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In many call centers, agents are trained to handle all arriving calls but exhibit very different performance for
the same call type, where we define performance by both the average call handling time and the call resolution

probability. In this paper, we explore strategies for determining which calls should be handled by which agents,
where these assignments are dynamically determined based on the specific attributes of the agents and/or the
current state of the system. We test several routing strategies using data obtained from a medium-sized financial
service firm’s customer service call centers and present empirical performance results. These results allow us to
characterize overall performance in terms of customer waiting time and overall resolution rate, identifying an
efficient frontier of routing rules for this contact center.
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1. Introduction
Over the past two decades, customer service call
centers have become a very important part of many
companies’ business operations; today, inbound call
centers employ millions of agents across the globe and
serve as a primary customer-facing channel for many
different industries. There has also been a great deal
of research interest in call center operations manage-
ment, with the extensive and evolving literature thor-
oughly surveyed by Gans et al. (2003) and Aksin et al.
(2007). Much of this research has focused on mod-
els for queueing, staffing, and performance analysis,
which in turn provide critical input into personnel
scheduling and rostering models.

For example, one common operational setting is a
call center in which there is a single type of inbound
call (referred to in this paper as a “single queue”
model). In this setting, a key operational challenge is
to determine how many agents to staff to achieve some
waiting time objective. The two most common wait-
ing time objectives are (a) a target mean waiting time
(referred to as “average speed of answer” and com-
monly abbreviated as ASA) and (b) a target percent-
age of calls answered within some target time period
(referred to as “service level” and commonly abbre-
viated as SL). Similarly, for a given level of staffing,

steady-state queueing equations are typically used to
estimate the ASA and SL values that will be achieved
for a particular time period.

For models in which there are multiple types of
inbound calls, the staffing and performance analy-
sis problems become significantly more challenging
when some or all of the agents are able to handle
more than one type of call. This latter setting is often
referred to as “skill-based routing,” because calls are
routed to different agents (or groups of agents) based
on logic that depends at least in part on which
agents are capable and/or particularly skilled in han-
dling which types of calls. Good overviews of rout-
ing rules in these types of environments are given by
L’Ecuyer (2006), whereas efficient rules are described
by Armony (2005). Koole et al. (2003) analyze skill-
based routing in a network where jobs not processed
upon arrival are overflowed to other nodes (i.e., there
is no queueing at the nodes).

The staffing challenge in this setting is to simultane-
ously determine how many agents should be staffed
and which skills and priorities each agent should
be assigned to achieve particular ASA or SL targets
for each queue. Similarly, for a given combination of
staffing level and routing logic, discrete-event simu-
lation models are typically used to estimate the ASA
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and SL values that will be achieved for each particular
inbound call.

Historically, the vast majority of the research lit-
erature has either used ASA and SL as the primary
performance metric with which to judge a particular
staffing configuration in both the single queue and the
skill-based routing settings. This is because customer
waiting time has historically been viewed as a key
factor in determining a customer’s satisfaction with
the service delivered by the call center, because it is
widely agreed that customers prefer to spend little or
no time waiting for service.

More recently, some researchers have begun to
model customer reneging (which in the call center
context is typically referred to as “abandonment”) and
to include the customer abandonment rate (AR) as
an important metric in evaluating operational perfor-
mance (see Mandelbaum and Zeltyn 2007 for a good
survey of the state of the art in this area). There are
two main reasons for including customer abandon-
ment in call center models. First of all, customers who
abandon the queue are quite likely dissatisfied with
the experience, and therefore this metric is an impor-
tant one for call center managers who are focused on
delivering high-quality customer service. Second, the
effect of customer abandonment is to reduce the total
traffic in the call center, and thus abandonment can
have a significant impact on staffing needs and on
customer waiting times.

It is important to note that the ASA, SL, and AR
are all metrics that are based on a customer’s wait-
ing experience prior to service. However, it is well
known in the marketing literature that the customer’s
experience during service is also a very strong deter-
minant of customer satisfaction and loyalty. In the call
center industry, this has led to a strong focus on addi-
tional operational performance metrics to understand
(a) customers’ perception of their service experiences
and (b) the quality of service delivered by individual
agents and by groups of agents. Two related and very
important metrics are call resolution probabilities and
call resolution rates.

The resolution probability (RP) is an attribute of an
individual agent (or group of agents) for a particular
type of call. We define the RP to be the likelihood that
a call that is received by the call center and handled
by a particular agent will be successfully resolved
without requiring a subsequent phone call by the cus-
tomer. For a specific type of call and an individual
agent (or group of agents), the RP can be calculated
from historical data as described in §4.1.5.

By contrast, the call resolution (CR) rate and first
call resolution (FCR) rate are attributes associated
with a particular type of call. Specifically, we define
the CR rate as the overall proportion of inquiries
that are successfully resolved without requiring a

follow-up phone call. The related FCR rate is the pro-
portion of inquiries that are resolved during the very
first interaction a customer has with the call center.
Therefore, for a particular call type, both the CR rate
and the FCR rate are operational performance metrics
that depend on the specific routing rules that deter-
mine how many calls of that type are handled by
which specific agents (or groups of agents), and on
the RP values for that call type associated with each
of those specific agents (or groups of agents).

This important distinction between the RP input
values and the CR and FCR performance metrics is
made throughout this paper.

After a customer has received service from a call
center agent on a particular issue, a subsequent call
from that customer about the same issue is a clear
sign that the issue had not been resolved during the
previous service encounter, and this unsuccessful res-
olution of the issue that caused the customer to call
is a strong sign of customer dissatisfaction. Thus, CR
and FCR rates are very important customer-centric
operational metrics in practice, though these have
been largely absent from the academic literature on
call center operations. Higher CR and FCR rates result
in reduced system congestion (because of decreased
callbacks and hence lower total call arrival rates) and
subsequently lower staffing costs. There is a sepa-
rate literature on retrial queues where jobs that leave
the system before getting served may retry after some
amount of time has elapsed (Falin and Templeton
1997, Aguir et al. 2004). The retrial rates in such set-
tings also impact system congestion.

As data collection and analysis technologies for
accurately measuring RP values begin to emerge, call
center managers are increasingly focused on manag-
ing the CR and FCR metrics. As such, these metrics
have been attracting more attention from call center
industry leaders and researchers.

In many call centers, agents who have been trained
to handle several different types of calls are also
known to exhibit very different performance across
specific types of calls, where performance is defined
by both AHT and RP (Gans et al. 2010 empirically
study the agents’ heterogeneity in AHT, but not in
RP). A challenge for call center managers is to deter-
mine how to make use of this information to deter-
mine which types of calls should be handled by which
types of agents under which system conditions.

In this paper, we explore strategies for routing mul-
tiple types of calls to a large group of heterogeneous
agents, where these assignments are made dynam-
ically based on the specific attributes of the agents
and/or the current state of the system. Our moti-
vation for this research comes from the increasingly
high-quality estimates for RP values that are avail-
able in many of today’s call centers; our initial focus
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was on developing rules to turn this raw data into
actionable information to support routing decisions
and improved operational performance. As such, an
important focus of our research are the empirical
results presented in the case study in §4. Beyond this
specific case, we also believe that this paper makes
several important generalizable contributions to the
call center operations management literature.

