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Abstract

Traditional research on routing in queueing systems usually ignores service qual-

ity related factors. In this paper, we analyze the routing problem in a system where

customers call back when their problems are not completely resolved by the service cus-

tomer representatives (CSRs). We introduce the concept of call resolution probability,

and we argue that it constitutes a good proxy for call quality. For each call, both the

call resolution probability (p) and the average service time (1/µ) are CSR dependent.

We use an MDP formulation to obtain analytical results and insights about the opti-

mal routing policy that minimizes the average total time of call resolution including

callbacks. In particular, we provide sufficient conditions under which it is optimal to

route to the CSR with the highest call resolution rate (pµ) among those available. We

also develop efficient heuristics that can be easily implemented in practice.
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1 Introduction

Customer service oriented call centers are traditionally operated as cost centers. Service

accessibility and customer waiting time are the dominant performance measures. As a result,

capacity planning and call routing software systems strive to minimize costs while achieving

self-imposed service level constraints, such as “average wait in queue less than 15 seconds”.

These traditional approaches do not consider, however, the quality of answers provided by

the Customer Service Representatives (CSRs). Low quality of service has a significant impact

on the call center operations besides customer defection: As dissatisfied customers call back

for more help for the same problem, the load on the system increases.

This operational impact of service failure is often ignored by call center capacity planning

and call routing management systems. Our paper is motivated by the problems at a major

European telecommunication service provider, which found that, on average, a customer

needed to talk to more than three different CSRs to get his/her problem resolved. This

company also observed noticeable differences among CSRs in their ability to resolve the

customers’ problems. In our paper, we integrate this service quality related information

into call routing decisions. The goal is to minimize the average total time of call resolution,

defined as the total time spent by a customer in the system to resolve one issue, including

all the callbacks.

A key feature of our approach is the way we model the quality of a CSR’s answer. For

customer service call centers, a high-quality answer provided by the CSR should resolve the

customer’s issue during that call. We operationalize this concept by defining call quality

as the call resolution probability, the probability that the customer is satisfied and does
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not call back for the same problem. The call resolution probability is directly related to

a customer’s perception of call quality which depends on the CSR’s understanding of the

customer’s needs, courtesy, and competency (Zeithaml et al. [34]). Furthermore, it can be

quantified and measured by most of the call center information systems in use today.

Our experience suggests that a CSR’s call resolution probability is often highly correlated

with his/her call speed (defined as the service rate). On the one hand, the correlation could

be negative. Due to very high turnover rates and long training lead-time in this industry

(see Gans and Zhou [11] for example), some call centers are pressed to make the most use

of their CSRs. It is common for the call center to compensate CSRs on the number of calls

served over a period of time, or their call handle time, thereby encouraging them to handle

calls as fast as possible. As a result, CSRs sometimes rush to end a call without making sure

that the root problem is fixed and will not re-occur later (Read [28]). On the other hand, the

correlation could be positive. Many times, better trained and more experienced CSRs are

able to handle the calls faster and provide higher service quality at the same time. In this

paper, we model the service time and the call resolution probability as exogenous variables,

and we do not explicitly model the correlation between them.

Intuitively, call centers that deal with complex issues, such as technical support for cor-

porate computer users or medical help over the phone, may have low call resolution proba-

bilities. Nevertheless, we know from our experience that even when customer problems are

simple (as for the European call center on which this study is based), the call resolution

probabilities can be significantly low. We believe that this comes from the CSR compensa-

tion system mentioned previously and the high turnover rate which results in under-trained

employees. In this paper, we describe routing rules that account for these call resolution
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probabilities. Although we do not directly identify compensation schemes that can improve

the call resolution probabilities while addressing the high turnover rate, our results provide

interesting insights into this issue.

We analyze a call routing problem where there exist several classes of CSRs, each with

its own average call speed µ and call resolution probability p. The goal is to minimize the

average total time of call resolution. Potentially there is a tradeoff between call speed and

call resolution in routing calls: If call resolution is the only concern then it would be optimal

to route calls only to the CSR class with the highest p. The customers’ wait, however,

may become excessively long. If call speed is the only concern, then the objective would be

to minimize the average waiting time of each call instance independently, without paying

attention to the number of customer attempts. Hence, we feel the average total time of call

resolution is the best single measure that encompasses both call speed and call resolution,

and it can be construed as the average number of customer tries times the average waiting

time of each try. Other objective functions, such as linear combinations of call resolution

and call speed, are possible, but the weights are hard to determine and they generally lead

to intractable models.

We formulate the routing problem as a Markov Decision Process (MDP), where the call

center is represented by a heterogeneous, multi-server queueing system. In this framework,

we provide several partial characterizations of the optimal routing policy. Our main result

states that, whenever possible, a call should be routed to the CSR class with the highest

call resolution rate, pµ. If the highest-pµ CSRs are all busy, then the call may be routed

to another available CSR or kept in the queue. Furthermore, we derive sufficient conditions

under which it is optimal to route a call to the CSR with the highest resolution rate among
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the available CSRs. We call this the pµ rule. In particular, we show that when the CSRs

differ only in their call speed or call resolution probability, the pµ rule is optimal. We also

fully characterize the optimal routing policy for a system with two heterogeneous CSRs. In

this case, we show that the optimal policy is of a threshold type: a call will always be routed

to the CSR with the higher resolution rate, whenever possible; the other CSR will be routed

a call only when the number of calls waiting in queue exceeds a certain threshold.

