Lecture 14: Cost Estimation

Overview

- Project management activities
 - Project costing
 - Project scheduling and staffing
 - Project monitoring and review
- General cost estimation rules
- Algorithmic Cost Modeling
 - Function point model
 - СОСОМО

Components of Project Cost

- Tools (both HW and SW)
- Facility, utility, communication, etc.
- Travel, training, etc.
- Acquisition
- Development personnel (cost of person-hours)

Why Estimating Software Personnel Cost

- A big portion of overall IS project cost
- Allocate and control budget
 - Justify project value
 - A significant component in economic feasibility study
- Product pricing
 - Fixed vs. variable cost

Cost Estimation Methods

- Boehm (1981)
 - Algorithm cost modeling
 - Develop a model using historical cost information
 - Use software metric as input
 - Expert judgment
 - Expert on development technique and application domain
 - Arrive conclusion by consensus
 - Estimation by analogy
 - Other projects in the same project domain
 - Parkinson's Law
 - Work expends to fill the time available
 - The cost is determined by available resources rather than by objective assessments
 - Pricing to win
 - Based on how much the customer can afford

Estimation Trade-offs

- Size
 - Function points
 - Lines of code
- Effort
 - Person-months
- Time

•

_

- Months

Function Points

Function Point Model

- Derive cost directly from analysis documents such as DFD and ERD
 - Identify five Factors
 - Sizing Data Functions
 - 1. Files
 - 2. Program interfaces
 - Sizing Transactional Functions
 - 3. External Inputs
 - 4. External Outputs
 - 5. External Queries

Function Points Estimation

Step 1: Total Unadjusted Function Points (TUFP)
Step 2: Project Complexity (PC)
Step 3: Adjusted Project Complexity (PCA)
PCA = 0.65 + 0.01 * PC
Step 4: Total Adjusted Function Points
TAFP = TUFP * PCA

Lines of Code

• Conversion:

LOC = k * TAFP

(k is the LOC to FP conversion factor)

- Example:
 - 100 Function Points
 - C: 13,000 Lines
 - VB: 3,000 Lines

COCOMO Estimation Calculation

Effort (in person-months) = 1.4 * thousand LOC

Estimating Schedule Time

• Rule of thumb for estimation

Schedule Time = 3.0 * Effort (1/3)

сосомо

COnstructive COst MOdel

- Use final project size (in terms of lines of code) as model input
- Classify project into three types
 - Organic, semi-detached, embedded
 - Depends on how many other systems to interface with
- Has three forms
 - Basic, intermediate, and detailed

COCOMO-Basic Form

- Three project types
 - Effort
 - $-PM= 2.4 (KLOC)^{1.05}$
 - $-PM=3.0 (KLOC)^{1.12}$
 - ⁻ PM= 3.6 (KLOC)^{1.20}
 - Schedule
 - $-\text{TDEV}=2.5(\text{PM})^{0.38}$
 - $-\text{TDEV}= 2.5(\text{PM})^{0.35}$
 - $-\text{TDEV}= 2.5(\text{PM})^{0.32}$
- Limitations
 - Does not accommodate highly sequential forms of incremental development
 - Calculate average staff level in each phases
 - Does not incorporate the effect of *other* software cost drivers

COCOMO-Detailed Model

- Improvements
 - Phase-sensitive effort multiplier
 - In addition to Size
 - Reliability
 - Application experience
 - Interactive development
 - Three-level product hierarchy
 - Module level
 - Subsystem level
 - System level

Cost-Effectiveness Analysis

Performance Models

- Transaction Processing System
 - N = Number of processors
 - S = Processor Speed (Kops/sec)
 - P = Processor Overhead (Kops/sec)
 - M = Multiprocessor overhead factor

-T = Number of operations required per transaction in Kops

Performance Models

• Performance

Production Function

- Economies of Scale
 - More efficient to produce large quantities than small quantities
- Diseconomies of Scale on large software projects
 - Interpersonal communications
 - Software gold-plating
 - Hardware software
 - Modularity

Gold Plating

- Software gold plating
 - Instant response
 - Pinpoint accuracy
 - Unbalanced systems
 - Artificial intelligence (AI) features
 - Interactive multicolor vector graphics
 - "Everything for Everybody" systems

Gold Plating

- Usually Not gold plating
 - Humanized Input Preprocessors
 - Humanized Output Postprocessors
 - Modularity and Information hiding
 - Measurement and diagnostic, backup and recovery capabilities
- Sometimes gold plating
 - High generalized control and data structure
 - Sophisticated user command languages
 - General-purpose utilities and support software
 - Automatic trend analysis

Choosing Among Alternatives

- Decision Criteria
 - Maximum Available Budget
 - Maximum Performance requirement
 - Minimum Performance requirement
 - Maximum Effectiveness/Cost Ratio
 - Maximum Effectiveness-Cost difference
- Composite options

Risk Analysis

Complete Uncertainty

- No knowledge for chance of success
- Decision Rules
 - Maximin (Most pessimistic)
 - Determine the minimum payoff for each alternative
 - Choose the alternative to maximize the minimum payoff
 - Maximax (Most optimistic)
 - Determine the maximum payoff for each alternative
 - Choose the alternative to maximize the maximum payoff
 - Laplace or Equal-Probability Rule
 - All states of nature are equally likely
 - Determine the expected payoff for each alternative
 - Choose the alternative to maximize the expected payoff
 - Subjective Probabilities
 - Breakeven Analysis

Value of Information

• The prototype approach