LECTURE 1. SYSTEMS DEVELOPMENT

1.1 INFORMATION **S**YSTEMS

System

- A system is an interrelated set of business procedures used within one business unit working together for a purpose
- A system has nine characteristics
- A system exists within an environment
- A boundary separates a system from its environment

Characteristics of a System

- Components
- Interrelated Components
- Boundary
- Purpose
- Environment
- Interfaces
- Constraints
- Input
- Output

Information Technology

• Combination of <u>computer technology</u> (hardware and software) with <u>telecommunications technology</u> (data, image, and voice networks)

Information Systems

- Turns data into information
- Includes:
 - o Hardware and system software
 - o Documentation and training materials
 - o Job roles associated with the system
 - Controls to prevent theft or fraud
 - The people who use the software to perform their jobs

1.2 SYSTEMS **D**EVELOPMENT **L**IFE **C**YCLE

Major Attributes of the Lifecycle

- The project
 - o Moves systematically through phases where each phase has a standard set of outputs
 - o Produces project deliverables
 - o Uses deliverables in implementation
 - o Results in actual information system
 - o Uses gradual refinement

Project Phases

- Planning
 - o Why build the system? How should the team go about building it?
 - o Identifying business value
 - o Analyze feasibility
 - o Develop work plan
 - Staff the project
 - o Control and direct project
- Analysis

- o Who uses system, what will it do, where and when will the system be used?
- o Information gathering
- o Process modeling
- o Logic modeling
- o Data modeling

• Design

- How will the system work?
- o Physical design
- o Architectural design
- o Interface design
- o Database and file design
- o Program design

• Implementation

- o System delivery
- o Construction
 - Program building
 - Program and system testing
- o Installation
 - Conversion strategy
 - Training plan
 - Support plan
- o Operation
 - System changed to reflect changing conditions
 - System obsolescence

Systems Development Life Cycle

- Phases are not necessarily sequential
 - o Sequential
 - o Parallel
- Each phase has a specific outcome and deliverable
- Individual companies use customized life cycle

Processes and Deliverables

- Planning
 - o System Request
 - o Feasibility Analysis
 - o Workplan
- Analysis \rightarrow System Proposal
- Design \rightarrow System Specification
- Implementation \rightarrow New System and Maintenance Plan

1.3 IMPLEMENTING SDLC

Methodology

- A formalized approach to implementing the SDLC
 A series of steps and deliverables
- Methodology Categories

Category I	Category II
Process Oriented	Structured Development
Data Oriented	Rapid Application Development
Object Oriented	Agile Development

Waterfall Development Methodology

• Structured

- Proceed in sequence from one phase to another
- Pros
 - Identifies systems requirements long before programming begins
 - Minimizes changes to requirements as project progresses
- Cons
 - Design must be specified on paper before programming begins
 - Long time between system proposal and delivery of new system

Parallel Development Methodology

- General design
- Divide project into subprojects that are designed and implemented in parallel
- Final integration
- Pros
 - o Reduces Schedule Time
 - o Less Chance of rework
- Cons
 - o Still uses paper documents
 - o Sub-projects May Be Difficult to Integrate

Rapid Application Development

- Incorporate special techniques and tools:
 - o Joint Application Design (JAD)
 - Users, Managers and Analysts work together for several days
 - System requirements are reviewed
 - Structured meetings
 - o CASE tools
 - Automate or support drawing and analysis of system models
 - Translate of system models into application programs
 - **CASE repository**: system developers' database for system models, detailed descriptions and specifications, and other products of system development
 - Forward engineering: draw system models that are subsequently transformed into program code.
 - **Reverse engineering:** read existing program code and transform that code into a representative system model that can be edited and refined by the systems analyst.
 - o Fourth generation/visualization programming languages
 - o Code generators

Three RAD Categories

0

- o Phased development
 - A series of versions developed sequentially
- o Prototyping
 - o System prototyping
 - Throw-away prototyping
 - o Design prototyping

Phased Development Methodology

- o Break into a series of versions that are developed sequentially
- o Pros
 - User get a system to use quickly
 - o User can identify additional needs for later versions
- o Cons
 - Users work with a system that is intentionally incomplete

Prototyping

- o Building a scaled-down working version of the system
- o Concurrent analysis, design and implementation, repeated
- o Advantages:
 - Users are involved in design
 - o Captures requirements in concrete form
- o Pros
 - o Users interact with prototype very quickly
 - o Users can identify needed changes and refine real requirements
- o Cons
 - o Tendency to do superficial analysis
 - o Initial design decisions may be poor

Throwaway Prototyping

- o Design prototype
- o Pros
 - o Risks are minimized
 - o Important issues are understood before the real system is built
- o Cons
 - 0 May take longer than prototyping

Agile Development: Extreme Programming

- o Programming centric
- o Streamline SDLC by eliminating modeling and documentation overheads
- o XP: coding and continuous testing by pairs of developers
- o Iterative, system functionalities grow over time
- o Pros
 - Fast delivery of results
 - Works well in projects with undefined or changing requirements
- o Cons
 - o Requires discipline
 - o Works best in small projects
 - o Requires much user input

Criteria for Selecting the Appropriate Methodology

- o Clear user requirements
- o Familiarity with technology
- o Complexity of system
- o Reliability of system
- Time schedule
- o Schedule visibility

1.4 TEAM ROLES AND SKILLS

Role of Systems Analyst

- Study problems and needs of an organization
- Determine best approach to improving organization through use of:
 - o People
 - o Methods
 - Information technology
- o Help system users and managers define their requirements for new or enhanced systems
- o Assess options for system implementation
 - o In-house development
 - o Outsourced development
 - o Outsourced development and operation
 - o Commercial application
- o For in-house projects, work on a team of analysts and developers

Skills of a Successful Systems Analyst

0

- o Analytical
 - Understanding of organizations
 - o General business knowledge
 - o Problem solving skills
 - System thinking
 - Ability to see organizations and information systems as systems
- o Technical
 - o Understanding of potential and limitations of technology
 - Working knowledge of information technology
 - o Computer programming experience and expertise
 - o Systems analysis and design skills
- o Managerial
 - Ability to manage projects, resources, risk and change
- o Interpersonal
 - Effective written and oral communication skills
 - o Interpersonal relations skills
 - o Flexibility and adaptability
 - Character and ethics