motivation: Castagna and Mercurio

(2007) show that it is based on a replication argument in which an investor constructs a

portfolio that, in addition to hedging against movements in the price of the underlying asset

(δ = ∂C
∂S

), also hedges against movements in volatility of the underlying asset (V ega = ∂C
∂σ

).

In situations where volatility is stochastic, it might be useful to construct portfolios that, in

addition to hedging against changes in the price of the underlying asset, the investor also

hedges against for the Vega(∂C
∂σ

), the Vanna (∂
2C
∂σ2 ) and the Volga ( ∂2C

∂σ∂S
) as might be necessary

in situations when volatility is stochastic.

3.3 Data Description

In the o-t-c market, the exchange rate is quoted as the “domestic” price of “foreign” currency,

which means a fall in the reported exchange rate represents an appreciation of domestic

currency. “Domestic” and “foreign” , however, do not have any geographic significance, but

23The ATM straddle, VWB and the Risk Reversal capture these movements. See discussions in Castagna
(2010) and Malz (1998)
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are in accordance to some market quoting conventions. Table (1A) contains details of the

market quoting conventions for the six currency pairs that we use in this paper.

Compared to exchange-traded options, there are several advantages that come with using

o-t-c data in our empirical analysis. First, most of the FX options trading is concentrated

in the o-t-c market. This means o-t-c currency options prices are more competitive and

therefore more likely to be representative of aggregate market beliefs compared to prices in

the less liquid exchange market. Table (1C), obtained from the 2010 BIS Triennial Survey,

shows that although the o-t-c options market is small relative to the overall FX market, it

is very liquid and rapidly growing when we look at it in absolute terms.

[INSERT TABLE (1C) HERE]

A second advantage of using o-t-c option price data is that fresh options for standard tenors

are quoted each day, making it possible to obtain a time series of FX option prices with

constant maturities. This can be contrasted with exchange traded options, whose prices

are quoted for a specific expiry date, such that as we approach the expiry date, the option

prices also incorporate the fact that the tenor is changing. O-t-c options make it possible

to disentangle term structure, cross-sectional and time series aspects embedded in option

prices.

Our third and final motivation for o-t-c option data is that European-style options are

traded in this market, whereas exchange traded FX options are usually American-style.

When analyzing option prices of a given tenor, American-style options have to be adjusted

for the possibility of early exercise.

We next explain some important OTC currency market quoting conventions. First,

option prices are given in terms of implied volatility instead of currency units while “moneyness”

is measured in terms of the delta of an option. The delta of an option is a measure of the

responsiveness of the option’s price with respect to a change in the price of the underlying

asset. If the prices of call and put options are given by Ct and Pt, then option price
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and implied volatility are linked using the formula from Garman and Kohlhagen (1983)’s

extension of the Black-Scholes model to FX.

Ct = e−r
dτ
[
F t+τ
t Φ(d1)−KΦ(d2)

]
Pt = e−r

dτ
[
KΦ(−d2)− F t+τ

t Φ(−d1)
]

where

d1 =
log[St

K
] + (rd − rf + 1

2
σ2

2)τ

σ2

√
τ

, d2 = d1 − σ2

√
τ ,

There is a one-to-one relationship between option price and implied volatility when using

the Black and Scholes (1973) formula. 24 The expressions for call and put deltas are given

by the expressions:

δc = e−r
f

Φ(d1) (3.15a)

δp = e−r
f

Φ(−d1), (3.15b)

where Φ(.) is the standard normal cumulative density function (cdf). The absolute values of

δc and δp are therefore between 0 and 1, while put-call parity implies that δp = δc − 1. The

market convention is to quote a delta of magnitude x as a 100 ∗ x delta. For example, a put

option with a delta of -0.25 is referred to as a 25δ put.

Lastly, in the FX o-t-c option market, prices are quoted in combinations rather than

simple call and put options. The most common option combinations are at-the-money

(ATM)25 straddle, risk reversals (RR), and Vega-weighted butterflies (VWB). An ATM

straddle is the sum of a base currency call and a base currency put, both struck at the

24 Use of the Black-Scholes formula does not, however, mean traders agree with the assumptions underlying
the Black-Scholes model.

25“ATM here means the delta of the option combination is zero. That is, the option combination is
“delta-neutral”
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current forward rate. This is the most liquid structure in the o-t-c FX options market.

A RR is set up when one buys a base currency call and sells a base currency put with a

symmetric delta. The most liquid RR is the 25δ, in which both the call and put have a delta

of 25 percent. Finally, a VWB is built by buying a symmetric delta strangle and selling an

ATM straddle. 26 The 25δ combination is the most traded options VWB.

The ATM straddle, risk reversal and strangle are usually interpreted as short cut indicators

of volatility, skewness and kurtosis of the perceived conditional distribution of exchange rate

movements. The profit diagrams in figure (6) demonstrate why:

(i) the straddle becomes profitable if there is a movement in the underlying asset’s price

(ii) the risk-reversal makes profit if there is a movement in a particular direction

(iii) the strangle becomes profitable if there is a big movement in any direction in the

underlying asset’s price.

INSERT FIGURE (6) HERE

The definitions of the three option combinations are as follows:27

σATM,τ = σ0δc,τ = σ50δc + σ50δp (3.16a)

σ25δRR,τ = σ25δc,τ − σ25δp,τ (3.16b)

σ25δvwb,τ =
σ25δc,τ + σ25δp,τ

2︸ ︷︷ ︸
Strangle

−σATM,τ (3.16c)

Equations (3.16) can be rearranged to get the implied volatility for 0δ call, 25δ call and 25δ

put. Expressions for backing out implied volatility of these“plain-vanilla” options from the

26In a strangle, you buy an out of the money call and an equally out of the money put
27Table (1B) contains sample option price quotes for standard combinations and standard maturities.
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prices of traded option combinations are given below:

σ0δc,τ = σATM = σ50δc,τ + σ50δp,τ (3.17a)

σ25δc,τ = σATM + σ25δvwb,τ +
1

2
σ25δRR,τ (3.17b)

σ25δp,τ = σATM + σ25δvwb,τ −
1

2
σ25δRR,τ . (3.17c)

Finally, K25δp, KATM , K25δc, the exercise prices corresponding to σATM,τ , σ25δc,τ and σ25δp,τ

can be backed out by using the expression for option deltas given in equation (3.15 ). For

example, to get KATM we use the fact that the ATM straddle has a delta of zero:

e−r
f τ

[
Φ

(
ln[ St

KATM
] + (rd − rf + 1

2
σ2
ATM)τ

σATM
√
τ

)
− Φ

(
−
ln[ St

KATM
] + (rd − rf + 1

2
σ2
ATM)τ

σATM
√
τ

)]
= 0.

(3.18)

Since Φ(.) is a monotone function, we can solve equation (3.18) for KATM to get:

KATM = Ste
(rd−rf+ 1

2
σ2
ATM )τ = F t+τ

t e
1
2
σ2
ATM . (3.19)

Using similar arguments, one can show that the expressions for K25δc and K25δp

K25δc = Ste
[−Φ−1( 1

4
er
dτ )σ25δc,τ

√
τ+(rd−rf+ 1

2
σ2
25δc)τ ] (3.20a)

K25δp = Ste
[Φ−1( 1

4
er
dτ )σ25δp,τ

√
τ+(rd−rf+ 1

2
σ2
25δp)τ ], (3.20b)

with K25δp < KATM < K25δc (Castagna and Mercurio (2007)).

Our options data consists of over the counter (o-t-c) option prices for the six currency

pairs listed in table (1A) and covering the period 1 January 2007 to April 19 2011.

The spot rates, forward rates and risk-free interest rates are obtained from Datastream.
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4 Empirical Strategy and Main Results

4.1 Empirical properties of extracted option-implied moments

Summary statistics of the extracted moments are in table (2). 28 The summary statistics

show that all the extracted moments are generally very persistent, with AR (1) coefficients

as high as 0.99. Zivot and Andrews (1992) unit root tests, however, suggest that almost all

the implied moments are stationary (with structural breaks in the means on dates around

late 2008 and early 2009). For the rest of the analysis, we treat all variables as stationary.

Looking at the maximum and median for each series, as well as the time series plots, we

see that there are a number of outliers, especially for the 9m and 12m moments. The time

series plots in figure (2) show that these outliers are found mostly between late 2008 and

early 2009.

INSERT TABLE (2) AND FIGURE (2) HERE

4.2 Can option-implied moments forecast FX excess returns?

4.2.1 Matched Frequency Analysis: Predictive ability of the volatility smile

We start by investigating whether τ -period option-implied moments can explain the conditional

mean of subsequent excess returns. Thus, for each currency pair i and tenor τ , we estimate

the following regression model by OLS:

f i,t+τt − Et(sit+τ ) = γ0,τ + γ1,τstdev
i,t+τ
t + γ2,τskew

i,t+τ
t + γ3,τkurt

i,t+τ
t + ui,t+τ . (4.1)

Note that the LHS variable is ex-ante excess currency returns/forward bias. Under rational

expressions, f i,t+τt − Et(sit+τ ) is also equal to the risk premium. Gereben (2002) and Malz

28 Summary statistics for the option-implied moments of the other five currency pairs are similar, and can
be found in the online appendix. Time series plots for τ = 1WK, 2M, 3M, 6M, 9M and 12M are also in the
online appendix.
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(1997) also estimate regression specification (4.1) and interpret the results in light of the

time-varying risk premia explanation of the UIP puzzle. Gereben (2002) argues that if the

forward bias is due to time-varying risk premia, then variables that capture the nature of

FX risk should be able to explain the dynamics of the forward bias. The option-implied

moments on the RHS in regression equation 4.1), which capture perceived FX volatility, tail

and crash risk should therefore be able to explain the forward bias. Malz (1997) also argues

that statistical significance of the coefficient on skewt+τt can be interpreted as providing

support for the peso problem explanation of the UIP puzzle.