First of all, we explicitly model the relationship
between RP and effective arrival rates to the call cen-
ter by explicitly accounting for phone calls that occur
as a result of previous calls that are not success-
fully resolved on previous attempts (we refer to these
as “callbacks”). Using these effective arrival rates,
we also develop an optimization model to maximize
the CR rate under relatively general conditions. Sec-
ond, we develop an efficient frontier of rules with
respect to two call center performance measures (ASA
and CR) and use this to evaluate the performance
of different routing rules for an actual call center’s
operations. Finally, we conduct a set of simulation
experiments to demonstrate that the numerical results
from our case study hold empirically under very gen-
eral conditions.

The remainder of this paper is organized as follows.
In §2, we present a survey of the research literature
on models that take into account RP and customer
callbacks. In §3, we develop several routing strategies
designed to minimize the overall ASA, maximize the
overall CR rate, or to strike a balance between the
two. In §4, we present an empirical case study that
examines how our routing rules perform in simula-
tion experiments based on agent data obtained from
a financial service firm’s customer service call cen-
ters. Next, in §5, we present results from a carefully
designed set of numerical experiments that reveal that
the relative performance of our rules is quite consis-
tent across a diverse set of system parameter values.
Finally, in §6, we provide a summary of the paper and
its major findings, along with conclusions and possi-
ble directions for future research.

2. Literature Review
This paper is focused on call routing strategies to help
manage both ASA and CR metrics. Although there
has been research on both of these topics, there is
surprisingly little work that examines the relationship
between them.

Hart et al. (2006) provides a complete review of arti-
cles on FCR while also pointing out the importance of
measuring and using FCR. This paper also discusses
the existence of different operational definitions of
FCR, lists various factors that impact RP and FCR
(training, empowerment, technology), and explains
how higher FCR rates can translate into lower costs

and higher levels of customer satisfaction. Similarly,
survey results presented by Read (2003) reveal that
FCR rates drive customer satisfaction. Feinberg et al.
(2002) state that FCR is not a significant determi-
nant of customer satisfaction in the banking/financial
services sector; however, these authors readily admit
that their metric for customer satisfaction (percent-
age of customers who give “top box” evaluation) is
a weak measure and may have accounted for the
results. Cross (2000) cites the importance of the FCR
metric, though he also warns against using FCR as the
only performance measure. He argues that by focus-
ing only on FCR, a manager may overlook opportu-
nities to reduce the volume of non-value-added but
simple-to-answer calls or possible ways to use call-
back or fax-back options to smooth demand.

Operations management researchers have paid
comparatively little attention to models and methods
for managing CR and FCR rates. However, there are
many published papers that describe call routing and
resource allocation rules for call centers, and below
we discuss several that are relevant to our work.

Early work on routing in call centers considered
either a homogeneous customer/call population or
a homogeneous population of servers. Under those
conditions, several important results are known about
optimal allocation policies or maximal throughput
policies under heavy traffic conditions. Most of these
use queue backlog rather than waiting time as the
control for deciding service allocation. A commonly
accepted terminology differentiates between quality-
driven (QD) and efficiency-driven (ED) regimes,
emphasizing either utilization of servers or service
quality. A balanced regime, referred to as quality
and efficiency driven (QED), leads to the square root
staffing rules as discussed by Halfin and Whitt (1981)
and Borst et al. (2004), among others.

More recently, several researchers have extended
routing models to consider a heterogeneous popula-
tion of service agents. In this context, the maximum
feasible arrival rate has been characterized by Armony
and Bambos (2003), Dai and Lin (2005), and Stolyar
(2004), and policies known as maximum pressure or
cone policies are known to keep all queues stable
whenever that is achievable. These policies essentially
maximize the inner product of a service rate vector
with the vector of queue states, routing calls with large
backlogs to servers with high service rates. In Stolyar
(2004), these policies are shown to optimize certain
backlog-driven performance measures over time.

Gurvich et al. (2008) address the issue of how many
servers are required and how to match them with
customers to minimize staffing cost, subject to class-
level quality-of-service constraints. They characterize
priority control policies that are based on an idle-
server-based threshold and show that these policies
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are asymptotically optimal as the service load grows
to infinity. They also show good performance on rel-
atively small systems.

Traditional routing algorithms try to match call
types with agent skills subject to service constraints,
but do not consider agents’ preferences or perfor-
mances for call types. Given the high rates of agent
attrition found in the call center industry and the
associated high cost of such turnover, Sisselman and
Whitt (2007) propose routing algorithms that account
for agent skills and preferences in an effort to bal-
ance customer waiting times with agent job satisfac-
tion levels, which they refer to as “preference-based
routing.” They do so by assigning values to call type–
agent combinations that incorporate management’s
judgment of the value of such pairings and each
agent’s preferences for the call types. Moreover, pref-
erence values are modeled generically and thus could
be related to agents’ call resolution probabilities in a
framework similar to the one presented in this paper.

More closely related to our paper is de Véricourt
and Zhou (2005). This paper considers RP in mak-
ing call routing decisions. There is only one call type,
but many agent groups. The agent groups are differ-
entiated by their service rates and RP. These authors
show that agent groups can be ranked by their effec-
tive service rate (the product of resolution probability
and service rate), the so-called p� rule. After defining
their objective as minimizing the average total time to
resolve a call, they show that there is always a pre-
ferred agent group (the one with the highest p�) to
route the calls to, and when all agents in that class are
busy, it is optimal, under certain conditions, to route
to other classes following a state-dependent threshold
rule. Using numerical tests, the authors show that a
routing rule that overlooks the RP differences can per-
form poorly, which illustrates the importance of rout-
ing based on RP as well as service rates. To simplify
the routing rule, they show numerically that the opti-
mal state-independent rule already captures almost
all the benefits of the state-dependent threshold rule.
Moreover, routing solely based on the p� index, with-
out the use of thresholds, allows the call center to get
most of the benefits.

Another rule proposed in the presence of hetero-
geneous servers with a single queue is the fastest
servers first (FSF) rule in Armony (2005). The rule is
described as a QED rule with heterogeneous servers
and performs better than its homogeneous counter-
part. As discussed below, the author also suggests
that the methodology presented in that paper can be
extended to prove the optimality of the so-called p�
rule in the Halfin–Whitt heavy traffic regime, though
no formal proof is presented. The optimality of FSF-
type rules has also been shown by Mandelbaum and
Stolyar (2004), Dai and Tezcan (2008), and Gurvich

and Whitt (2009) in slightly different settings, but to
date we have been unable to extend such optimality
to our skill-based routing setting with multiple call
types and multiple unique types (or unique groups)
of agents (Dai and Tezcan 2008 provide some insight
into the challenge of proving such a result).

All of these papers, it should be noted, define sys-
tem performance in terms of the waiting time distri-
bution or some direct function of it. In contrast, one
important distinguishing characteristic of this paper
is that we examine metrics relating to both customer
waiting time and call resolution rates. This distinction
will be discussed further below.