Based on these findings, we propose simple and intuitive routing policies. Our numerical

studies show that the pµ rule performs very well in most cases even when it is not optimal.

Moreover, the pµ-t policy, defined as the pµ rule plus a threshold, is almost optimal in all of

our test cases. We also numerically demonstrate that call centers can significantly improve

their performance by incorporating call resolution probability p into routing decisions.

The pµ index introduced in this paper is a simple and effective routing index that accounts

for both the call speed and the call quality. It also suggests that CSRs should be evaluated

and compensated on their call resolution rate, rather than their service rate alone, as is often

the case.

To ascertain the robustness of our findings, we analyze the problem under more general

modeling assumptions. We show that our results remain valid when callbacks are put in

a separate queue and given priority. We also show numerically that the pµ-based policies

perform well even if there is an exponentially distributed delay before a customer calls back.

When the service time depends on whether, and how many times, the customer has talked

to the same CSR before, we introduce and evaluate a dedicated routing policy, which routes

new calls using the pµ-t policy, but always routes callbacks to the same CSR. A requirement

for the implementation of this policy is the call center’s ability to identify the history of a
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call before serving it (e.g. a case number is required for callbacks at the phone prompt),

which is not the case for the call center we study. In Section 5.4 , we will study the dedicated

policy as an extension to the basic model.

The rest of the paper is organized as follows: In Section 2, we review the literature,

and in Section 3, we formulate and discuss the model. Results for the optimal routing

policy are presented in Section 4. In Section 5 we use extensive numerical tests to show

the importance of accounting for call resolution probability in making the routing decisions.

Several heuristics are proposed and compared. We also analyze the problem when some

modeling assumptions are relaxed. We conclude the paper and comment on further research

in Section 6.

2 Literature Review

The probability of health deterioration after treatment in the health care system (e.g. Berk

and Moinzadeh [4] and De Angelis [1]), which is a strong indicator of the treatment efficiency,

is similar to the probability of callback, 1−p, in our model. To our knowledge, however, our

paper is the first to apply such a measure of quality to the research of call centers or other

service delivery systems.

If calls bring direct revenue to the company (e.g., catalog merchant), customer loyalty,

measured by the probability of defection, better reflects the service quality provided by the

call center. Hall and Porteus [14] and Gans [9] are two examples of this approach. In this

paper we focus on the customer service call centers, so we assume that dissatisfied customers

will call back, instead of simply defecting. Furthermore, to address customer allocation and
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capacity planning problems, we use a more detailed model of the service system than those

in [14] and [9].

There is a large body of literature on the retrial queues. See Falin and Templeton [8]

and the references therein. More recently, Mandelbaum et al. (e.g. [23], [24], [22]) study

the effect of customer retrial behavior patterns specifically in the context of call centers.

The customer retrials they study differ from the customer callbacks in this paper in that a

retrial occurs before the customer receives her service (when a customer calls and receives a

busy signal, she “retries” by calling back sometime later), while a callback occurs after the

customer has already received her service.

When the CSRs in a call center have different skills and speeds, skills-based routing

has been shown to outperform the FIFO and first-available-CSR call routing rules in many

situations. As a result, much study has been done on the skills-based call routing schemes,

both in the industry and in academia (e.g. Bell and Williams [3], Harrison and Lopéz [15],

Gans and Zhou [12], Atar, Mandelbaum, and Reiman [2], and some other references contained

in Gans, Koole, and Mandelbaum [10]).

Research on routing in general often suggests priority-based policies: some call-CSR com-

binations are given priority so they will be used whenever possible; the other combinations

will be used only if the system is in certain states. A good example is the traditional cµ rule

(see Van Mieghem [31] for a generalized cµ rule and Mandelbaum and Stolyar [25] for its

application in the call center setting). The main issue in these models is how to minimize to-

tal cost based on the different processing speeds associated with each call-CSR combination

and the different call-type specific holding costs.

The stream of research most relevant to ours is the so-called slow server problem. In the
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two-server slow server problem, there is one Poisson arrival stream and two heterogeneous

exponential servers. The objective is to find a routing policy to minimize the average wait.

Larsen [18] first formulates the problem and conjectures that a threshold policy should be

optimal. Later, Lin and Kumar ([20]), Walrand ([33]), and Koole ([17]) prove this conjecture

using MDP policy iteration, coupling argument, and MDP value iteration, respectively.

Larsen and Agrawala [19] develop a good and computationally simple approximation to the

threshold.

The general slow server problem allows for more than 2 heterogeneous servers. Due

to the increase in state space dimensionality, the problem becomes very complex (e.g. see

Rykov [29] and Luh and Viniotis [21]). So far, the optimal routing policy has not been fully

characterized for the general case (see de Véricourt and Zhou [7]). Our model can be viewed

as the general slow server model with multiple classes of servers and the additional callback

loops - in particular, when the call resolution probabilities are all equal to one, our model

reduces to the general slow server problem. The optimality of the pµ rule in our model

implies that allocating a call to the fastest server (the µ rule) is optimal for the general slow

server problem. This extends the existing literature on the general slow server problem.