Going back to expression 4.1), we note that Et(st+τ ) is not observable. If we assume that

market participants have rational expectations, then Et(st+τ ) and st+τ will only differ by a

forecast error νt+1 that is uncorrelated with all variables that use information at time t, such

that

st+τ = Et(st+τ ) + νt+1. (4.2)

Plugging equation (4.2) into equation (4.1) and rearranging gives us the following estimable

regression equation:

xrt+τ = γ0,τ + γ1,τstdev
t+τ
t + γ2,τskew

t+τ
t + γ3,τkurt

t+τ
t + εt+τ (4.3)

where the error term εt+τ = ut+τ + νt+τ and xrt+τ is ex-post excess returns defined in

expression (2.3).

To provide intuition regarding expected coefficient signs in the regression equation (4.3),

we take the point view of a domestic investor who invests in domestic bonds using money

borrowed from abroad. As shown in equation (2.3), such an investor benefits from higher

domestic interest rates as well as appreciation of domestic currency. Let’s also assume that

the home currency is riskier, such that our investor would demand higher excess returns for

higher stdev and kurtosis in the exchange rate. If investors are averse to high variance and

25



kurtosis, they would require higher excess returns for holding bonds denominated in units

of the riskier domestic and we would expect the coefficients on stdev and kurtosis to be

both positive. We expect the skew coefficient to be positive for investor’s with preference

for positive skewness. Such an investor will require higher compensation for an increase in

skew, which represents a higher perceived likelihood of domestic currency depreciation.

Given the discussion in subsection (5.2), however, we note that pinning down the coefficient

signs a priori is impossible without making further assumptions about the investor’s utility

function or orthogonality of the moments. In our regression analysis, we therefore focus

mainly on joint significance of the explanatory variables and model fit rather than on

significance and signs of individual coefficients.

Sub-sample analyses suggest the presence of structural breaks in the matched-frequency

regression relationships for the majority of currency pairs and tenors. We use the Bai and

Perron (2003) structural break test to identify the date for the most prominent break 29 and

estimate a modification of regression equation (4.3) that includes interactions with structural

break indicator variable:

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
i,t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εit+τ .

(4.4)

where D1i,τ is an indicator variable that is zero before the break date and equal to one

otherwise.

The matched-frequency results, shown in tables 3(a)-3(f), demonstrate a consistent ability

of options-based measures of FX standard deviation, skewness and kurtosis-proxying to

explain excess currency returns. The coefficients on the six non-intercept terms are always

jointly significant, as shown by the low p-values for the Wald tests across currency pairs and

across tenors. The adjusted R2s are also generally high across currency pairs and tenors, for

29We only focus on the major breaks, and therefore do not choose the number of breaks according to
information criteria such as AIC.
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example, ranging from 11% to 28% for 1M tenors .

We carry out a battery of robustness checks on the matched frequency results presented

in table 3. First, we note that since we are using overlapping data, the R2s will be inflated.

30 To get an idea of the degree of R2 inflation and see if our results still change when we

use non-overlapping data, we re-run the regression (4.4) for 1M tenor using non-overlapping

observations. We still use the same break date found from the regressions with overlapping

data regressions, which are presented in table 3. The results of regressions with non-overlapping

data regressions, shown in table (4a), suggest that the matched frequency results presented

in table (3) are not being entirely driven by our use of overlapping data.

Results from sub-sample analysis and regressions using 10δ options (instead of 25δ) are

presented in tables 4(b) and 4(c) respectively. Again, when we look at the adjusted R2s and

tests of joint significance of coefficients on the moments, we find that there are no major

differences with the results presented in table (3).

Our final robustness check addresses the issue of outliers. The summary statistics of

the extracted moments show some huge outliers. In the presence of outliers, ordinary

least squares might give misleading results. For 3M tenor, we re-estimate the regressions

specification (4.4) using robust least squares. Our estimation method addresses the presence

of outliers in both the dependent variable and independent variables. Again, the main

findings still hold, as can be seen in table table (4d).

INSERT TABLE (4) HERE

We digress from the bilateral analysis we have done so far in this section to investigate

whether options-based measures of global volatility, skewness and kurtosis can explain the

dynamics of bilateral excess returns. For the matched frequency global risk regressions,

results of which are presented in 5(a), we extract the first three components from each of 3M

30For that reason, we do not interpret the higher R2s for 12m regressions as representing better fit at
longer horizons.
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standard deviation, skewness and kurtosis across all currency pairs involving the USD. The

coefficients on the pricincipal components are jointly significant, with adjusted R2s ranging

from 14% to 26%. We then extend the global risk regression to incorporate term structure

information by using principal components extracted from all currency pairs and from all

tenors as regressors. The results from the term-structure of global risk regression, presented

in table 5(b), show that information from the term structure of global risk adds further

explanatory power, with adjusted R2s ranging from 16% to 40%.

INSERT TABLE (5 ) HERE

We next go beyond OLS regression, which models the conditional mean of the the

dependent variable given the explanatory variables, by using quantile regression analysis

(QR) to investigate the predictive ability of options-based FX risk measures for the entire

distribution of ex-post excess currency returns. By modeling the entire distribution of the

dependent variable, QR allows us to get a more complete picture of the predictive ability

of the option-implied moments. QR also has a further advantage over OLS in that it is

robust to outliers in the dependent variable and does not impose restrictive distributional

assumptions on the error terms.

We estimate the following linear quantile regression model, modified to include one break:

Qxr
i (θ|.) = γ0,τ + γ1,τSTDEV

i,t+τ
t + γ2,τSKEW

i,t+τ
t + γ3,τKURT

i,t+τ
t + εi,t+τ , (4.5)

where Qxr
i (θ|.) is the θth quantile of excess returns given information available at time t.31

Matched-frequency quantile regression results for 3M tenor are shown in tables (6a)-

(6f). We find that the coefficients on non-intercept terms are always jointly significant across

quantiles for all currency pairs. Adjusted R2s are also consistently high, ranging from 16%

to 44% for AUDUSD and 10% to 26% for USDJPY for example. Another consistent pattern

31We estimate the quantile regression model using the same break dates obtained in the OLS analysis
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across currency pairs and tenors is that option-implied moments have more predictive ability

for lower and upper quantiles of excess returns than the middle quantiles.

INSERT TABLES (6a)- (6f)HERE

4.2.2 Can the term structure of implied moments explain FX excess returns?

The matched-frequency results presented in subsection (4.2.1)suggest that options-based

measures of FX higher moment risks consistently explain subsequent bilateral excess returns.

We now turn to studying the predictive ability of the term structure of options-implied

moments for currency excess returns.

We first extend regression equation (4.3) by regressing 3M bilateral excess returns on

1M, 3M and 12M option-implied moments. That is, for each currency pair i, we estimate

the following OLS regression:

xrit+3M = γ0,3M +
∑
j

γ1,τ j
stdev

t+τ j ,i
t +

∑
j

γ2,τ j
skew

t+τ j ,i
t +

∑
j

γ3,τ j
kurt

t+τ j ,i
t + εit+3M , (4.6)

where j ∈ {1M, 3M, 12M}. Similar to the matched-frequency analysis in subsection (4.2.1),

our final term structure regression model is a modification of (4.6) in which we include

interactions with a structural break indicator variableD1. Regression results from specification

(4.6) (with break ) are shown in column B of table (7). Compared to the matched frequency

results presented in column A, we see a huge increase in the adjusted R2s with adjusted R2s

now ranging from 58% to 74% for the results from equation (4.6). In column C of table (7)

, we present condensed results of regressions that incorporate information from all tenors(

not just 1M,3M and 12M) by using principal components extratced from all tenors.

Column C therefore contains results from the following regression:
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xrit+3M = γ0,τ +
3∑
j=1

γ2,jPCjstdevTerm
i +

3∑
j=1

γ3,jPCjskewTerm
i+

3∑
j=1

γ4,jPCjkurtTerm
i + εit+3M .

(4.7)

In equation (4.7), PCjxxxxTerm
i refers to the jth principal component extract from

the currency i term structure of option-implied moment xxxx. Results from estimation

regression equation (4.7) are in column C of table (7).

Lastly, we extend the specification in (4.7) by adding information from the term structure

of first moments as additional regressors:

xrit+3M = γ0,τ +
3∑
j=1

γ1,jPCjmeanTerm
i +

3∑
j=1

γ2,jPCjstdevTerm
i+

3∑
j=1

γ3,jPCjskewTerm
i +

3∑
j=1

γ4,jPCjkurtTerm
i + εit+3M .