3. Model Framework and
Selected Routing Rules

A customer’s experience during a service encounter
consists of two parts: the time spent waiting for ser-
vices and the service itself. Metrics that reflect that
waiting time distribution, such as ASA and SL, deal
with the first aspect, whereas measures such as CR
and FCR rates deal with the second. In practice, as
suggested by Cross (2000), most call centers must pay
attention to both waiting time and CR rate metrics.
However, when there is heterogeneity across differ-
ent agents for a given type of call—some agents may,
on average, handle calls more quickly, whereas others
may be more likely to resolve the customer’s issue—
often there is an inherent trade-off in call routing
decisions.

Thus, our goals are (a) to identify routing rules that
achieve a balance between the two goals of low ASA
values and high CR rates and (b) to empirically exam-
ine the trade-off between these two performance mea-
sures as a function of the choice of call routing rules.

3.1. Model Setting
Our setting features multiple call types (indexed by
i = 1121 0 0 0 1 I) and multiple agent groups (indexed by
j = 1121 0 0 0 1 J ). Calls of type i arrive at a rate of �i.
There are Nj agents in group j , with Nj ∈�+, and each
agent in group j serves calls of type i with rate �ij . If
agent group j is not capable of handling call type i,
then �ij = 0. When �ij > 0, we say there is a “match”
between call type i and agent group j . In addition,
we assume that each agent of group j has a resolution
probability pij for each call of type i, where pij ∈ 60117.

Our model assumes that all interarrival times are
independent of one another, that all service times are
independent of one another, and that the outcome of
each call (resolved or not) is independent of all other
calls. Note that in developing our routing rules, we
do not assume that arrivals follow a Poisson process
or that the service times are exponentially distributed,
although several of our routing rules are motivated by
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models that do make these assumption (e.g., Armony
2005, de Véricourt and Zhou 2005).

Below, qi4t5 represents the number of type i cus-
tomers waiting for service at time t, and Zj4t5 is the
number of busy agents from group j at time t, where
0 ≤Zj4t5≤Nj1 ∀ j and ∀ t ≥ 0.

We use the term “routing rule” to mean the logic
that determines to which agent group an arriving call
is assigned if there are no calls in the queue and
some agents are free, and also the logic that deter-
mines which call an agent is assigned to handle when
he/she becomes free when some calls are in the queue
waiting for service.

It is important to note that the performance of this
system is defined in terms of the steady-state ASA
values and CR rates, and that these output metrics
depend on the actual numerical values of the input
parameters (arrival rates, service rates, call resolution
probabilities, and staffing levels) and also on the cho-
sen routing rule that is used to determine which call
types are handled by which agents under what con-
ditions. As a result, it is possible for a system to
be “unstable”—that is, to have no steady-state mean
waiting time—as a consequence of some combina-
tion of its input parameters and its routing rules.
For example, in cases where the fastest (lowest AHT)
agents also have very low resolution probabilities, the
effect of the FSF rule from Armony (2005) would be to
significantly increase the effective arrival rate due to
customer callbacks. Similarly, a rule that routes each
call to the available agent with the highest resolution
probability regardless of handling times could have a
similar effect by increasing the effective mean handle
time. Both rules could result in a system load of more
than 100%, leading to instability, whereas a more sen-
sible rule could maintain the system load at below
100%. However, we note that neither our case study
in §4 nor our simulation experiments in §5 feature this
type of system instability.

3.2. Waiting-Centric Routing Rules
In this multiskill setting, the exact form of the opti-
mal policy that minimizes customer waiting time is
unknown, but as we stated earlier, the FSF rule in
Armony (2005) performs well in the heterogeneous-
server setting and is the best known routing rule in
such a setting. We will use this rule, which we refer
to in this paper as the Max� rule, as our benchmark
waiting-centric routing rule.

Rule 1: Max�. When an agent of group j becomes
free and there are matching calls waiting, select a call
from of type i, where i = arg maxi2 qi4t5>08�ij � �ij > 09;
therefore, an agent coming free will choose the match-
ing call type for which she has the highest service rate.
Similarly, if an arriving call of type i finds no calls of
that type waiting for service and agents of one or more

matching groups available, select an agent of group j ,
where j = arg maxj2Zj 4t5<Nj 4t5

8�ij � �ij > 09; that is, the
call will be routed to a matching agent group that has
the highest service rate for that call type.

This routing rule ignores the fact that unresolved
calls, regardless of how fast they might be handled
initially, lead to increased load on the system as a
result of callbacks. To address this potential problem,
we also test the “p� rule” from de Véricourt and Zhou
(2005) that explicitly incorporates RP values and thus
implicitly considers customer callbacks. We refer to
the p� metric as the effective service rate, and formally
specify the “p� rule” as follows:

Rule 2: Max p�. When an agent of group j becomes
free and there are matching calls waiting, select a call
of matching type i, where i = arg maxi2 qi4t5>08pij�ij �

�ij > 09; that is, an agent coming free will choose
the matching call type for which she has the high-
est effective service rate. Similarly, if an arriving call
of type i finds no calls of that type waiting for ser-
vice and agents of one or more matching groups
available, select a matching agent group j , where j =

arg maxj2Zj 4t5<Nj 4t5
8pij�ij � �ij > 09; that is, the call will

be routed to a free agent from the matching agent
group that has the highest effective service rate for
that call type.

Indeed, we conjecture that the Max p� rule, which
seeks to maximize the rate at which customers leave
the system, actually minimizes the mean waiting time
for the system under some conditions. This conjecture
is based not only on our own extensive numerical
experiments, but also on several papers we men-
tioned previously in the literature review that have
shown the optimality of an FSF-type rule, each in
slightly different settings.

We have also extensively tested several other
waiting-centric rules (the interested reader is referred
to Appendix A in the electronic companion for addi-
tional details). These rules have always produced
higher ASAs than the Max p� rule in our tests, while
also being dominated on the CR dimension by the
rules discussed below in §3.4. As such, we have not
included these rules in our case study in §4 or in our
subsequent simulation experiments in §5.

3.3. Resolution-Centric Routing Rules
Whereas the Max p� rule is focused on minimizing
the ASA, some call centers place a much higher pri-
ority on CR rates. Thus, in this section we discuss
routing rules that explicitly prioritize CR rates and
introduce an optimization-based routing rule that out-
performs all others in terms of CR rates.

Just as managers who focus on minimizing cus-
tomer wait times will use the Max� rule, an analo-
gous resolution-centric rule would be to route each
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arriving call to the available agent who has the high-
est resolution probability for that call. We refer to
this as the Max p rule. Neither Max� nor Max p
achieves the intended goal, however, because they do
not explicitly account for the RP and its impact on CR
and waiting time. We will use Max p as the bench-
mark resolution-centric routing rule.

Rule 3: Max p. When an agent in group j becomes
free and there are matching calls in queue, select
arg maxi2 qi4t5>08pij � �ij > 09; that is, that agent will be
assigned a call of the type that she is most likely to
resolve, regardless of waiting times and queue lengths.
Similarly, if an arriving call of type i finds no calls
of that type waiting for service and agents of one or
more matching groups available, assign it to an agent
of group j , where j = arg maxj2Zj 4t5<Nj 4t5

8pij � �ij > 09;
that is, the call will be routed to an agent from the
group that has the highest resolution probability for
that call type.