Most analysis of the slow server problem is exact. Teh and Ward [30], on the other

hand, studies the problem in the heavy-traffic regime. They show that, as the heavy traffic

limit is approached, the system is stable and the threshold policy is optimal if and only if

the threshold grows at a logarithmic rate. In other words, in the heavy traffic regime, the

threshold does not disappear.
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3 Formulation of the Problem

3.1 Model and Assumptions

Consider a call center with C classes of CSRs. A class is a group of CSRs with the same

service time distribution and call resolution probability. We assume that there are Si CSRs

in class i, i ∈ {1, . . . , C}. For a Class-i CSR, i ∈ {1, . . . , C}, the service time is exponentially

distributed with rate µi, and the call resolution probability is pi. When a Class-i CSR com-

pletes a call, there are two possible outcomes: 1) with probability pi, the issue is completely

resolved and the customer will simply leave the system; and 2) with probability 1 − pi, the

issue is not completely resolved, and the customer calls back right away.

Our model does not differentiate new calls from callbacks and all customers are served

on a first-come-first-served basis. In practice, however, callbacks are sometimes given higher

priority if they can be identified. This means that callbacks are put in a separate queue and

given priority over new calls. A simple coupling argument shows nonetheless that such a

priority scheme does not alter the average total waiting time of the system and our findings

remain valid.

The arrival of customers with new requests follows a Poisson process with rate λ, and

they wait in a queue if they are not served upon arrival. There is no limit on the waiting

space. To ensure stability, we assume that λ <
∑C

i=1 Sipiµi. See Figure 1 for details.

Due to the memoryless property of Poisson arrival and exponential service times, the

state of the system at time t can be described by a (C + 1)-dimensional vector n(t) =

(n0(t), n1(t), . . . , nC(t)), where n0(t) ≥ 0 is the number of calls waiting in the queue and

ni(t) ∈ {0, . . . , Si}, i ∈ {1, . . . , C} is the number of busy Class-i CSRs.
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Figure 1: Model Overview

At any time, the system controller must decide 1) whether to keep a call in the queue or

to route it to an available CSR, and 2) if a call is to be routed, which CSR class it should

be routed to. The goal of our model is to minimize the average total time of call resolution.

In this model, we assume that both the call resolution probabilities and the service rates

are independent of the number of previous calls made by the customer for the same problem.

Such an assumption may not be realistic in certain situations, for instance when there is a

setup time each time a customer meets a new CSR, or more generally when the service time

decreases with the number of attempts. We discuss this situation in Section 5.3.

We also assume customers immediately return to the system when they are dissatis-

fied. This assumption is reasonable when a customer can quickly check the accuracy of the

CSR’s answer. Examples include technical support call centers that deal with computer

hardware/software applications, where the delay in callback is usually small compared to

the service time. In other practical situations, however, dissatisfied customers call back after
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a longer delay. In Section 5.4, we present a model where an exponential amount of time

elapses before dissatisfied customers call back. Numerical studies show that the routing

policies developed for the immediate callback model also perform well in this case.

3.2 The Markov Decision Problem

The routing policies we study are non-anticipating and non-preemptive. Furthermore, due

to the Markovian assumptions, the policies are also not history dependent. As is well known

in the literature, it is optimal to take actions only at arrival and service departure epochs.

Any possible action is represented by a C-dimensional vector (a1, . . . , aC), where ai,∀i ∈

{1, . . . , C}, is the number of calls routed to Class-i CSRs. In particular, the zero vector

represents the (non-)action of not routing any call. A routing policy π is thus a rule that

determines, for every decision epoch, what action to take.

The objective is to determine the routing policy that minimizes the average total time

of call resolution. By Little’s Law, this is equivalent to minimizing the average number of

customers in the system. As a result, we look for the Markov routing policies that minimize

the average number of customers in the system:

g∗ = min
π

lim sup
T→∞

1

T
Eπ

n0

[∫ T

0

C∑

i=0

ni(t)dt

]
, (1)

where Eπ
n0

denotes the conditional expectation given policy π and the initial state at time 0.

The main approach we use in this paper is the standard MDP value iteration (e.g. see

Ha [13] or Veatch and Wein [32]). Let v(n) be the standard MDP “cost-to-go” function in

state n, then v is a mapping from NC+1 to <+, where N and <+ are the sets of integers

and non-negative real numbers respectively. In the next section, we will define the desirable
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properties for the optimal MDP value function v(·) and show that these properties are

preserved by the value iteration operators. We define below the two value iteration operators

T and Γ.

Because the inter-arrival and service time are exponentially distributed, we can study

an equivalent Markov process with i.i.d inter-event time, by adding fictitious transitions.

This procedure is known as uniformization. (See Section 11.5 in [27] for details.) The

uniformized Markov process will have a fixed total transition rate of λ +
∑C

i=1 Siµi in every

state. Without loss of generality, we can scale the time and assume that λ +
∑C

i=1 Siµi = 1.