(4.8)

As we argued earlier, the term structure of first moments captures expectations of the

dynamics of future macroeconomic fundamentals. We use the term structure of interest rate

differentials to extract the principal components of the term structure of first moments of

log
(
St+τ
St

) . As we noted in (3.1 ), under CIP, the forward premium f t+τt − st,which is the

theoretical mean of the risk-neutral probability density of log
(
St+τ
St

)
is equal to the interest

differential iτ−i∗,τ . Using yield curve data to extract the term structure of first moments has

the advantage of allowing us to also use interest rate differentials for tenors not covered by

our option price data. As with our previous regressions, we estimate a version of regression

model (4.8) that includes interactions with a structural break indicator variable.

The condensed results from estimating equation (4.8) with breaks are presented in column
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(D) of table (7). Actual vs fitted plots from this regression are shown in figures (3(a)-3(e)).

INSERT FIGURE (3) AND TABLE (7) HERE

The main finding from comparing columns C and D is that information from the term

structure of first moments is not redundant. The adjusted R2s all show sizable increases,

and Wald tests for the null hypothesis that all coefficients on the first moment principal

components are zero suggest the first moments are contributing additional explanatory

power.

The main conclusion from analysis of the results presented in table (7) is that FX risks,

captured by the higher order moments, and expectations, captured by the term structure of

implied moments, have substantial explanatory power for ex-post excess currency returns.

4.3 Can option-implied moments forecast currency returns?

In subsection (4.3), we investigate the ability of options-based measures of higher moment

risks and their term structures to explain currency returns ∆st+τ .

4.3.1 Can the volatility smile predict currency returns?

For each currency pair i, we start by estimating the standard UIP regression

sit+τ − sit = α + β(f t+τt
i − sit) + εit+τ (4.9)

We focus on model fit and joint significance rather than testing whether the β coefficient is

equal to 1. Fitted vs Actual plots of estimated regression (4.9) (with breaks) are shown in

figures (4(a))-(4(e)), while condensed results can be found in column A of table (8).

We then consider the predictive ability of τ -period option-implied higher moments by
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estimating the following augmented UIP regression:

sit+τ − sit = α + β1(f i,t+τt − st) + β2stdev
i,t+τ
t + β3skew

i,t+τ
t + β4kurt

i,t+τ
t + εi,t+τ (4.10)

Equation (4.10) therefore augments the standard UIP equation (4.9) by studying the predictive

ability of the 1st − 4th moments of the distribution of log
(
St+τ
St

)
.

The condensed regressions results are shown in column B table (8) . The adjusted R2s

for the matched-frequency augmented UIP regressions are consistently high and the higher

order moments are always jointly significant.

INSERT TABLE (8) AND FIGURE (5) HERE

4.3.2 Can the term structure of implied moments predict currency returns?

We move on to studying whether the term structure of options-implied moments have

predictive ability for subsequent FX returns. We start by estimating a term structure

modification of the standard UIP equation (4.9) that uses information contained in the

term structure of forward premia:

sit+τ − sit = γ0,τ +
3∑
j=1

γ1,jPCjmeanTerm+ εit+τ . (4.11)

Condensed results from regression specification (4.11) are presented in column C of table

(8). Comparing columns A and C in table (8), we see that adding the whole term structure

of forward premia significantly improves the UIP regression fit.

Lastly, we regress exchange rate movements on the term structure of 1st − 4th moments.

32



sit+3M − sit = γ0,τ +
3∑
j=1

γ1,jPCjmeanTerm
i +

3∑
j=1

γ2,jPCjstdevTerm
i+

3∑
j=1

γ3,jPCjskewTerm
i +

3∑
j=1

γ4,jPCjkurtTerm
i + εit+3M .

(4.12)

Plots of actual versus fitted values from regression (4.12) are shown in figures (4) and the

condensed regression results are in column D of table (8).

INSERT TABLE (8) AND FIGURE (4) HERE

Comparing columns C and D in table (8), we find that the term structure of 1st-4th

moments adds a significant amount of explanatory power for exchange rate movements. The

main conclusion from the results presented in table (8) is that higher order moments and

expectations (captured through term structure dynamics) combine to explain subsequent

exchange rate movements.

5 Further Interpretation and Discussion

5.1 Higher Moments Matter: Asset Pricing Derivation of UIP

Condition 32

The fundamental asset pricing equation is given by

Et[Mt+τRt+τ ] = 1, (5.1)

where Mt+τ is the pricing kernel and Rt+τ = St+τ
St

is the gross return on an asset. Suppose

that assets can be denoted in domestic or foreign currency units. Under complete markets,

32The material in this subsection is from Backus et al. (2001)
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the following relationship holds:

M∗
t+τ

Mt+τ

=
St+τ
St

(5.2)

where M∗
t+τ is the foreign pricing kernel. By taking logs and conditional expectations,

expression (5.2) can be written as

Etst+τ − st = Et(logM∗
t+τ )− Et(logMt+τ ), (5.3)

where st = log(St).
33 Applying pricing equation (5.1) to price a forward contract yields

Et[Mt+τ (F
t+τ
t − St+τ )] = 0. (5.4)

Dividing equation (5.4) by St and using the result in expression in equation (5.2) gives the

expression for the forward premium:

f t+τt − st = log(Et(M∗
t+τ ))− log(Et(Mt+τ )) (5.5)

Applying the asset pricing equation (5.1) to price one-period domestic and foreign risk free

bonds, we get expressions for the short rates: it = −log(Et(Mt+τ )) and i∗t = −log(Et(M∗
t+τ )).

Equation (5.5) and the expressions for short rates give us the CIP condition:

it − i∗t = log(Et(M∗
t+τ )− log(Et(Mt+τ ) = f t+τt − st. (5.6)

Finally, the expression for ex-ante currency excess returns or deviation from UIP condition

33Writing the returns in the form (5.3) also makes it clear why macroeconomic fundamentals such as
consumption growth are expected to explain currency excess returns. As pointed out by Backus et al.
(2011), in macroeconomics, the pricing kernel is tied to macroeconomic quantities such as consumption
growth. Expression (5.7) therefore suggests that the dynamics of FX returns should be explained by domestic
and foreign macroeconomic fundamentals.
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is therefore given by

f t+τt −Etst+τ = it− i∗t −Etst+τ − st = (logEtM∗
t+τ −EtlogM∗

t+τ )− (logEtMt+τ −EtlogMt+τ ).

(5.7)

Under risk-neutrality the RHS of expression (5.7) is zero, and we get the forward unbiasedness

condition f t+τt = Etst+τ . Risk aversion is captured in the pricing kernel. Expression (5.7)

is therefore sometimes referred to as FX risk premium. Equation (5.7) makes it clear why

the failure of the UIP condition is usually attributed to time-varying risk and expectational

errors. Excess returns should theoretically depend on time-varying cross-country differences

in risk, captured through the pricing kernels. This risk could include liquidity risk, business-cycle

related risks, political risk, and liquidity risk. In macroeconomics, pricing kernel is linked

to macroeconomic fundamentals such as consumption growth. Thus, expression (5.7) also

suggests that currency excess returns should depend on differences in expected macroeconomic

conditions. As we mentioned earlier, the difficulty faced by the literature is that standard

proposed measures of risk do not appear to have strong correlation with excess returns.

Equation (5.7) is also insightful in showing how excess returns can potentially be explained

by higher order moments. This can be seen clearly by expressing logEtMt+τ in terms of the

cumulants of the conditional distribution of logMt+τ : logEtMt+τ =
∑∞

j=1
κjt
j!
, where κjt is the

jth cumulant of the conditional distribution of log(Mt+τ ). Cumulants are closely related to

moments, and the expressions for the first four cumulants are : κ1t = µ1t, κ2t = µ2t, κ3t = µ3t

and κ4t = µ4t − 3(µ2t)
2, where µ1t is the conditional mean and µjt denotes the jth central

moment of the distribution of logEtMt+τ .

Equation (5.7) can therefore also be written in the form

f t+τt − Etst+τ =
∞∑
j=2

(κ∗j − κj)
j!

(5.8)

where κj and κ∗j are the jth order cumulant of log(Mt+τ ) and log(M∗
t+τ ) respectively.

35



Equation (5.8) illustrates that currency excess returns will in general depend on the

higher order moments of the distribution of the pricing kernel. Note that if we assume that

pricing kernels are log-normally distributed, then expression (5.8) reduces to

f t+τt − Etst+τ =
(µ∗2t − µ2t)

2
.

The preceding discussion yet again illustrates how distributional assumptions can potentially

lead to a disregard for higher order moments which might crucial in empirical data.

5.2 Higher moments matter : asset allocation under higher order

moments34

We showed in subsection (2.2) that the assumptions of CARA utility and normality of returns

reduce the investor’s problem to mean-variance optimization. However, if the distribution

of portfolio returns is asymmetric, or the investor’s utility function is of a higher order

than the quadratic, or the mean and variance do not completely determine the distribution

of asset returns, then higher order moments and their signs must be taken into account

in the portfolio asset allocation problem. In this subsection we present a framework for

incorporating higher order moments into the asset allocation problem.