However, in our setting there are a number of
potential problems with this type of routing rule. For
example, this rule may route substantially more traf-
fic to some agent groups than to others. Moreover,
this rule may not actually deliver the maximum CR
rates because it is nonidling, which means when a
call arrives and some matching agents are available,
it will be routed to the agent type with the highest
p at that moment. Similarly, when an agent becomes
free, he/she will choose from the matching call types
the one with the highest p at that moment. There is
no consideration of possible future arrivals or service
completions that may create a better match. Therefore,
there may exist a gap between Max p and the maxi-
mum possible CR rate (we refer to this difference as
the “CR gap”). Not only is there no guarantee that
Max p will actually deliver the maximum CR rates,
there is also no obvious way to quantify the CR gap.

In fact, we have extensively tested several such
resolution-centric rules (the interested reader is
referred to Appendix A in the electronic companion
for a description of these rules), and indeed the CR
rates produced by such rules were always lower than
the CR rate produced by the optimization-based rule
discussed below. In addition, these rules were domi-
nated on both performance dimensions by the hybrid
rules discussed below in §3.4. As such, we have not
included these rules in our case study in §4 or in our
subsequent simulation experiments in §5.

With these issues in mind, we next consider the
problem of maximizing the overall expected CR rate
for a given set of performance parameters and con-
straints. Once this optimization problem has been for-
mulated and solved, the results will provide the basis
for several subsequent routing rules. In addition, the
optimal CR rate from our optimization model can also

be used to estimate the CR gap for any other rout-
ing rules.

Our model seeks to identify the randomized call
routing rule (that is, a routing rule that indepen-
dently assigns each arriving call to a server accord-
ing to fixed probability values) that maximizes the
overall expected CR rate. To address the issues of sta-
bility and fairness across agent groups, we include
constraints that specify minimum and maximum
utilization targets for each of the agent groups. In
addition, to ensure that each call type is treated some-
what fairly, we also include constraints that specify
minimum and maximum effective utilization targets
for each of the call types.

To determine these utilization levels, we must first
calculate the effective arrival rate to each queue, taking
into account callbacks due to unresolved earlier calls.
Our model assumes that customers have no alterna-
tive to resolving their call through the call center,
and hence all unresolved calls will return as future
arrivals.

Denote �i to be the external arrival rate for (first-
time) calls from customers of type i. Let � be any
randomized routing rule, and let xij be the result-
ing proportion of calls of type i routed to agent
group j under �. The effective arrival rate �̄i, account-
ing for all the arrivals that result from unresolved
calls, explicitly depends on the choice of the xij values,
because they determine the percentage of customers
who call back. In particular, we have

�̄i = �i +�i

(

∑

j

41 − pij5xij

)

+�i

(

∑

j

41 − pij5xij

)2

+�i

(

∑

j

41 − pij5xij

)3

+ · · ·

= �i

�
∑

k=0

(

∑

j

41 − pij5xij

)k

0

The kth term in the summation corresponds to the
expected number of customers who are making the
kth call to resolve the same problem, k = 1121 0 0 0 0
Now because

∑

j41 − pij5xij < 1, we have

�̄i =
�i

1 −
∑

j41 − pij5xij
0

For an agent group j , their total arrival rate for calls
of type i is �̄ij = �̄ixij , and hence their total utilization,
which we denote �j , can then be calculated as follows:

�j =
∑

i

�̄ij

Nj�ij

=

(

∑

i

�̄ixij

�ij

)

/

Nj 0

With this expression for the �j values, we then
include constraints that specify minimum and maxi-
mum allowable utilization levels for each of the agent
groups, which we denote respectively as �−

j and �+

j .
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We also seek to protect against one or more call
types receiving insufficient attention by constraining
the effective utilization associated with each call type i,
that is, each call type i must be served at total utiliza-
tion between lower bound �−

i and upper bound �+

i . To
define these constraints, we must first define what we
mean by utilization associated with call type i, which
will require us to calculate the effective service atten-
tion given to calls of type i from all agent groups.
For an agent group j , their total fraction of time
spent serving queue i is 4�̄ij/4Nj�ij55/

∑

i′4�̄i′j/4Nj�i′j55.
Therefore the total service rate to calls of type i is
�̄i =

∑J
j=1 Nj�ij44�̄ij/�ij5/

∑

i′4�̄i′j/�i′j55. The total effec-
tive utilization associated with call type i, which we
denote �i, can then be calculated as follows:

�i =
�̄i

�̄i

=
�̄i

∑J
j=14Nj �̄ij/

∑

i′4�̄i′j/�i′j55

=
�̄i

∑J
j=14Nj �̄ixij/

∑

i′4�̄i′xi′j/�i′j55

=
1

∑J
j=14Njxij/

∑

i′4�̄i′xi′j/�i′j55
0

We note that as long as �j < 1 for all agent groups j ,
we will also have �i < 1 for all call types i. How-
ever, just as placing tighter bounds on �j can ensure
a fair distribution of workload between agent groups,
bounds on �i can manage the relative treatment of
different call types. For example, bounds on �i could
avoid routing too many calls of type i to the busiest
agent groups, and therefore improve the waiting time
for calls of that type. This enables a contact center
manager to set both fairness and prioritization con-
straints and meet call-type-specific performance tar-
gets, which are common in practice.

At this point, we are ready to formally present our
optimization model, characterized by the parameters
0 ≤ �−

j ≤ �+

j ≤ 1 and 0 ≤ �−
i ≤ �+

i ≤ 1.

Maximize
∑

i1 j

�̄ipijxij (max total call resolution rate)

subject to 0 ≤ xij ≤ 1 ∀ i1 j (fraction of calls bound)
∑

j

xij = 1 ∀ i (total calls routed to
different agent groups)

�−

j ≤ �j ≤ �+

j ∀ j (utilization of each
agent group)

�−

i ≤ �i ≤ �+

i ∀ i (utilization for each
call type) (1)

By ignoring the waiting time aspect of the problem
and focusing solely on maximizing CR, formulation
(1) represents a fluid version of the original problem.
Assuming that there is a feasible solution to (1), solv-
ing (1) suggests a routing rule that will achieve the

maximum CR; we define such a rule below. Con-
versely, if there is no feasible solution to (1), this
demonstrates that the staffing level is not sufficient
to handle its call volume, and in practice this would
result in high waiting time and abandonment rates.

Note that formulation (1) is quite flexible. For
example, the objective function for the optimization
model (1) seeks to maximize the weighted sum of the
CR rates across all call type and agent group combi-
nations, where the weight placed on a particular call
type i and agent group j is the product of the effec-
tive arrival rate �̄i and the proportion xij of type i
calls routed to agent group j . However, by replacing
�̄i with �i in the objective function, the resulting for-
mulation can be used to solve the closely related prob-
lem of maximizing FCR, a change that also makes the
objective function linear in the decision variables xij .
Similarly, if a call center values higher CR rates for
a particular call types i, additional weighting factors
can be added in the objective function. Also, con-
straints on utilization can effectively be eliminated
by setting �−

i = 0 (and/or �−
i = 0) and setting �+

i = 1
(and/or �+

i = 1).
Both the objective function and the utilization con-

straints are quadratic in decision variables, so that
an optimal solution for this model can be efficiently
obtained with any good commercial solver.