Let ei, i ∈ {0, . . . , C}, denote a (C + 1)-dimension vector whose (i + 1)th component is 1

and all other components 0, Ω = {f |f : NC+1 → <+}, and T : Ω → Ω.

We denote by K(n) the set of classes with available CSRs in state n:

K(n) = {i ∈ {1, . . . , C} | ni < Si}. (2)

Then for any v ∈ Ω,

Tv(n) =





v(n) if n0 = 0 or K(n) = ∅,

min{Tv(n + ej − e0), v(n) | j ∈ K(n)} if n0 > 0 and K(n) 6= ∅.
(3)

Note that more than one calls can be routed at once. Instead of listing all these possible

routings in the minimization operator, we choose to use equivalent recursive definition in

(3). The recursion is well defined because n0 decreases by one each time a call is routed. For

example, take n0 = 2, and apply the previous recursive definition twice. We have

Tv(n) = min{v(n + ej + ek − 2e0), v(n + ej − e0), v(n) | j ∈ K(n), k ∈ K(n + ej)}.

When Tv(n) = v(n + ej + ek − 2e0) for some j, k ∈ K(n), the corresponding policy routes

two calls at the same time.
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The MDP optimality equations then becomes

Γv∗(n) = v∗(n) + g∗, (4)

where g∗ is the optimal average number of customers defined in (1) which is independent

of the initial state (see for instance Rykov (2002) and the references therein), v∗(n) is the

optimal relative value function, and Γ : Ω → Ω is the dynamic operator that satisfies:

Γv(n) =
C∑

i=0

ni + λTv(n + e0) +
C∑

i=1

ni(1 − pi)µiTv(n− ei + e0)

+
C∑

i=1

nipiµiTv(n− ei) +
C∑

i=1

(Si − ni)µiTv(n). (5)

Note that the last term corresponds to a fictitious transition due to the uniformization

procedure. We allow an action at these transitions, as in Koole [17].

4 Analysis of the Optimal Routing Policy

In this section, we present partial characterizations of the optimal routing policy. We first

show that, whenever possible, it is optimal to route a call to the CSR class with the highest

call resolution rate pµ. We then derive conditions under which a generalization of this

property, the pµ rule, is optimal. More precisely, we assume without loss of generality that

the different classes of CSRs are indexed such that p1µ1 ≥ . . . ≥ pCµC . Then the pµ rule

stipulates that, if the state is n when a call is routed, then the call should be routed to CSR

class m(n), where m(n) = min{k|k ∈ K(n)}.

We end this section with a full characterization of the optimal routing policy for the

two-CSR case.
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4.1 Partial Characterization of the Optimal Policy

For any v ∈ Ω, define

∆iv(n) = v(n + ei) − v(n) ∀ i ∈ {0, . . . , C},

∆ijv(n) = v(n + ei) − v(n + ej), ∀ i, j ∈ {0, . . . , C}.

Moreover, define V to be the set of all v ∈ Ω that satisfy the following properties:

[P.1] ∆iv(n) ≥ 0,∀i ∈ K(n).

[P.2] ∆0v(n) ≥ 0.

[P.3] ∆1iv(n) ≤ 0 if 1 ∈ K(n) and i ∈ K(n).

[P.4] ∆10v(n) ≤ 0 if 1 ∈ K(n).

Properties P.1 and P.2 are fairly intuitive. They state that fewer calls in the system, either

with Class-i CSRs or in queue, always result in smaller average total time in the system.

Properties P.3 and P.4 together imply that, whenever possible, the policy corresponding to

v ∈ V always routes a call to a Class-1 CSR first.

The following lemma is used repeatedly in our analysis later. Its proof is straightforward

and thus omitted:

Lemma 1 Let {x1, . . . , xp} and {y1, . . . , yq} be two sets of real numbers. If for any i ∈

{1, . . . p}, there exists a j(i) ∈ {1, . . . q} such that xi ≥ yj(i), then mini∈{1,...p}{xi} ≥ minj∈{1,...q}{yj}.

The following lemma states that Operator T preserves V .

Lemma 2 If v ∈ V then Tv ∈ V .
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Proof: In this proof, the terms “positive” and “negative” mean “non-negative” and “non-

positive”, respectively. Let v ∈ V . We first show that Tv satisfies P.1-P.3 by induction on

n0, the number of calls waiting in queue. We then deduce P.4.

Step 1 Consider states n where n0 = 0. A direct computation leads to

∆iTv(n) = ∆iv(n), ∆0Tv(n) = min{∆iv(n),∆0v(n) | i ∈ K(n)}, and ∆1iTv(n) = ∆1iv(n).

It follows from v ∈ V that Tv satisfies P.1-P.3 for n such that n0 = 0.

Step 2 Consider states n where n0 > 0. Assume that Tv satisfies P.1-P.3 for all states

where the number of calls waiting in queue is strictly less than n0.

P.1 By definition, Tv(n+ei) = min{Tv(n+ei+ej−e0), v(n+ei) | j ∈ K(n+ei)}. Note

that if j ∈ K(n+ei) then j ∈ K(n). Moreover, Tv(n+ei+ej−e0) ≥ Tv(n+ej−e0) since Tv

is assumed to satisfy P.1 for states with n0 − 1 waiting calls. Furthermore, v(n + ei) ≥ v(n)

since v ∈ V . Hence, Tv(n) satisfies P.1 by Lemma 1.