The objective in (2.4) can be intractable and it is usual to focus on approximation of (2.4)

based on higher order moments. Jondeau et al. (2010) consider a Taylor’s series expansion

of the utility function around expected utility up to the fourth order:

U(Wt+1) = U(EtWt+1) + U (1)(Wt+1)(Wt+1 − EtWt+1) + 1
2!
U (2)(Wt+1)(Wt+1 − EWt+1)2+

1
3!
U (3)(Wt+1)(Wt+1 − EtWt+1)3 + 1

4!
U (4)(Wt+1)(Wt+1 − EtWt+1)4,

(5.9)

where Un(.) denotes the nth derivative of the utility function with respect to next period

34Material in this subsection is from Jondeau et al. (2010)
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wealth. Taking the conditional expectation of expression ( 5.9) yields

Et[U(Wt+1)] ≈ U(EtWt+1) + U (1)(Wt+1)(Wt+1 − EtWt+1) + 1
2!
U (2)(Wt+1)(Wt+1 − EtWt+1)2+

1
3!
U (3)(Wt+1)(Wt+1 − EtWt+1)3 + 1

4!
U (4)(Wt+1)(Wt+1 − EtWt+1)4.

(5.10)

Under the assumption that the investor’s utility function is CARA, expression (5.10) reduces

to

Et[U(Wt+1)] ≈ −e−γµp
[
1 + γ2

2
σ2
p −

γ3

6
s3
p + γ4

24
k4
p

]
. (5.11)

In equation (5.11), s3
p and k4

p are the skewness and kurtosis of portfolio return. It is clear from

equation (5.11) that under CARA utility, investors prefer positive skewness and dislike high

variance and high kurtosis. Optimal portfolio weights can then be obtained by maximizing

expression (5.10) instead of the exact objective function shown in expression (2.4).

For CARA utility, the weight the investor puts on the higher order moments depends

on the degree of risk aversion parameter γ. In more general settings, however, the weight

on the nth moment depends on the nth derivative of the utility function, and the signs of

sensitivities of utility function to changes in higher moments cannot be easily pinned down.

If the moments are not orthogonal to each other, then the effect of utility of increasing one

moment might not be straight forward. Scott and Horvath (1980) establish some general

conditions for investor preference for skewness and kurtosis.

5.3 Higher Moments Matter: Higher order ICAPM35

We start with the fundamental pricing equation,

Et[Mt+τR
i
t+τ ] = 1 (5.12)

35From Guidolin and Timmerman (2008)
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for each asset i. where Mt+τ is the pricing kernel and Rt+τ are τ -period gross returns. In

consumption-based asset pricing models, Mt+τ is also equal to the investor’s marginal rate

of substitution between current and future consumption. The standard two moment CAPM

follows from assuming a linear relationship between the pricing kernel and, Rw
t+τ , the returns

to the world portfolio. Harvey (1991) show that if markets are globally integrated, cross

-country portfolio returns should be driven by conditional covariances of country portfolio

returns and returns to the world portfolio:

Et[Rt+τ
i −Rf

t ] =
Rw
t+τ

V art[Rw
t+τ ]

Covt[R
i
t+τ , R

w
t+τ ], (5.13)

with Rt+τ
i and Rf

t denominated in the same currency. Equation (5.13) is the two-moment

international CAPM (ICAPM). To incorporate fourth order moments, we assume that the

pricing kernel can be approximated by a third order Taylor expansion of the marginal utility

of world returns:

Mt+τ = 1 +Wt
U (2)(Wt)

U (1)(Wt)
Rw
t+τ +Wt

U (3)(Wt)

2!U (2)(Wt)
(Rw

t+τ )
2 +Wt

U (4)(Wt)

3!U1(Wt)
(Rw

t+τ )
3 (5.14)

Combining equations (5.12) and (5.14) gives us the four-moment CAPM,

Et[Ri
t+τ ]−R

f
t = γ1tCovt(R

i
t+τ , R

w
t+τ )︸ ︷︷ ︸

covariance

+γ2tCovt(R
i
t+τ , (R

w
t+τ )

2)︸ ︷︷ ︸
coskewness

+γ3tCovt(R
i
t+τ , (R

w
t+τ )

3)︸ ︷︷ ︸
cokurtosis

(5.15)

Equation (5.15) says that the excess returns on asset i will depend on the covariance,

co-skewness and co-kurtosis on the returns to that asset and the returns on the world

portfolio.
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6 Conclusion

This paper has documented a robust ability of options-implied measures of FX higher

moment risks to explain subsequent excess currency returns and FX returns. We also find

that the term structure of such risks, capturing forward-looking property of the exchange

rate, add further explanatory power. Our findings suggest that expectation and risk should

be given more careful consideration in the structural modeling and empirical testing of

exchange rate models. Thus, when testing exchange rate models, researchers may need to

carefully consider whether any auxiliary distributional or preference assumptions that they

make will kill off either the forward-looking property of exchange rates or investors’ potential

preferences for skewness, kurtosis or any higher moment risks.
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Figure 1: SAMPLE EXTRACTED 1M OPTION-IMPLIED DENSITIES

(a) AUDUSD

(b) EURUSD

(c) GBPUSD

Note: Option-implied risk-neutral distributions of St+1M extracted using the method in Malz (1997).
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Figure 2: Time Series Evolution Of 1M Option Implied Moments

(a) AUDUSD 1M STANDARD DEVIATION AND KURTOSIS

(b) AUDUSD 1M SKEWNESS

(c) EURUSD 1M STANDARD DEVIATION AND KURTOSIS

(d) EURUSD 1M SKEWNESS
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Figure 2: Time Series Evolution Of 1M Option Implied Moments

(e) GBPUSD 1M STANDARD DEVIATION AND KURTOSIS

(f) GBPUSD 1M SKEWNESS

(g) USDCAD 1M STANDARD DEVIATION AND KURTOSIS

Note: Moments extracted using the methodology developed in Bakshi et al. (2003).
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Figure 2: Time Series Evolution Of 1M Option Implied Moments

(h) USDCAD 1M SKEWNESS

(i) USDJPY 1M STANDARD DEVIATION AND KURTOSIS

(j) USDJPY 1M SKEWNESS

Note: Moments extracted using the methodology developed in Bakshi et al. (2003).
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Figure 3: Quarterly FX Excess Returns on Term Structure of 1st to 4th Moments+Break

(a) AUDUSD 3M

(b) EURUSD 3M

(c) GBPUSD 3M

Note: Fitted vs Actual plots from the regression of 3M excess return, as defined in expression (2.3), on

the first three principal components from the term structure of extracted moments of πQt

(
lnST

St

)
(Regression

specification in expression (4.8). Condensed regression results are in column D of table (7) .
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Figure 3: Quarterly FX Excess Returns on Term Structure of 1st to 4th Moments+Break

(d) USDCAD 3M

(e) USDJPY 3M

Note: Fitted vs Actual plots from the regression of 3M excess return, as defined in expression (2.3), on

the first three principal components from the term structure of extracted moments of πQt

(
lnST

St

)
(Regression

specification in expression (4.8). Condensed regression results are in column D of table (7) .
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Figure 4: Quarterly Exchange Rate Movements on Term Structure of 1st to 4th

Moments+Break

(a) AUDUSD 3M RET

(b) EURUSD 3M RET

(c) GBPUSD 3M RET

Fitted vs Actual plots from the regression of 3M log
(
ST

St

)
on the first three principal components from the

term structure of extracted moments of πQt

(
lnST

St

)
(Regression specification in expression (4.12). Condensed

regression results are in column D (8) .
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Figure 4: Quarterly Exchange Rate Movements on Term Structure of 1st to 4th

Moments+Break

(d) USDCAD 3M RET

(e) USDJPY 3M RET

Fitted vs Actual plots from the regression of 3M log
(
ST

St

)
on the first three principal components from the

term structure of extracted moments of πQt

(
lnST

St

)
(Regression specification in expression (4.12). Condensed

regression results are in column D of table (8) .
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Figure 5: Quarterly Exchange Rate Movements on Matched Frequency 1st Moment+Break

(a) AUDUSD

(b) EURUSD 3M UIP

(c) GBPUSD 3M UIP

Fitted vs Actual plots from the regression of 3M log
(
ST

St

)
on matched frequency forward premium (standard

forward premium regression). Regression specification in expression (4.9). Condensed regression results for
all currency pairs are in column A of table (8) .
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Figure 5: QuarterlyExchange Rate Movements on Matched Frequency 1st Moment+Break

(d) USDCAD 3M UIP

(e) USDJPY 3M UIP

Fitted vs Actual plots from the regression of 3M log
(
ST

St

)
on matched frequency forward premium (standard

forward premium regression). Regression specification in expression (4.9). Condensed regression results for
all currency pairs are in column A table (8) .
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Figure 6: Profit diagrams for options strategies

(a) Profit Function of a Straddle (b) Profit Function of a Risk Reversal

(c) Profit Function of a Strangle (d) Profit Function of a Butterfly

Note: Straddle,Risk Reversal,Strangle and Butterfly are as defined in subsection (3.3)
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Table 2: SUMMARY STATISTICS OF OPTION-IMPLED MOMENTS:AUDUSD