Our solution to this optimization problem provides
us with an estimate for the expected value for the
optimal CR rate, which can be used to help us quan-
tify the CR gap. In addition, our solution identifies the
xij values that maximize the expected CR rate, which
we denote x∗

ij . The following routing rule uses these
x∗
ij values to randomize the routing of each incoming

call and produces the maximum CR rate in steady
state.

Rule 4: OptXRand. Upon arrival, each call of type
i is routed to agent group j with probability x∗

ij . Once
routed to a particular agent group j , a call of type i
waits in the FCFS queue for an agent of group j .

3.4. Hybrid Routing Rules
By construction, rule OptXRand focuses exclusively
on CR rates and indeed has the virtue of achieving
the optimal expected CR rate within the specified uti-
lization bounds. However, by focusing solely on the
CR rates, this routing rule also allows agents in one
or more groups to be idle while calls in one or more
groups are queued elsewhere, thereby removing the
pooling benefits and thus resulting in potentially long
waiting times. Similarly, whereas rule Max p� does
take RP values into account, it is not designed with
any considerations for the achieved CR rate.

In this section, we propose two routing rules that
seek to combine the waiting-centric Max p� rule and
the resolution-centric OptXRand rule.
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Rule 5: CallSwap. Calls are routed to agent groups
according to rule OptXRand. However, each queue
has a predefined threshold above which the queue is
considered “full.” If the arrival of a call of type i to the
queue for agent group j results in queue j becoming
full, and if there are one or more agents free in one or
more groups g free, where g 6= j , then route this call to
an idle agent from the group that has the highest p�
value. Similarly, when an agent from group j comes
free, (a) if there is a call waiting in queue j , then take
the call at the head of that queue; (b) if the queue is
empty, then check all other queues and take the call
at the head of the full queue for which this agent has
the highest p� value; (c) if no queue is full, then the
agent becomes idle.

In a sense, CallSwap is really a collection of routing
rules that alternates between OptXRand and Max p�
depending on the state of the system and the value
of the threshold parameter. The larger (smaller) the
threshold parameter value, the more closely the rule
adheres to OptXRand (Max p�). One of the major
questions that we seek to address in the case study
and numerical experiments that are described below
is how the performance of rules of this class varies
with the value of this threshold parameter.

The optimization problem (1) may have an opti-
mal solution for which x∗

ij = 0 for multiple values of i
and j . For such systems we propose another routing
rule that combines the Max p� rule and OptXRand
rule by following the Max p� rule after first restrict-
ing the choices to only combinations for which x∗

ij > 0.
This rule is formally specified below.

Rule 6: Max xp�. When an agent of group j
becomes free at time t, if there are available calls of
matching types, then select a call of type i, where
i = arg maxi2 qi4t5>08pij�ij � �ij > 01x∗

ij > 09; that is, an
agent coming free will choose the call type for which
she has the highest effective service rate from among
those agent groups for which x∗

ij > 0. Similarly, if an
arriving call of type i finds no calls of that type wait-
ing for service and agents of one or more matching
groups available, select a matching agent group j ,
where j = arg maxj2Zj 4t5<Nj 4t5

8pij�ij ��ij > 01x∗
ij > 09; that

is, a call of a particular type that arrives when one
or more agents from multiple matching groups are
free will be routed to a free agent from the matching
agent group that has the highest effective service rate
for that call type from among those agent groups for
which x∗

ij > 0.

4. Call Center Case Study
Having suggested several routing rules in §3, we next
seek to understand how well each of these rules per-
forms by conducting a simulation case study utilizing
an actual call center’s data. In this case study and in

the simulation experiments presented in §5, we exam-
ine the performance of these routing rules in terms
of the two key performance metrics of overall ASA
and aggregate CR rate. Although it is natural to try to
identify which of these rules delivers the “best” oper-
ational performance, in our setting there is no clear
answer to this question, in large part because different
call center managers are likely to put different relative
weights on each of the two key performance mea-
sures. Instead, we present our performance results
on a two-dimensional graph, with the CR rate on
the x-axis and the ASA on the y-axis. Our goal is to
illustrate how different routing rules present the call
center manager with different trade-offs.

Below we describe the operational input data
in §4.1, discuss the simulation modeling platform
in §4.2, and then present and discuss the numerical
results in §4.3.

4.1. Database Characteristics and Preparation
Our case study is based on input data obtained from
a financial services firm’s call center. The database
contains records associated with just over 2.7 mil-
lion individual incoming customer phone calls, which
constitute all of the calls for a single calendar year.
Specifically, each record in the database contains the
following five fields:

• the date and time of the call;
• the unique ID number for the agent who handled

the call;
• the call type for that call;
• the time spent by the agent on the phone han-

dling the call, or handle time;
• the resolution status of the call (see below).
The full database features more than 150 call types

and over 500 individual agents. We elected to use only
a subset of the call types and agents to focus on the
core analytical questions of interest and to ensure that
the run times for our simulations were fast enough
to conduct extensive numerical experiments. The pro-
cess of selecting and preparing the data to support
our numerical experiments is described below.

4.1.1. Selection of Call Types. Analysis of the
database revealed that a high concentration of work-
load came from just a few call types. Because the high-
est volume call types drive the overall performance,
and the number of call types is a significant driver of
simulation time, we chose the four largest call types.
Collectively, these four call types comprised just over
25% of all call records in the data set, with each of
them featuring significantly higher call volume than
all other call types.

4.1.2. Selection of Agents. We filtered the data-
base to include only those agents who handled at least
50 calls for each of the four major call types. Based
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on our conversations with the business owner of this
database, we understood that this filtering had the
effect of eliminating supervisors who would occasion-
ally step in to handle phone calls as well as specialists
who would be called upon only to deal with spe-
cific and advanced topics for a subset of our four call
types. As a result, we selected a total of 228 agents
for our study.

4.1.3. Creation of Agent Groups Through Cluster
Analysis. Because contact centers typically operate in
managed teams, we grouped the agents into a total
of 20 groups. Our approach was to use cluster anal-
ysis to group the agents based on their performance,
where our measures for performance were the pij and
�ij values for each agent for each of the four queues.
Using the JMP software, we implemented k-means
clustering to divide the population of 228 agents into
20 groups of various sizes. The number of agents in
each agent group used in our simulation are given in
Appendix B in the electronic companion.

Our choice of 20 agent groups is somewhat arbi-
trary and is made only to limit the overall comput-
ing time associated with our simulations. We note
that this is a conservative choice, because modeling
each individual agent as a “group” of size one would
have the effect of increasing the benefits of the routing
rules from §3, because the rules would be able to take
advantage of the differences across individual agents’
parameter values, rather than just the differences in
the group averages.