P.2 Similarly, because K(n+e0) = K(n), v satisfies P.2, and Tv satisfies P.2 for n0−1,

we can use Lemma 1 to show that Tv(n+e0) = min{Tv(n+ej), v(n+e0) | j ∈ K(n+e0)} ≥

min{Tv(n + ej − e0), v(n) | j ∈ K(n)} = Tv(n).

P.3 For all j ∈ K(n+ei), j 6= 1, we also have j ∈ K(n+e1). So we have Tv(n+ej−e0+

ei) ≥ Tv(n+ej−e0+e1) since Tv is assumed to satisfy P.3 for n0−1. For j = 1 ∈ K(n+ei),

we can choose i ∈ K(n + e1), and we have Tv(n + e1 − e0 + ei) = Tv(n + ei − e0 + e1).

Moreover, v(n+ei) ≥ v(n+e1) since v satisfies P.3. Therefore, by Lemma 1, Tv(n) satisfies

property P.3.

It follows that Tv satisfies P.1-P.3 for all n0.
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P.4 Finally, note that

Tv(n + e0) = min{Tv(n + ej), v(n + e0) | j ∈ K(n + e0)}

= min{Tv(n + e1), v(n + e0)} = Tv(n + e1). (6)

So ∆10Tv(n) = 0. The second equality in (6) holds because Tv satisfies Property P.3. The

last one follows from the fact that Tv(n + e1) is less than or equal to v(n + e1) from the

definition of T , which is in turn less than or equal to v(n + e0) from Property P.4.

If v ∈ V , then according to Lemma 2, Tv satisfies Properties P.3 and P.4, and (3)

becomes: For any n where 1 ∈ K(n),

Tv(n) =





v(n) if n0 = 0

Tv(n + e1 − e0) if n0 > 0
(7)

In (6), we have actually shown that Tv satisfies a property stronger than P.4:

Corollary 1 If v ∈ V then ∆10Tv(n) = 0,∀n s.t. 1 ∈ K(n).

The following theorem establishes P.1-P.4 for the optimal value function.

Theorem 1 If p1µ1 ≥ piµi, ∀i ∈ {2, . . . , C} and v ∈ V , then Γv ∈ V .

Proof: Consider v ∈ V . We first study the sign of ∆iΓ for i ≥ 1. From (5),

∆iΓv(n) = 1 + [(Si − ni − 1)µ1 +
∑

j 6=i

(Sj − ni)µj]∆iTv(n)

+λ∆iTv(n + e0) + µi(1 − pi)∆0Tv(n)

+
C∑

j=1

njpjµj∆iTv(n− ej) +
C∑

j=1

nj(1 − pj)µj∆iTv(n− ej + e0), (8)

which is positive from P.1, P.2, and Lemma 2.

Similarly, based on P.3 and Lemma 2, we conclude

∆0Γv(n) = 1 +
C∑

j=1

(Sj − nj)µj∆0Tv(n) + λ∆0Tv(n + e0)
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+
C∑

j=1

njpjµj∆0Tv(n− ej) +
C∑

j=1

nj(1 − pj)µj∆0Tv(n− ej + e0) ≥ 0. (9)

We now turn our attention to ∆1iΓ.

∆1iΓv(n) =

[
(Si − ni − 1)µi +

∑

j 6=i

(Sj − nj)µj

]
∆1iTv(n)

+(µ1 − µi)[Tv(n + e0) − Tv(n + e1)]− (p1µ1 − piµi)∆0Tv(n)

+λ∆1iTv(n + e0) +
C∑

j=1

njpjµj∆1iTv(n− ej)

+

C∑

j=1

nj(1 − pi)µj∆1iTv(n− ej + e0). (10)

We know that Tv(n + e0) = Tv(n + e1) from Corollary 1. Moreover, since p1µ1 ≥ piµi,

−(p1µ1 − piµi)∆0Tv(n) ≤ 0 from P.2. Consequently, by P.3 and Lemma 2, ∆1iΓv(n) ≤ 0.

Finally, we compute ∆10Γv.

∆10Γv(n) =

[
(S1 − n1 − 1)µ1 +

∑

j>1

(Sj − nj)µj

]
µj∆10Tv(n) + λ∆10Tv(n + e0)

−p1µ1∆0Tv(n) +
C∑

j=1

njpjµj∆10Tv(n− ej)

+
C∑

j=1

nj(1 − pj)µj∆10Tv(n− ej + e0), (11)

which is negative from P.2, P.4, and Lemma 2.

Theorem 1 allows us to partially characterize the optimal policy:

Corollary 2 Assume that p1µ1 ≥ piµi, ∀i ∈ {2, . . . , C}. It is optimal to route a call to a

Class-1 CSR whenever possible.

Proof: From Theorem 1 and the application of MDP value iteration, the optimal value

function can be shown to belong to V . Then, from P.3 and P.4, we conclude that at any
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time, routing a call to a Class-1 CSR is better than either routing it to another available

CSR or keeping it in the queue.