STDEV
1WK 1M 2M 3M 6M 9M 12M

Mean 0.022 0.044 0.044 0.074 0.099 0.112 0.122
Median 0.020 0.041 0.042 0.072 0.098 0.112 0.121

Maximum 0.080 0.114 0.099 0.144 0.170 0.211 0.224
Minimum 0.010 0.019 0.019 0.031 0.039 0.025 0.010
Std. Dev. 0.010 0.018 0.016 0.025 0.034 0.044 0.055

AR(1) 0.970 0.987 0.990 0.999 0.993 0.988 0.986

SKEW
Mean -0.371 -0.636 -0.704 -0.979 -1.394 -1.880 -2.081

Median -0.352 -0.631 -0.693 -0.936 -1.196 -1.513 -1.695
Maximum 0.576 0.043 -0.087 -0.159 -0.540 6.386 371.902
Minimum -1.461 -2.710 -2.777 -2.568 -3.360 -5.371 -13.301
Std. Dev. 0.214 0.268 0.259 0.367 0.610 1.144 13.235

AR(1) 0.818 0.931 0.927 0.963 0.982 0.939 0.038

KURT
Mean 3.602 4.424 4.553 5.634 8.088 16.254 164.917

Median 3.528 4.197 4.312 5.045 7.161 8.791 10.176
Maximum 12.881 21.148 19.917 17.426 34.967 1186.148 72716.840
Minimum 2.384 3.481 3.666 3.964 3.918 4.117 4.622
Std. Dev. 0.661 1.191 1.183 1.629 3.610 45.786 2627.969

AR(1) 0.628 0.788 0.781 0.912 0.958 0.419 0.032

XR
Mean -0.002 -0.008 -0.016 -0.023 -0.044 -0.059 -0.052

Median -0.005 -0.016 -0.028 -0.042 -0.078 -0.103 -0.104
Maximum 0.177 0.317 0.348 0.441 0.418 0.383 0.400
Minimum -0.113 -0.130 -0.195 -0.266 -0.324 -0.397 -0.420
Std. Dev. 0.025 0.052 0.077 0.099 0.155 0.182 0.194

AR(1) 0.754 0.942 0.977 0.985 0.933 0.995 0.995

Observations 1104 1098 1080 1058 992 924 855

Note:“St Dev”,“Skew”, and “Kurt” are the implied standard deviation, skewness,

and kurtosis of the risk-neutral distribution of ln
(
St+τ
St

)
. Summary statistics for the

rest of the currencies are similar.
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Table 3: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(a) AUDUSD

Eq Name: 1 WK 1M 2M 3M 6M 9M 12M
Dep. Var: XR XR XR XR XR XR XR

C 0.052 0.061 0.08 0.122 0.814 0.099 -0.066
[0.0100]*** [0.0213]*** [0.0265]*** [0.0487]** [0.2298]*** [0.1194] [0.0776]

D1 -0.045 0.015 0.103 0.186 -0.438 0.464 0.365
[0.0133]*** [0.0360] [0.0489]** [0.0696]*** [0.2396]* [0.1351]*** [0.0818]***

STDEV 0.406 0.72 0.746 -0.202 -5.587 1.509 4.034
[0.1913]** [0.2235]*** [0.3128]** [0.3048] [1.5794]*** [0.9596] [0.6371]***

SKEW 0.018 0.074 0.128 0.18 0.329 0.237 0.108
[0.0086]** [0.0283]*** [0.0455]*** [0.0624]*** [0.0341]*** [0.0165]*** [0.0161]***

KURT -0.014 -0.007 0 0.019 0.016 0.025 0.008
[0.0024]*** [0.0068] [0.0080] [0.0140] [0.0081]** [0.0023]*** [0.0012]***

D1*STDEV -1.235 -2.547 -4.706 -3.325 2.013 -6.02 -6.79
[0.3348]*** [0.4595]*** [0.6834]*** [0.5257]*** [1.6640] [1.0112]*** [0.6594]***

D1*SKEW -0.02 -0.066 -0.089 -0.119 -0.472 -0.207 -0.105
[0.0127] [0.0321]** [0.0505]* [0.0675]* [0.0549]*** [0.0263]*** [0.0168]***

D1*KURT 0.015 0.004 -0.002 -0.024 -0.046 -0.026 -0.008
[0.0030]*** [0.0077] [0.0092] [0.0146] [0.0111]*** [0.0023]*** [0.0012]***

Observations: 1104 1098 1080 1058 992 924 855
Adj. R-squared: 0.138 0.254 0.286 0.34 0.644 0.786 0.829

F-statistic: 7.55 8.52 11.039 15.64 29.15 160.51 244.6
Prob(F-stat): 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Break Date 2/24/2009 2/16/2009 1/30/2009 1/28/2009 8/4/2008 5/15/2008 5/2/2008

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.4):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 3: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(b) EURJPY

Eq Name: 1 WK 1M 2M 3M 6M 9M 12M
Dep. Var: XR XR XR XR XR XR XR

C -0.016 -0.019 -0.061 -0.12 -0.087 -0.064 -0.085
[0.0098] [0.0123] [0.0163]*** [0.0304]*** [0.0207]*** [0.0243]*** [0.0366]**

D1 0.033 0.08 0.192 0.318 0.694 0.845 0.7
[0.0126]*** [0.0201]*** [0.0318]*** [0.0496]*** [0.0455]*** [0.0420]*** [0.0683]***

STDEV 0.66 -0.839 -0.496 -2.301 -0.482 -0.972 0.064
[0.4501] [0.3174]*** [0.3638] [0.4260]*** [0.3194] [0.3378]*** [0.3776]

SKEW 0.003 -0.02 -0.01 -0.256 -0.073 -0.072 -0.03
[0.0072] [0.0160] [0.0264] [0.0440]*** [0.0213]*** [0.0204]*** [0.0179]*

KURT 0.002 0.005 0.012 -0.006 0.001 0 0
[0.0013] [0.0026]* [0.0035]*** [0.0041] [0.0011] [0.0004] [0.0002]

D1*STDEV -0.894 0.225 -1.068 0.324 -3.128 -2.502 -2.462
[0.5196]* [0.4196] [0.5020]** [0.6302] [0.4327]*** [0.3893]*** [0.4548]***

D1*SKEW -0.006 -0.082 -0.2 0.058 0.219 0.249 0.132
[0.0121] [0.0319]** [0.0581]*** [0.0813] [0.0382]*** [0.0276]*** [0.0303]***

D1*KURT -0.005 -0.025 -0.048 -0.03 0.007 0.002 0
[0.0020]** [0.0046]*** [0.0085]*** [0.0112]*** [0.0042] [0.0014]* [0.0010]

Observations: 1106 1100 1080 1058 992 926 861
Adj. R-squared: 0.035 0.188 0.326 0.462 0.748 0.82 0.636

F-statistic: 1.6 11.87 19.127 14.34 47.8 114.51 16.8
Prob(F-stat): 0.1430 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Break Dates 10/22/2008 7/30/2008 8/7/2008 8/7/2008 4/1/2008 1/3/2008 10/5/2007

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.4):

xrit+τ = γ0,τ +D1i,τ + γ00,τD1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 3: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(c) EURUSD

Eq Name: 1 WK 1M 2M 3M 6M 9M 12M
Dep. Var: XR XR XR XR XR XR XR

C -0.011 0.061 0.116 0.134 0.219 -0.103 -0.509
[0.0051]** [0.0268]** [0.0311]*** [0.0417]*** [0.0731]*** [0.0782] [0.1206]***

D1 0.015 -0.033 0.086 0.032 0.032 0.575 0.897
[0.0069]** [0.0345] [0.0587] [0.0844] [0.0844] [0.0952]*** [0.1369]***

STDEV 0.81 -0.167 -0.883 -2.048 -2.048 3.643 7.966
[0.3992]** [0.3606] [0.2345]*** [0.8967]** [0.8967]** [0.8227]*** [1.3106]***

SKEW 0.011 0.088 0.125 0.15 0.15 0.102 0.019
[0.0046]** [0.0197]*** [0.0204]*** [0.0184]*** [0.0184]*** [0.0131]*** [0.0100]*

KURT 0.001 -0.002 0.005 0.013 0.013 0.009 0.004
[0.0009] [0.0025] [0.0023]** [0.0020]*** [0.0020]*** [0.0008]*** [0.0007]***

D1*STDEV -0.473 0.056 -1.737 0.599 0.599 -6.28 -8.955
[0.4410] [0.6868] [0.6529]*** [1.0092] [1.0092] [0.9561]*** [1.4042]***

D1*SKEW -0.021 -0.123 -0.152 -0.197 -0.197 -0.072 0.041
[0.0064]*** [0.0224]*** [0.0275]*** [0.0337]*** [0.0337]*** [0.0350]** [0.0241]*

D1*KURT -0.004 -0.008 -0.016 -0.032 -0.032 -0.025 -0.02
[0.0011]*** [0.0034]** [0.0046]*** [0.0057]*** [0.0057]*** [0.0062]*** [0.0022]***

Observations: 1096 1084 1075 1053 988 924 858
Adj. R-squared: 0.05 0.187 0.294 0.372 0.527 0.743 0.737