4.1.4. Arrival Rate Selection. For our numerical
experiments, we assume that call arrival of each type i
follows a Poisson process, and we choose arrival rates
for each of the call types to maintain the same relative
proportion ti of expected calls of call type i as we
found in the original database. For a given total call
arrival rate across all four call types, which we denote
by �, the individual arrival rate for call type i is then
�i = ti�. The ti values are given in Appendix B in the
electronic companion.

We chose a value for the total call arrival rate �
so that under a first-come, first-served routing rule
the overall utilization level would be approximately
90%. This target is consistent with the performance
of agents in an efficient call center and corresponds
to a critical load where queue backlogs need to be
carefully managed. This is calculated to be � = 21160
calls per hour.

4.1.5. Service Rate and Resolution Probability
Estimation. For each combination of call type and
agent group, we assume that service times are expo-
nential. To estimate the service rates, we first calculate
the AHT value for each call type by computing the
mean of the handle time field. The service rate �ij for

agent group j for call type i was then calculated as
the reciprocal of the respective AHT value.

The process of calculating resolution probabilities
was somewhat more involved. First, we note that the
resolution status field in our database takes one of six
different values:

1. the customer’s inquiry was resolved to a satisfac-
tory level, such that the customer need not call again
regarding this particular issue;

2. this call is the first of two or more transactions
needed to satisfy the customer;

3. this is one of potentially multiple intermediate
customer follow-up calls about this issue;

4. this is the last call out of a repeated series of
customer calls regarding the same issue;

5. the calling party was not recognized as a cus-
tomer;

6. “other,” a catchall category for odd call types.
For our analysis, we created the binary resolu-

tion field by mapping resolution status levels 1, 4, 5,
and 6 to “successful” and mapping levels 2 and 3 to
“unsuccessful.”

From here, we calculated the resolution probabili-
ties pij for agent group j for call type i by computing
the proportion of successful calls from the binary res-
olution field.

All pairwise service rates and resolution probabili-
ties used in our simulation experiments are presented
in Tables 1 and 2 in Appendix B in the electronic com-
panion, respectively.

4.2. Simulation Platform
Our experimental simulation platform consisted of a
collection of Java programs that invoke the Contact-
Centers simulation library1 (see Buist and L’Ecuyer
2005, L’Ecuyer and Buist 2006). All interarrival and
service times in the simulation were exponential ran-
dom variables.

4.2.1. Simulation Run Length. For each of the
rules described in §3, we simulated a total of 15,000
realizations. For each realization, we used, in simu-
lated time, a seven-hour warm-up period followed
by one hour of data recording. The length of the
warm-up period for each realization was determined
by the randomization test described by Mahajan and
Ingalls (2004) and Yucesan (1993) so that the mean
values of output variables reported in our results
accurately represent the system in steady state. More
details about simulation run lengths and simulation
parameters are given in Appendix B in the electronic
companion.

1 See http://www-etud.iro.umontreal.ca/~buisteri/contactcenters/
for more details on this open source library.
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4.2.2. Simulating Callbacks. For all rules, we
have assumed that unresolved calls result in immedi-
ate callbacks to the call center. In practice, there will
typically be a random delay prior to subsequent calls,
which can result in increased call volume during spe-
cific future periods that feature more (or less) conges-
tion than the period in which the original call took
place. Because our experiments focus on the steady-
state behavior of the system (and arrival rates and
staffing levels are stationary), we believe that the zero
delay will not have a big impact on the validity of
the results, just as shown numerically by de Véricourt
and Zhou (2005).

4.3. Numerical Results and Discussion
Figure 1 includes the ASA values and CR rates for all
rules from §3. For this paper, we consider a routing
rule to be on the efficient frontier of rules if it is not
dominated by another rule in terms of both ASA value and
CR rate. This differs from the common economic inter-
pretation of a frontier, where convex combinations of
rules form the frontier. Because there is no natural
way to create a convex combination of two routing
rules and expect to achieve the corresponding com-
bination of performance, it is more natural to view
the frontier as a set of discrete points representing the
actual performance of individual rules.

The results presented in Figure 1 reveal some
important insights. First of all, we see that our base-
line Max� rule, which myopically routes calls of a
particular type to the available agent with the high-
est service rate for that call type, actually results in
a higher ASA than the Max p� rule, which instead
routes calls of a particular type to the available agent
with the highest effective service rate for that call type.

This suggests a very important operational insight:
even the manager who cares only about achieving
shorter customer waiting times (and not at all about
the achieved call resolution rates) can benefit from
considering resolution and using one of our intelligent
routing rules. However, to realize these waiting time
benefits, the call center must in turn make the commit-
ment to measure resolution probabilities and utilize a
routing rule that is based in part on this RP data.

Similarly, the myopic, resolution-centric Max p rule
actually does not produce the maximum CR rate.
Instead, by adopting the optimal allocation of calls
to agents, OptXRand achieves the highest CR of all
the policies, and the CR gap for Max p is 3.65%.
OptXRand achieves this by keeping calls waiting in
the agent queues they are assigned to, even though
there may be another matching agent that is idle
at that moment. This increase in CR rate comes at
the expense of customer waiting time, however. We
observe that OptXRand has the highest ASA value.

Figure 1 Routing Rule Efficient Frontier
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Note. CS-T , CallSwap with threshold T .
aRules on the efficient frontier.

Next, we note that the Max p� rule features the
lowest ASA among all points on the efficient fron-
tier at 0.06 minutes or 3.6 seconds. On the other end
of the spectrum, we observe that the OptXRand rule
features the highest CR rate at 90.6%. As expected,
each of these rules performs well only on one of the
performance measures: the OptXRand rule produces
an ASA value of just over seven minutes, whereas
the Max p� rule results in a CR gap of 4% with
OptXRand.

Bridging these two extreme points, we see that
the CallSwap-class rules enable managers to express
the relative importance placed on the ASA and CR
rate metrics by selecting appropriate parameter val-
ues. In particular, for all parameter values, these rules
result in significantly lower ASA values than the
OptXRand rule. We note that the CallSwap-1 rule
delivers a CR rate of over 88.60% along with an ASA
of approximately 18 seconds, almost 96% lower than
that of OptXRand, while producing a CR rate that is
two percentage points higher than the Max p� rule
(and a CR gap of two percentage points compared
with OptXRand). As the “full” threshold increases
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(e.g., from CallSwap-1 to CallSwap-60), the borrow-
ing of calls becomes less common, and the Call-
Swap rule behaves more like the OptXRand rule.
For example, the CallSwap-20 rule delivers a CR
rate of 0.73% below that of OptXRand, and its ASA
increases significantly to slightly less than half of that
of OptXRand. The CallSwap-60 rule is much closer
in performance to OptXRand, achieving 0.23% less in
CR rate and a 25 second improvement in ASA. Thus,
as the threshold increases, the CallSwap-class rules
nicely build a bridge between the two anchoring rules
Max p� and OptXRand.