It is worth noting that, as long as p1µ1 ≥ piµi,∀i, calls will be routed to a Class-1 CSR

whenever possible, even when µ1 is smaller than some µi. Hence, pµ is a more useful index

than µ in routing decisions. We believe that managers should focus on improving the CSRs’

call resolution rates pµ, instead of just their service rates µ. Moreover, CSRs should be given

incentives that correspond to their call resolution rate. For instance, CSRs’ compensation

could be evaluated based on “calls resolved” rather than “calls handled”. Shumsky and

Pinker [26] have additional discussions on this topic.

4.2 The pµ Rule

Corollary 2 states that priority should be given to Class-1 CSRs, but it does not specify what

to do when all Class-1 CSRs are busy and some other CSRs are available. A straightforward

extension would be to give priority to the class with the highest pµ index among all those

available. Recall that we name this the pµ rule.

In the case of two classes, the pµ rule is optimal, and can be viewed as an analog of the

well known cµ result. However, for more than two classes of CSRs, the pµ rule may not be

optimal. Consider the case where Class-2 CSRs have a higher call resolution rate, but they

are much slower (i.e., p2µ2 > p3µ3 and µ2 << µ3). In this case, a call routed to a Class-2

CSR may still be in service when a better CSR (from Class 1) becomes available. However,

if it had been routed to a Class-3 CSR instead, it might have either left the system earlier

or returned and been re-routed to a Class-1 CSR earlier. So the optimal policy may prefer
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Class 3 to Class 2 in some states. Specifically, for C = 3, S1 = 5, S2 = S3 = 2, λ = 7, µ1 = 4,

p1 = 0.6, µ2 = 3, p2 = 0.4, µ3 = 9, p3 = 0.1, the optimal action in state (1, 5, 0, 1) is 3. That

is, when one call is in the queue, all Class-1 CSRs are busy, all Class-2 CSRs and 1 Class-3

CSR are available, it is optimal to route the call to a Class-3 CSR instead of a Class-2 CSR.

These are very rare and extreme cases, however. As our numerical tests will show, the pµ

rule is optimal in most practical situations. Nevertheless, we need additional assumptions

to analytically show the optimality of the pµ rule. Let the classes again be indexed such

that p1µ1 ≥ . . . ≥ pCµC . We show below that the pµ rule is optimal when µ2 ≥ . . . ≥ µC.

These conditions cover the cases in which the CSRs differ only in p (e.g. they follow the

same scripts but have different problem-solving skills/training) or only in µ (e.g. the slow

server problem). They also cover the cases in which p and µ are positively correlated (e.g.,

more experienced CSRs handle calls faster and give better answers).

Let W be the set of all real-valued functions defined on NC+1 that satisfy Properties P.1,

P.2, P.4 and the following property:

[P.3’] ∆kiw(n) ≤ 0 if i ∈ K(n) and k = m(n).

Property P.3 is a special case of Property P.3’ for m(n) = 1, so W is a subset of V .

In particular, under P.3’ (7) remains true, and the policy corresponding to a value function

belonging to W routes a call to a Class-1 CSR whenever possible.

The following lemma is analogous to Lemma 2.

Lemma 3 If µ2 ≥ . . . ≥ µC and w ∈ W then Tw ∈ W .

Proof: Since W ⊂ V , Tw satisfies P.1, P.2, and P.4 from Lemma 2. Now we use induction

on n0 to show that Tw satisfies P.3’.

18



Step 1 When n0 = 0, ∆kiTw(n) = ∆kiw(n) by definition and Tw satisfies P.3’.

Step 2 When n0 > 0, we assume that Tv satisfies P.3’ with n0−1 calls waiting in the queue.

This implies that Tw(n + ej − e0 + ei) ≥ Tw(n + ej − e0 + ek), for all j ∈ K(n + ei), j 6= k.

For j = k ∈ K(n + ei), we can choose i ∈ K(n + ek), and we have Tv(n + ek − e0 + ei) =

Tv(n+ei−e0 +ek). Furthermore, w(n+ei) ≥ w(n+ek) since w ∈ V and the result follows

from Lemma 1.

We are now ready to provide sufficient conditions under which the pµ rule is optimal.

Theorem 2 If p1µ1 ≥ . . . ≥ pCµC , µ2 ≥ . . . ≥ µC and w ∈ W , then Γw ∈ W .

Proof: Since w satisfies P.3’, it also satisfies P.3. Following the same approach as in Theo-

rem 1, we can show that Γw satisfies P.1, P.2, and P.4.

For Property P.3’, a direct computation leads to, for k ≤ i,

∆kiΓw(n) =

[
(Si − ni − 1)µi +

∑

j 6=i

(Sj − nj)µj

]
∆kiTw(n)

+(µk − µi)[Tw(n + e0) − Tw(n + ek)] − (pkµk − piµi)∆0Tw(n)

+λ∆kiTw(n + e0) +

C∑

j=1

njpjµj∆kiTw(n − ej)

+
C∑

j=1

nj(1 − pj)µj∆kiTw(n − ej + e0). (12)

By the definition of T , Tw(n+e0) ≤ Tw(n+ek). Moreover, since µk is assumed to be larger

than µi, (µk − µi)[Tw(n + e0) − w(n + ek)] ≤ 0. The other terms of ∆kiΓ are also negative

from P.2 and P.3’.