F-statistic: 8.5 8.58 18.56 19.68 36.19 110.28 157.97
Prob(F-stat): 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Break Date 10/21/2008 2/11/2009 1/16/2009 2/4/2009 8/7/2008 8/8/2008 8/7/2008

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.4):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 3: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(d) GBPUSD

Eq Name: 1 WK 1M 2M 3M 6M 9M 12M
Dep. Var: XR XR XR XR XR XR XR

C -0.023 -0.058 0.064 -0.105 0.061 -0.261 -0.085
[0.0062]*** [0.0221]*** [0.0193]*** [0.0368]*** [0.0869] [0.0459]*** [0.0310]***

D1 0.029 0.048 0.113 -0.018 0.003 0.653 0.593
[0.0085]*** [0.0237]** [0.0431]*** [0.0418] [0.0969] [0.0700]*** [0.0629]***

STDEV 1.091 2.729 1.157 3.744 2.385 6.912 4.959
[0.4012]*** [0.4609]*** [0.2792]*** [0.4595]*** [0.9436]** [0.7768]*** [0.4353]***

SKEW 0.008 0.041 0.077 0.054 0.082 -0.006 0
[0.0065] [0.0168]** [0.0314]** [0.0226]** [0.0233]*** [0.0027]** [0.0002]*

KURT 0.003 0.006 -0.004 0.007 0.004 0 0
[0.0008]*** [0.0018]*** [0.0030] [0.0013]*** [0.0010]*** [0.0000]* [0.0000]*

D1*STDEV -0.883 -1.868 -1.327 -1.207 -1.77 -8.482 -7.932
[0.4927]* [0.4958]*** [0.9269] [0.5623]** [1.0567]* [0.8701]*** [0.5060]***

D1*SKEW -0.007 -0.047 -0.078 -0.085 -0.058 0.066 0.077
[0.0100] [0.0241]* [0.0372]** [0.0290]*** [0.0314]* [0.0153]*** [0.0199]***

D1*KURT -0.006 -0.012 -0.034 -0.022 -0.02 -0.016 0.001
[0.0014]*** [0.0025]*** [0.0114]*** [0.0037]*** [0.0038]*** [0.0026]*** [0.0002]***

Observations: 1117 1100 1079 1058 992 920 795
Adj. R-squared: 0.079 0.2828 0.341 0.489 0.594 0.752 0.697

F-statistic: 5.096 15.14 9.921 32.379 26.64 66.54 161.7
Prob(F-stat): 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Break Date 11/11/2008 10/21/2008 3/17/2009 10/23/2008 10/20/2008 8/12/2008 5/7/2008

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.4):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 3: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(e) USDCAD

Eq Name: 1 WK 1M 2M 3M 6M 9M 12M
Dep. Var: XR XR XR XR XR XR XR

C 0.024 -0.484 -0.075 -0.21 0.417 0.452 0.54
[0.0111]** [0.1115]*** [0.0541] [0.0514]*** [0.0628]*** [0.1504]*** [0.0655]***

D1 -0.034 0.471 0.111 0.113 -0.893 -0.806 -0.902
[0.0134]** [0.1120]*** [0.0557]** [0.0566]** [0.0699]*** [0.1578]*** [0.0843]***

STDEV -1.462 5.211 1.095 1.122 -4.802 -6.55 -6.713
[0.5696]** [0.7409]*** [1.3545] [0.5585]** [0.6222]*** [1.3511]*** [0.6135]***

SKEW 0.001 0.094 -0.194 -0.151 0.038 -0.001 0.041
[0.0100] [0.0354]*** [0.0512]*** [0.0393]*** [0.0249] [0.0375] [0.0181]**

KURT -0.001 0.103 -0.01 0.005 -0.005 -0.003 0.001
[0.0030] [0.0271]*** [0.0067] [0.0092] [0.0028]* [0.0036] [0.0022]

D1*STDEV 1.031 -5.355 -2.311 -0.487 8.096 8.383 8.259
[0.6047]* [0.7804]*** [1.3939]* [0.6360] [0.6942]*** [1.3786]*** [0.6530]***

D1*SKEW 0.001 -0.057 0.162 0.133 0.105 0.04 -0.028
[0.0123] [0.0368] [0.0526]*** [0.0405]*** [0.0291]*** [0.0407] [0.0240]

D1*KURT 0.006 -0.1 0.018 0.012 0.04 0.036 0.033
[0.0035]* [0.0272]*** [0.0069]*** [0.0094] [0.0073]*** [0.0068]*** [0.0078]***

Observations: 1105 1086 1074 1052 982 915 843
Adj. R-squared: 0.111 0.172 0.306 0.466 0.713 0.77 0.818

F-statistic: 1.977 14.88 12.667 33.56 72.95 80.61 130.3
Prob(F-stat): 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Break Date 10/21/2008 10/12/2007 10/16/2008 2/4/2009 4/3/2008 8/21/2008 7/30/2008

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.4):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 3: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(f) USDJPY

Eq Name: 1 WK 1M 2M 3M 6M 9M 12M
Dep. Var: XR XR XR XR XR XR XR

C 0.001 -0.013 -0.043 -0.042 0.057 0.127 0.13
[0.0061] [0.0138] [0.0132]*** [0.0189]** [0.0255]** [0.0203]*** [0.0096]***

D1 0.026 0.124 0.208 0.239 0.243 0.161 0.12
[0.0079]*** [0.0300]*** [0.0314]*** [0.0340]*** [0.0395]*** [0.0274]*** [0.0280]***

STDEV 0.053 0.343 0.72 0.459 -0.96 -1.563 -1.017
[0.2180] [0.2098] [0.2078]*** [0.2486]* [0.2257]*** [0.2844]*** [0.1953]***

SKEW 0.005 -0.005 -0.011 -0.034 -0.026 -0.016 -0.001
[0.0075] [0.0168] [0.0120] [0.0143]** [0.0154]* [0.0080]** [0.0003]**

KURT 0.001 0.001 0.003 0.002 0.001 0 0
[0.0007] [0.0007]* [0.0008]*** [0.0004]*** [0.0005]* [0.0002]** [0.0000]**

D1*STDEV -0.998 -2.238 -3.118 -2.597 -0.93 0.475 0.151
[0.3382]*** [0.5290]*** [0.5141]*** [0.4342]*** [0.3319]*** [0.3287] [0.2897]

D1*SKEW -0.007 -0.018 -0.032 0.008 0.009 0.107 0.032
[0.0090] [0.0207] [0.0191]* [0.0210] [0.0250] [0.0146]*** [0.0098]***

D1*KURT -0.003 -0.011 -0.014 -0.012 -0.016 0.004 -0.002
[0.0011]*** [0.0034]*** [0.0020]*** [0.0020]*** [0.0040]*** [0.0018]** [0.0018]

Observations: 1109 1098 1079 1057 992 920 848
Adj. R-squared: 0.032 0.11 0.201 0.18 0.413 0.551 0.351

F-statistic: 5.469 3.780 10.354 11.169 17.950 64.770 19.500
Prob(F-stat): 0.000 0.001 0.000 0.000 0.000 0.000 0.000
Break Date 1/20/2009 1/7/2009 12/12/2008 11/24/2008 4/22/2008 1/11/2008 9/14/2007

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.4):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 4: ROBUSTNESS CHECKS

(a) Matched Frequency with Non-overlapping Data

FX AUDUSD EURUSD GBPUSD USDCAD USDJPY

C 0.1595 0.087 -0.0676 -1.1367 -0.0208
[0.0382]*** [0.0746] [0.0241]*** [0.1164]*** [0.0556]

St Dev 1.4816 0.264 2.7121 9.6125 0.6399
[0.1883]*** [0.3438] [0.5195]*** [0.6839]*** [0.4725]

Skew 0.0266 0.0713 0.0523 0.2162 -0.0171
[0.0554] [0.0420]* [0.0483] [0.0266]*** [0.0425]

Kurt -0.0436 -0.011 0.01 0.2502 -0.0017
[0.0103]*** [0.0108] [0.0053]* [0.0283]*** [0.0102]

Break -0.0511 -0.0458 0.0638 1.1344 0.2033
[0.0806] [0.0816] [0.0280]** [0.1169]*** [0.0708]***

Break*St Dev -3.6467 0.1621 -1.392 -10.105 -3.0348
[0.8496]*** [1.4251] [0.5061]*** [0.7451]*** [1.1497]**

Break*Skew -0.0062 -0.128 -0.0627 -0.1728 0.0166
[0.0595] [0.0527]** [0.0664] [0.0307]*** [0.0485]

Break*Kurt 0.0384 -0.0071 -0.0218 -0.2457 -0.0184
[0.0132]*** [0.0124] [0.0076]*** [0.0288]*** [0.0111]

# Obs. 51 50 51 51 50
Adj-R2 0.36 0.1 0.18 0.14 0.14
F-stats 23.7197 4.2142 6.846 37.8234 5.6195
P Value 0 0.0021 0 0 0.0002

Note: The dependent variable is excess currency returns as defined in equation(2.3).
Regression is the one in equation (4.4):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