Finally, we note that the alternative hybrid rule
Max xp� shows very strong performance, with a bet-
ter CR rate and ASA than many of the CallSwap
rules, with a resolution gap of just 0.62% and an ASA
of 32 seconds. This is especially important because
although it does require the solution of the optimiza-
tion, it does not carry the same overhead of tracking
buffer overflow levels as in the range of CallSwap
rules. For this case study, Max xp� dominates the per-
formance of the CallSwap rules with thresholds 3 to
20, which motivates further experiments in the next
sections. This rule does not have the flexibility of the
CallSwap-class rules, however, because it represents
only a fixed point on the efficient frontier, whereas
the CallSwap-class rules can cover a wide range of
the frontier by adjusting the full threshold (allow-
ing the call center a finer way to balance the two
objectives).

These results clearly demonstrate that the choice of
routing rules will have a significant impact on the
operational performance of this particular call center.
Moreover, the “best” rule clearly depends on the rel-
ative importance that the call center manager places
on achieving high call resolution rates and short cus-
tomer waiting times.

5. Additional Simulation Experiments
5.1. Motivation for Experiments
It is quite reasonable to question whether the results
from §4 are merely a function of the specific val-
ues of the key model parameters, most notably the
arrival rates �i, the service rates �ij , and the resolu-
tion probabilities pij . In this section, we present the
results from a set of simulation experiments that are
carefully designed to help us understand whether and
under what conditions the results from §4 can be
generalized.

In our setting, several parameter relationships are
of particular interest. First of all, we consider the
input parameters associated with our two dimensions
for service quality. Specifically, we expect that the cor-
relation between the service rates �ij and RP values pij

will have a significant impact on the relative perfor-
mance of different routing rules. For example, in our
case study, the values had a correlation of 0.41.

A positive correlation indicates something about
the calls or the agent training. On the one hand, easier
calls—those that are more likely to be resolved—are
also handled faster. On the other hand, agents who
are more experienced or better trained can answer
calls both faster and better, resulting in a higher ser-
vice rate and higher resolution probability. A neg-
ative correlation, however, suggests that there is a
trade-off between speed and resolution: when agents
work faster (hence, a higher service rate), they are less
likely to resolve problems (hence, a lower resolution
probability).

In addition, we also study the effect of different
utilization rates. Our intuition suggests that, all other
things being equal, the value of intelligent call rout-
ing will decrease as the utilization rates �j increases,
because an increase in utilization means that there
are fewer opportunities for our routing rules to “arbi-
trage” across differences between agent groups. In our
tests, we seek to verify this hypothesis and quantify
the relationship between utilization rate and the bene-
fits available through our intelligent call routing rules.

5.2. Experiment Design
To test the effects of correlation and utilization values,
we simulated a call center with three call types and
three agent groups, each of size 20. Given the large
number of input parameters, our simulation experi-
ments were designed to provide as much clarity and
insight as possible about the relative performance of
our routing rules under different correlation and uti-
lization levels.

The first set of experiments looked at the correla-
tion values and compared the performance of differ-
ent routing rules in the presence of correlation values
of +1, 0, and −1. The second set of experiments con-
trolled for correlation values and tested the perfor-
mance of our routing rules under different utilization
rates.

The same set of nine distinct pij values was used in
each experimental scenario, ensuring that each case
should have a similar potential CR rate. The service
rates were initialized to a permutation of the same
nine �ij values for each scenario, increasing with pij
for the positive correlation case and decreasing for the
negative correlation case. The service rates were then
scaled to give the same value for the sum

∑

i1 j �ijpij ,
ensuring that each scenario had a similar overall aver-
age service rate. As in §4, the arrivals are assumed
to be Poisson, and the service times are assumed to
be exponential. For the correlation experiments in the
following section, the arrival rates �i are selected to
have the system utilized at 90% when the rule Max p�
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is used. The specific values for �i, �ij , and pij for each
experimental scenario are presented in Appendix C in
the electronic companion.

The simulation software platform used to conduct
the simulation experiments presented below is the
same one that was defined in §4 above. In addition,
the number of replications were chosen in the same
manner as for the case study in the previous section,
which is described in Appendix B in the electronic
companion.

5.3. Numerical Results: Correlation Experiments
Figure 2 shows three summary plots for the perfor-
mance of our routing rules, each with different cor-
relation values. The first plot has a correlation of +1,
the second has a correlation value of 0, and the third
has a correlation value of −1. The extreme cases were
created by assigning strictly increasing and strictly
decreasing �ij values relative to the same pij set,
whereas the zero correlation case used a varied per-
mutation of the same values.

From an operational perspective, the first plot is the
result of a strong positive correlation between the res-
olution probabilities and the service times, a case that
arises in practice when the heterogeneity among p
and � values is largely due to the agents’ experience
and training levels (the better agents are able to com-
plete all call types faster and with a higher probability
of resolution) or the nature of the calls (easier calls are
faster to handle and more likely to be resolved).

The second plot in Figure 2 represents the case
when there is no correlation between the among p
and � values. The final plot in Figure 2 has a cor-
relation value of −1, which is the case when there
is a trade-off between speed and quality: the faster
(slower) agents also tend to be less (more) careful
and therefore resolve a lower (higher) portion of calls
handled.

Looking at the plots in Figure 2, we take note of
several significant results. First of all, we observe that
the shape of the efficient frontier is consistent across
all three correlation values and that this shape is also
consistent with that observed in the case study in §4.
Similarly, the relative performance of the different
routing rules is largely consistent across all three cor-
relation levels, and these relative positions are similar
to what was observed in the results for the case study
in §4.

In our case study in §4, we observed the strong
performance of the Max p� rule, which takes into
account both the service rates and the resolution prob-
abilities when making its routing decisions, relative
to the myopic rules Max� and Max p. The results in
Figure 2 further confirm this.

More significantly, we observe that when the cor-
relation is strongly positive as in the first plot in

Figure 2, there is very little difference in the perfor-
mance of the rules Max p�, Max�, and Max p. How-
ever, as the value of the correlation decreases, first
to 0 in the second plot and then to −1 in the third
plot, we see that both the ASA and the CR results for
the Max p� improve relative to the Max� and Max p
rules. Our interpretation of these results is as follows:
when the correlation between the p and � values is
close to +1, the Max� and Maxp routing rules make
very similar routing decisions, because routing on the
basis of a high value for p (or �) is largely equiva-
lent to routing on the basis of the product p�. How-
ever, as the correlation between the p and � value
decreases, there is more benefit to taking into account
both the resolution probabilities and the service rates
when making a routing decision. This results from the
fact that when the correlation value is lower, routing
only on the basis of the highest resolution rates results
in longer service times, whereas routing only on the
basis of the fastest service rates results in lower res-
olution rates; in these cases, the Max p� routing rule
makes a better decision in terms of overall system
throughput by choosing on the basis of the highest
effective service rate.

Similarly, we take note of the resolution gap
between the routing rule with the highest CR rate
(which in all cases is the OptXRand rule) and the
routing rule with the lowest resolution rate. In partic-
ular, we observe that this gap increases as the correla-
tion decreases across three plots in Figure 2, ranging
from 4.56% in the first plot when the correlation is +1
to 7.59% in the third plot when the correlation is −1.
This suggests that the potential improvement in CR
rate from better routing rules grows as the correla-
tion decreases. We also note that in this experiment,
as in our case study in §4, the waiting times asso-
ciated with the OptXRand rule are extremely high,
suggesting that this rule would be very unlikely to
ever be implemented in practice; its primary purpose
is in helping to quantify the resolution gap.