The following straightforward corollary presents this result for the optimal control policy.

Corollary 3 If p1µ1 ≥ . . . ≥ pCµC and µ2 ≥ . . . ≥ µC then
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• The optimal policy routes a call to a Class-1 CSR whenever possible.

• If it is optimal to route a call in state n, then this call is always routed to a Class-m(n)

CSR.

That is, the pµ rule is optimal.

By including callback loops, Corollary 3 provides non-trivial generalizations of the slow

server problem. Specifically, if we let pi = 1, i ∈ {1, . . . , C}, then Corollary 3 extends the

optimality of the µ rule in Lin and Kumar [20], Walrand [33], and Koole [17] to more than

two classes.

4.3 Threshold Policies

Results in Sections 4.1 and 4.2 partially characterize the optimal policy. In particular,

Corollaries 2 and 3 specify where to route a call when it is optimal to do so. They do not

specify when to route a call. In most cases, a threshold policy seems to provide an efficient

and simple way to make this type of decision. Optimality of the threshold policy has been

proved for the two-server slow server problem (C = 2, S1 = S2 = 1, p1 = p2 = 1) (see Lin

and Kumar [20], Walrand [33], and Koole [17]). The theorem below extends their result to

include the callback loops (p1 and p2 less than 1). Its proof can be found in Appendix A.

Theorem 3 Suppose C = 2, S1 = S2 = 1, and p1µ1 ≥ p2µ2. The optimal routing policy is

characterized by a threshold t∗ such that:

• If the Class-1 CSR is available, the policy routes a waiting call to the Class-1 CSR;
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• If the Class-1 CSR is busy, the policy routes a waiting call to the available Class-2 CSR

if and only if the queue length is larger than t∗.

Theorem 3 is the first optimality result for threshold policy in a queueing system with

callback loops. It suggests that threshold-based policies are indeed suitable heuristics for

systems with the callback loops.

When there are more than one CSR per class, and/or more than two classes, the situation

is much more complex. Our extensive numerical tests (heavy, medium, and light traffic and

different combinations of arrival and service rates, and call-resolution probabilities) suggest

that the optimal policy is always a state-dependent threshold policy: in each state, it is

optimal to route a call to a certain idle CSR (not necessarily following the pµ rule) if and

only if queue length exceeds a threshold. These thresholds depend on the number of busy

CSRs in each class, so potentially there could be as many as
[∏C

i=2(1 + Si)
]
− 1 thresholds.

5 Numerical Analysis and Extensions

Since optimal state-dependent threshold policies are hard to compute and incorporate, in

Section 5.1 we propose heuristics that perform well and are simple to apply in practice. More

fundamentally, we evaluate the importance of incorporating p into the routing decisions in

Section 5.2. We also investigate various extensions of our modeling assumptions: In Section

5.3 we explore situations where the service rate depends on the number of times a CSR has

talked to the same customer before. In Section 5.4 we consider cases in which customers

call back not immediately but after an exponentially distributed time. To conclude our

numerical analysis, we propose a lower bound for the optimal average time of call resolution
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in Section 5.5.

5.1 pµ-based policies

Lemmas 2 and 3 show that pµ is a very important routing index. In this section we study

two policies based on the pµ rule:

• Theorem 3 shows the optimality of threshold policies in simple settings that include

callbacks. This inspires us to use a threshold-based policy for more complex settings.

Consider the pµ policy with a fixed threshold t, or simply the pµ-t policy. With two

CSR classes, this policy uses the pµ rule and routes a call to a Class-2 CSR if the

queue length exceeds t, regardless of how many (as long as not all) Class-2 CSRs are

busy. The threshold t will be optimally selected among all possible fixed thresholds.

This policy simplifies the state-dependent threshold policy by using a single fixed (i.e.,

state-independent) threshold, and is optimal for the case of two heterogeneous CSRs

(C = 2, S1 = S2 = 1).

• A pµ policy further simplifies the pµ-t policy by routing a call to an available Class-2

CSR as soon as possible. That is, it sets t = 0.

For comparison purposes, we also study the following policy, which does not use pµ as a

factor in the routing decisions:

• A random assignment policy routes a call randomly to any available CSR. This is

the policy often used by call centers that do not incorporate any pµ information into

routing decisions.
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Our numerical analysis includes 54 cases, which cover light (Cases 1-18), medium (Cases

19-36), and heavy (Cases 37-54) traffic situations. Of the 18 cases for each situation, we

analyze when p1µ1 and p2µ2 are close (the first 9 cases) and far apart (the next 9 cases).

Then for each fixed piµi, i = 1, 2, we let pi and µi take on three sets of values so that there

are 9 combinations. The purpose is to test “normal” cases as well as “extreme” cases, which

will give us a sense of the “bound” on the differences. Detailed parameter values are given

in Table 4 in Appendix B. For each case, we compare the random assignment policy, the

pµ policy, and the pµ-t policy with the optimal state-dependent threshold policy determined

numerically by a value iteration algorithm.