The breakdate D1 is same as one reported in table (3). F-stats report Wald test of the null
that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0. Newey-West Standard errors are reported
in brackets. Asterisks indicate significance at 1 % (***), 5% (**), and 10% (*) level.
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Table 4: ROBUSTNESS CHECKS

(b) Matched Frequency OLS Subsample Analysis

1M 3M 12M
AUDUSD post pre post pre post pre

# of obs. 543 555 516 542 506 349
Adjusted R2 0.186 0.21 0.485 0.151 0.695 0.85

P value( F stat.) 0.000 0.000 0.000 0.000 0.000 0.000

EURJPY post pre post pre post pre
# of obs. 688 412 640 418 662 199

Adjusted R2 0.153 0.238 0.345 0.652 0.465 0.104
F stat.(p. Value) 0.000 0.000 0.000 0.000 0.000 0.312

EURUSD post pre post pre post pre
# of obs. 534 550 507 546 440 418

Adjusted R2 0.126 0.234 0.28 0.451 0.627 0.8
P value( F stat.) 0.000 0.000 0.000 0.000 0.000 0.000

GBPUSD post pre post pre post pre
# of obs. 629 471 585 473 509 286

Adjusted R2 0.133 0.416 0.489 0.415 0.53 0.649
P value( F stat.) 0.000 0.000 0.000 0.000 0.000 0.000

USDCAD post pre post pre post pre
# of obs. 883 203 507 545 432 411

Adjusted R2 0.091 0.466 0.487 0.387 0.526 0.793
P value( F stat.) 0.000 0.000 0.000 0.000 0.000 0.000

USDJPY post pre post pre post pre
# of obs. 571 527 562 495 677 171

Adjusted R2 0.196 0.022 0.328 0.044 0.354 0.343
P value( F stat.) 0 0.123 0 0 0 0

The dependent variable is excess currency returns as defined in equation(2.3) .The sample is divided according
to the breakdates reported in table (3). Regression specification is

xrt+τ = γ0,τ + γ1,τstdev
t+τ
t + γ2,τskew

t+τ
t + γ3,τkurt

t+τ
t + εt+τ

F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = 0. Newey-West Standard errors are reported
in brackets. Asterisks indicate significance at 1 % (***), 5% (**), and 10% (*) level.
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Table 4: ROBUSTNESS CHECKS

(c) MATCHED FREQUENCY OLS WITH 10D IMPLIED MOMENTS

1WK 1M 2M 3M 6M 9M 12M
AUDUSD

# of obs. 1108 1099 1080 1058 992 924 854
Break Date 2/24/2009 2/16/2009 1/19/2009 1/9/2009 11/19/2008 5/2/2008 5/2/2008

Adjusted R2 0.118 0.248 0.309 0.35 0.668 0.793 0.834
P value(F stat.) 0.002 0.000 0.000 0.000 0.000 0.000 0.000

EURJPY
# of obs. 1117 1098 1080 1058 992 926 861

Break Date 10/22/2008 8/7/2008 8/7/2008 8/7/2008 4/2/2008 1/3/2008 10/1/2008
Adjusted R2 0.041 0.185 0.502 0.502 0.729 0.845 0.622

P value(F stat.) 0.027 0.000 0.000 0.000 0.000 0.000 0.000

EURUSD
# of obs. 1114 1099 1074 1058 990 924 858

Break Date 10/21/2008 2/11/2009 1/16/2009 2/4/2009 8/7/2008 8/12/2009 8/7/2008
Adjusted R2 0.054 0.174 0.284 0.221 0.546 0.763 0.737

P value(F stat.) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GBPUSD
# of obs. 1115 1098 1079 1058 992 920 793

Break Date 11/11/2008 10/21/2008 3/17/2009 10/23/2008 10/22/2008 8/12/2008 5/5/2008
Adjusted R2 0.083 0.369 0.369 0.474 0.616 0.753 0.697

P value(F stat.) 0 0 0 0 0 0 0

USDCAD
# of obs. 1116 1098 1080 1058 992 926 861

Break Date 10/21/2008 10/10/2007 10/20/2008 10/20/2008 4/3/2008 8/21/2008 7/31/2008
Adjusted R2 0.121 0.157 0.369 0.091 0.717 0.772 0.824

P value(F stat.) 0 0 0 0.0387 0 0 0

USDJPY
# of obs. 1117 1099 1079 1057 992 920 848

Break Date 1/20/2009 1/7/2009 12/11/2008 7/3/2008 4/22/2008 1/11/2008 9/14/2007
Adjusted R2 0.03 0.1 0.209 0.221 0.42 0.532 0.418

P value(F stat.) 0 0.004 0 0 0 0 0

Note: The dependent variable is excess currency returns as defined in equation(2.3).
Regression is the one in equation (4.4). D1 = break date selected by Bai and Perron (2003)
test, allowing for maximum of one break. F-stats report Wald test of the null that
γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
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Table 4: ROBUSTNESS CHECKS

(d) Robust Least Squares Regression

Eq Name: AUDUSD EURJPY EURUSD GBPUSD USDCAD USDJPY
Method: ROBUSTLS ROBUSTLS ROBUSTLS ROBUSTLS ROBUSTLS ROBUSTLS

Dep. Var: 3M XR 3M XR 3M XR 3M XR 3M XR 3M XR

C -0.051 -0.093 0.076 -0.124 -0.129 -0.047
[0.0125]*** [0.0130]*** [0.0162]*** [0.0191]*** [0.0141]*** [0.0116]***

D1 0.356 0.278 0.142 -0.016 0.032 0.248
[0.0229]*** [0.0203]*** [0.0253]*** [0.0210] [0.0185]* [0.0189]***

STDEV 0.195 -1.814 -0.591 2.218 -0.073 0.486
[0.0892]** [0.2028]*** [0.1164]*** [0.3561]*** [0.1195] [0.1058]***

SKEW 0.062 -0.19 0.097 0.024 -0.075 -0.034
[0.0205]*** [0.0160]*** [0.0081]*** [0.0071]*** [0.0077]*** [0.0095]***

KURT 0.013 -0.004 0.006 0.009 0.015 0.002
[0.0054]** [0.0016]** [0.0010]*** [0.0010]*** [0.0015]*** [0.0004]***

D1*STDEV -3.762 0.224 -1.593 1.234 0.684 -2.677
[0.1961]*** [0.2650] [0.3352]*** [0.3887]*** [0.1896]*** [0.2281]***

D1*SKEW 0.005 0.137 -0.142 -0.083 0.059 0.004
[0.0234] [0.0333]*** [0.0123]*** [0.0105]*** [0.0097]*** [0.0139]

D1*KURT -0.016 -0.013 -0.024 -0.036 0.003 -0.013
[0.0057]*** [0.0052]** [0.0027]*** [0.0022]*** [0.0019]* [0.0013]***

Observations: 1058 1058 1053 1058 1052 1057
Adj. Rw-squared: 0.45 0.5 0.42 0.62 0.59 0.23

Prob(F-stat): 0.00 0.00 0.00 0.00 0.00 0.00

Note: The dependent variable is excess currency returns as defined in equation(2.3).
Regression is the one in equation (4.4):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

The breakdate D1 the same as the one selected in (3) . We use MM-estimation. F-stats
report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0. Adj. R2

w is the
gooness of fit statistic introduced in Renaud and Victoria-Fraser (2010). Huber type II
standard errors are in brackets. A quick introduction to robust regression analysis is in
Eviews (2013)
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Table 5: Global Risk XR Regressions

(a) Global Risk Smile XR Regression

FX AUDUSD EURUSD GBPUSD USDCAD USDJPY

C -0.0229 -0.0039 0.0084 0.0103 0.0187
[0.0068]*** [0.0045] [0.0047]* [0.0043]** [0.0039]***

PC1 3M St Dev -0.0049 -0.001 0.0071 -0.002 -0.0017
[0.0058] [0.0030] [0.0044] [0.0041] [0.0036]

PC1 3M Skew -0.0105 0.0029 -0.0139 0.006 -0.0061
[0.0104] [0.0052] [0.0079]* [0.0076] [0.0058]

PC1 3M Kurt -0.0243 -0.0098 -0.0248 0.0157 -0.0137
[0.0118]** [0.0055]* [0.0095]*** [0.0091]* [0.0056]**

PC2 3M St Dev -0.0172 -0.0198 0.0189 -0.0054 0.0139
[0.0142] [0.0095]** [0.0111]* [0.0094] [0.0122]

PC2 3M Skew -0.0275 -0.0136 -0.0138 0.0117 0.0077
[0.0074]*** [0.0046]*** [0.0043]*** [0.0043]*** [0.0037]**

PC2 3M Kurt -0.0132 -0.0099 0.005 0.0078 0.0032
[0.0084] [0.0043]** [0.0049] [0.0051] [0.0052]

PC3 3M St Dev 0.0888 0.0448 0.0372 -0.0268 0.0082
[0.0256]*** [0.0152]*** [0.0193]* [0.0175] [0.0138]

PC3 3M Skew 0.0271 0.0157 0.0173 -0.004 -0.0152
[0.0098]*** [0.0060]*** [0.0069]** [0.0064] [0.0053]***

PC3 3M Kurt 0.035 0.0157 0.0117 -0.016 -0.0049
[0.0127]*** [0.0059]*** [0.0081] [0.0081]** [0.0051]