Finally, we take note of the uneven relative perfor-
mance of the Max xp� rule, which features the lowest
CR rate for the case where the correlation is equal
to +1 and a relatively high ASA for the case where
the correlation is equal to −1. It appears that the per-
formance of the Max xp� rule depends heavily on
the values of xij calculated through the optimization
stage, which in turn is sensitive to the parameters
of the agents in the contact center. We note that if
xij = 0 for some 4i1 j5 pair, then agent group j is never
sent call type i. This may induce some idling, increas-
ing the achieved ASA while increasing the CR rate
by ensuring that calls only go to the preferred agent
groups. In particular, if there were no 4i1 j5 pairs for
which xij = 0, then this rule would be equivalent to
the Max p� rule, but if there were mostly zeros, then
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Figure 2 Efficient Frontiers with Different Correlation Values
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it would be similar to OptXRand. Each of our scenar-
ios lie between these extreme possibilities, impacting
the degree to which the rule sacrifices ASA for CR
and, in turn, whether or not the rule appears on the
efficient frontier.

5.4. Numerical Results: Utilization Experiments
Figure 3 shows the impact of utilization on perfor-
mance. To isolate the impact of utilization, we began
by setting the correlation value to zero, just as we had
for the second plot of Figure 2. From here, we varied
the utilization of the system to values of 85%, 90%,
and 95% by appropriately scaling the external arrival
rate vector.

Several observations can be made from the plots in
Figure 3. Just as in the three plots Figure 2, one key
observation is the consistent shape of all three lines in
Figure 3, along with the consistent relative position of
the different routing rules for each of these different
utilization levels.

Once again, we see that in all the scenarios, the
OptXRand rule is superior to all others in terms of

Figure 3 Efficient Frontiers with Different Utilization Values
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aRules on the efficient frontier (for all three utilization levels).

resolution rate but has the worst waiting time perfor-
mance by a significant margin. Whereas OptXRand
anchors one end of the ASA–CR efficient frontier,
Max p� anchors the other end, once again dominat-
ing the myopic Max� and Max p routing rules at all
utilization levels.

In between these two extremes, the class of Call-
Swap rules fill the gap, with the lower threshold rules
closer to Max p� and the higher threshold rules closer
to OptXRand. For example, going from Max p� to
CallSwap-1 generates a significant gain in CR rate at
all utilization levels. Increasing threshold parameter
values for the CallSwap rule corresponds to increased
server idling (which increases ASA), but also enables
better matching of calls to agents in terms of RP val-
ues (so that the overall CR rate also increases). This
trade-off moves the rule closer to a work-conserving
rule and eliminates unnecessary idling; at the same
time, this comes at a cost in terms of the CR rate
achieved, because the CallSwap policies by construc-
tion deviate from the optimal proportion of each type
of call being handled by each agent group.

Next, we note that each of the routing rules pro-
duces not only higher ASA values but also lower
achieved CR rates as the system utilization increases.
This inverse relationship between system utilization
in CR rates results from the decrease in agent idle
time; for nonidling policies such as Max p�, there are
simply less opportunities for agents (calls) to choose
call types (agents) for which they have a higher RP,
whereas policies based on the optimization model (1)
are less able to capitalize on discrepancies in RP val-
ues because of lower levels of agent idle time.

Similarly, we observe that the CallSwap-class rules
are all near the frontier for lower threshold values
when the utilization level is relatively low (i.e., 85%),
but not when the utilization level is high (i.e., 95%).
This is reasonable because as the overall system uti-
lization increases, queues will more frequently reach
the value of the “full” threshold parameter for a Call-
Swap rule, which in turn leads to more deviation in
the actual handling of calls from the optimal propor-
tion x∗

ij of each call type i to be routed to agent group j
based on (1).

Based on all of our numerical results, our recom-
mendation is that CallSwap-type rules be used when
utilization is at or below 90%, for under these condi-
tions we observe that significant improvements in CR
rates can be achieved with relatively small increases
in ASA. Furthermore, we note that the bulk of the
improvement in CR rates that the CallSwap rules
can deliver is captured with parameter values from 1
to 10, whereas CallSwap rules with higher parame-
ter values yield relatively small improvements in CR
rates, and these only at the cost of significant increases
in ASA values.
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As utilization increases, the performance of the
Max xp� (which is on the efficient frontier for all
levels of utilization) comes to dominate all of the
CallSwap rules by an increasing amount and for
increasing threshold levels. This rule achieves a sig-
nificantly greater CR rate by ensuring that calls are
only handled by the preferred agents, and it sacrifices
less in ASA at higher utilization because there is very
little idling possible in a fully utilized call center.

6. Conclusions
In this paper, we have examined a complex prob-
lem that has not been addressed previously in the
research literature. Whereas nearly all the papers in
the literature define system performance as a (one-
dimensional) function of the waiting time distribution,
we model the performance of our call center system
in terms of both the length of a customer’s wait and
the effectiveness of the agent who ultimately handles
the call in resolving a customer’s issue. In this context,
we examine routing rules to improve operational per-
formance on one or both of these output dimensions.
Using a data set from a financial services call center,
we have conducted a set of simulation experiments
to examine the relative performance of these routing
rules. In addition, we have conducted additional sim-
ulation experiments to extend our understanding of
the relative performance of these routing rules along
our two performance dimensions.

Our simulation results provide several insights
about call routing rules. Our intelligent hybrid rout-
ing rules deliver near-optimal CR rates with relatively
low ASA values for a variety of parameter values
and relationships. For each set of input parameters,
we also construct an efficient frontier that is intended
to help managers understand the trade-offs between
ASA and CR rates.

In closing, we propose several extensions to the
research presented in this paper. Whereas our efficient
frontier explicitly illustrates the trade-off between
ASA and CR rate, one natural next step would be to
identify the optimal rule for a given call center based
on the cost of customer waiting and the value of suc-
cessful call resolution. Also, although there has been a
significant amount of research on skill-based routing
and agent pooling, to our knowledge this research has
not considered the impact of such rules on CR rates
when different agent groups have different AHT and
RP values for different call types. In addition, there
is a significant literature on agent learning and attri-
tion (e.g., Pinker and Shumsky 2000, Gans and Zhou
2002, Whitt 2006, Ryder 2009) that suggests that the
choice of routing rules may also have an impact on
the learning and turnover effects experienced by dif-
ferent agent groups; this is an area that we feel may

be worthy of investigation. Finally, we have taken the
arrival rates, service rates, and staffing levels as time-
independent inputs to our model, though in practice
these parameters vary by time of day. This suggests
several avenues for future research including meth-
ods for call forecasting (taking into account CR rates
and customer callback delay time distributions) and
agent scheduling (taking into account not only wait-
ing times but also routing rules and resolution rates).

Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://msom
.journal.informs.org/.
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