# Obs. 1046 1046 1046 1046 1046
Adj-R2 0.26 0.19 0.21 0.18 0.14
F-stats 2.847 3.719 3.779 3.279 4.067

P Value 0.0026 0.0001 0.0001 0.0006 0

Note: For each quarterly excess return, we use the first three principal components
extracted from the 3-month risk-neutral moments of all currencies as regressors.
Newey-West standard deviations are reported in brackets, with asterisks indicating
significance at 1% (***), 5% (**), and 10% (*) level. F-stats and P value below are based
on the Wald test of the null that the coefficients on all principal components are zero.
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Table 5: Global Risk XR Regressions

(b) GLOBAL XR TERM STRUCTURE REG.REGRESSION

FX AUDUSD EURUSD GBPUSD USDCAD USDJPY

C -0.0044 0.009 0.0206 0.0017 0.0153
[0.0080] [0.0046]** [0.0060]*** [0.0054] [0.0048]***

PC1 all St Dev -0.0156 -0.007 -0.0035 0.0073 -0.0022
[0.0040]*** [0.0023]*** [0.0029] [0.0024]*** [0.0022]

PC1 all Skew 0.0294 0.019 0.0104 -0.0177 0.0042
[0.0066]*** [0.0040]*** [0.0055]* [0.0050]*** [0.0040]

PC1 all Kurt 0.0086 0.0082 -0.002 -0.0029 -0.0044
[0.0068] [0.0037]** [0.0053] [0.0053] [0.0033]

PC2 all St Dev 0.0286 0.0026 0.0202 -0.0244 0.0187
[0.0090]*** [0.0057] [0.0087]** [0.0061]*** [0.0061]***

PC2 all Skew -0.0208 -0.0147 -0.0137 0.0127 -0.0037
[0.0033]*** [0.0021]*** [0.0027]*** [0.0025]*** [0.0025]

PC2 all Kurt 0.0276 0.015 0.0147 -0.015 0.0015
[0.0040]*** [0.0024]*** [0.0027]*** [0.0026]*** [0.0028]

PC3 all St Dev -0.022 -0.0174 -0.0077 0.0074 0.0073
[0.0112]** [0.0065]*** [0.0088] [0.0076] [0.0068]

PC3 all Skew -0.0232 -0.0102 -0.0083 0.0157 -0.0002
[0.0057]*** [0.0033]*** [0.0037]** [0.0035]*** [0.0032]

PC3 all Kurt 0.0193 0.013 0.009 -0.0134 0.0083
[0.0133] [0.0075]* [0.0097] [0.0098] [0.0054]

# Obs. 785 785 785 785 785
Adj-R2 0.37 0.4 0.28 0.34 0.16
F-stats 11.259 16.092 9.724 9.838 3.239

P Value 0 0 0 0 0.0007

Note: For each quarterly excess return, we use the first three principal components extracted from
each moments for all tenors and all currencies as regressors Newey-West standard deviations are
reported in brackets, with asterisks indicating significance at 1% (***), 5% (**), and 10% (*)
level. F-stats and P value below are based on the Wald test of the null that the coefficients on all
principal components are zero.
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Table 7: Higher Moment & Term Structure Predictors of Quarterly FX Excess
Returns

A B C D

AUDUSD
# of observations 1058 831 843 791

Adjusted R2 0.34 0.74 0.79 0.85
P(F-stat) 0.00 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]
BreakDate 1/28/2009 7/23/2008 7/16/2008 7/3/2008
EURUSD

# of observations 1053 855 832 832
Adjusted R2 0.37 0.833 0.79 0.82

P(F-stat) 0 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]
BreakDate 2/4/2009 8/7/2009 8/7/2008 8/7/2008
GBPUSD

# of observations 1058 795 794 740
Adjusted R2 0.49 0.75 0.7 0.88

P(F-stat) 0 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.04,0.00]
BreakDate 10/23/2008 10/24/2008 10/23/2008 6/30/2008

USDCAD
# of observations 1052 831 829 829

Adjusted R2 0.47 0.74 0.72 0.82
P(F-stat) 0.00 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]
BreakDate 2/4/2009 7/3/2008 7/3/2008 7/8/2008

USDJPY
# of observations 1057 846 841 841

Adjusted R2 0.18 0.58 0.6 0.71
P(F-stat) 0 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]
BreakDate 11/24/2008 7/21/2008 7/21/2008 7/21/2008

Note: In all equations, dependent variable is quarterly excess currency returns, as defined in
equation (2.3). All regressions are estimated with interactions with a break indicator variable D1.
Breakdate for each equation found using Bai and Perron (2003) method. Column A is from the
matched-frequency regression in equation (4.3): Column B is regression from column A but with
1M and 12M stdev, skew and kurt added as additional regressors ( see equation 4.6 ). Three P
values are for Wald tests for the null that coefficients on each group of moments [stdev,skew,kurt]
are all zero. In column C we use the first three principal components extracted from each of
stdev,skew and kurt for all tenors( equation 4.7). Column D is regression from column C but with
the first three principal components from relative yields (proxying for first moment for the term
stucture of first moments) added as additional regressors. In column D (equation 4.8), P values
are for the null that coefficients on each group of principal components for [mean, stdev, skew ,
kurtosis] are jointly zero. Actual vs Fitted plots for the regressions in column D can be found in
figures 3(a)-3(e).
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Table 8: Higher Moment and Term Structure Predictors of Quarterly FX Returns

A B C D

AUDUSD
# of observations 1052 1058 992 791

Adjusted R2 0.07 0.45 0.59 0.86
P(F-stat) 0.00 0 0 [0.00,0.00,0.00,0.00]

BreakDate 1/8/2009 1/29/2009 5/19/2008 7/3/2008
EURUSD

# of observations 1053 1053 832 832
Adjusted R2 0.17 0.24 0.52 0.823

P(F-stat) 0 0 0 [0.01,0.00,0.00,0.00]
BreakDate 3/7/2008 2/4/2009 5/14/2008 8/7/2008
GBPUSD

# of observations 1058 1058 984 740
Adjusted R2 0.26 0.52 0.67 0.89

P(F-stat) 0 0 0.00 [0.00,0.00,0.03,0.00]
BreakDate 12/17/2008 10/23/2008 7/3/2008 6/30/2008

USDCAD
# of observations 1052 1052 975 771

Adjusted R2 0.17 0.47 0.54 0.82
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.00,0.00]

BreakDate 10/6/2008 2/4/2009 10/14/2008 7/8/2008

USDJPY
# of observations 1057 1057 854 841

Adjusted R2 0.12 0.26 0.34 0.72
P(F-stat) 0 0 0 [0.00,0.00,0.00,0.00]

BreakDate 7/3/2008 7/3/2008 7/3/2008 7/21/2008

Note: In all equations, dependent variable is quarterly currency returns,ln
(
St+3M

St

)
. All

regressions are estimated with interactions with a break indicator variable D1. Breakdate for each
equation found using Bai and Perron (2003) method. Column A is from the standard UIP
regression ( equation (4.9)) :

sit+τ − sit = α0 + α1 ∗D1i,τ + β1(f t+τ ,it − sit) + β2D1i,τ ∗ (f t+τ ,it − sit) + εit+τ

P values in column A are for the null hypothesis that β1 = β2 = 0 . Column B is column A with
quarterly stdev, skew and kurt also added(equation (4.10,with break) In Column C (equation (4.11
) ) , we extract the first 3 Principal components from relative yields and use them as regressors
(term structure of first moments as regressors). In column D ( equation 4.12) we extract principal
components from each of stdev,skew, kurtosis, and use them as additional regressors from the
specification in column C (Term structure of 1st-4th moments). Actual vs Fitted plots for
specification in column A are in 5(a)-5(e), while Actual versus fitted plots for the specification in
column D are in figures 4(a)-4(e).
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A Expressions for Option-Implied Risk-Neutral Moments

In this section, we give the expressions for V (t, τ),W (t, τ), X(t, τ) and µ(t, τ)used in equation

(3.13). Derivations can be found in Bakshi et al. (2003) and Grad (2010).

V (t, τ) =

∫ ∞
S̄

2(1− ln[K
S̄

])

K2
C(t, τ ,K)dK +

∫ S̄

0

2(1 + ln[ S̄
K̄

])

K2
P (t, τ ,K)dK (A.1)

W (t, τ) =

∫ ∞
S̄

6ln[K
S̄

]− 3(ln[K
S̄

])2

K2
C(t, τ ,K)dK −

∫ S̄

0

6ln[ S̄
K

] + 3(ln[ S̄
K̄

])2

K2
P (t, τ ,K)dK

(A.2)

X(t, τ) =

∫ ∞
S̄

12(ln[K
S̄

])2 − 4(ln[K
S̄

])2

K3
C(t, τ ,K)dK +

∫ S̄

0

12ln[ S̄
K

] + 4(ln[ S̄
K̄

])3

K2
P (t, τ ,K)dK

(A.3)

where

µ(t, τ) = Et
(
ln

[
St+τ
St

])
= er

dτ − 1− er
dτ

2
V (t, τ)− er

dτ

6
W (t, τ)− er

dτ

24
X(t, τ). (A.4)
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