Results in Table 4 show that the benefit of allowing the threshold to vary state-by-state

(i.e., optimal vs pµ-t) is minimal. This is intuitive: Although the thresholds used by the

(optimal) state-dependent threshold policy vary significantly between n2 = 0 and n2 = S2−1,

only a few of these thresholds really matter since most of the (S1, n2) states are visited very

infrequently (if at all) in the steady state. Therefore the pµ-t policy, which uses the best t

for all states, performs well. This also simplifies the search for optimal control parameters.

Furthermore, we observe that the benefit of withholding some calls (i.e. pµ-t vs pµ),

similar to the benefit gained in the slow server problem, is far less than the benefit of

recognizing and utilizing the pµ rule in call routing (i.e. pµ vs random). Since the pµ policy

does not require any computation except for the ranking of pµ index, this means that in

most cases the pµ policy is a better policy for implementation. Actually, the performance of

the pµ policy is dramatically worse than that of the pµ-t policy only for Cases 28, 31, and

34. These cases correspond to 1) medium traffic situations (the utilization rate is 50%), 2) a

wide difference between p1µ1 and p2µ2, and 3) p2 = 1. To understand 1), we note that when
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traffic is high, Class-2 CSRs are heavily used and the optimal threshold is low. When traffic

is low, Class-2 CSRs are hardly necessary. Both of these situations lead to small difference

between pµ and pµ-t policies. For 2), when the CSR heterogeneity is higher, the optimal

threshold should be higher, leading to a greater difference between pµ and pµ-t policies. To

see 3) we note that when p2 < 1, an unresolved call by a Class-2 CSR can be re-routed to a

Class-1 CSR. When p2 = 1, however, once a call is routed to a Class-2 CSR, it remains there.

So the use of a threshold to withhold calls becomes more important when p2 = 1, leading to

a greater difference between pµ and pµ-t policies. In practical situations, the traffic is usually

high, and p2 < 1. Therefore, the difference between the pµ and pµ-t policies diminishes.

We conclude this section by analyzing the performances of the pµ-t and pµ policies as

the size of the call center increases. Tested cases and results are presented in Table 1. For

all cases we let µ1 = µ2 = 2, p1 = 1, p2 = 0.5, and increase λ and S1 = S2 by a scale factor

varying from 1 to 20 such that ρ = 2/3.

As shown by Table 1, the pµ-t policy always performs very well with an error less than

or equal to 0.3%. Maybe more interesting is the efficiency of the pµ policy, which has an

error less than 1%. These results suggest that our findings for small systems remain true

for larger ones. We also observe that as the system size grows (with traffic intensity at a

fixed value), the threshold also increases but at a lower rate and remains small relative to

the total number of CSRs.

We note that there could be another way of testing the size effect. Instead of fixing

the system utilization as we increase the size of the call center, we could also fix a certain

service level (e.g. 5% delay probability). As the arrival rate increases, the size of the call

center would increas in a way that follows the square-root staffing rule (e.g., see Borst,

24



Optimal threshold Cost Increase Over Optimal Policy
Scale Factor λ for pµ-t policy pµ-t policy pµ policy

1 16 2 0.00% 0.62%
2 32 2 0.00% 0.89%
4 64 3 0.01% 0.88%
6 96 3 0.04% 0.83%
8 128 4 0.02% 0.76%
10 160 4 0.02% 0.71%
12 192 5 0.30% 0.93%
14 224 5 0.00% 0.01%
16 256 6 0.04% 0.33%
18 288 6 0.02% 0.60%
20 320 6 0.03% 0.58%

Table 1: Impact of the Size of the Call Center

Mandelbaum, and Reiman [6]). One difficulty is that these rules are not derived for the

heterogeneous servers, callback loops, and priority rules that are essential in our model. It

would be an interesting area for future research to see how the square-root staffing rule can

be adapted to our model.

5.2 Importance of Call Resolution Probability p

We want to stress in this paper the importance of incorporating the call resolution probability

p into the call routing priority index. In this section, we set µ1 = µ2 and fix p1. Then we

systematically decreased p2, starting from p2 = p1. If the manager of a call center only

measures the speed of its CSRs, then it will assume that all CSRs are the same. Therefore

a random assignment policy will be used. On the other hand, if the call center measures the

call resolution probability p of each CSR, then it should route calls according to p (i.e., use

the pµ and pµ-t policies).

The parameters used in the tests are as follows: λ = 1, S1 = S2 = 8, µ1 = µ2 = 0.18, p1 =

0.7; p2 varies. Results are summarized in Figure 2.
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Figure 2: Comparing the pµ and random assignment policies: µ1 = µ2.

We observe that the random policy performs very poorly against the pµ policy in most

cases. In general, the smaller the ratio p2/p1, the bigger the difference. This is intuitive

because the benefit of recognizing the difference between p1 and p2 and utilizing it in routing

is greater when the difference is bigger. However, in the extreme, as p2 approaches 0, the

system traffic intensity approaches 0.99. This is very heavy traffic and all the policies tend

to use the Class-2 CSRs whenever possible. That explains why the difference narrows as

p2 → 0.

Note that when µ1 = µ2, the pµ policy simply gives calls to the CSR class with the higher

p. When the ranking of the CSRs according to their call resolution probabilities is common

knowledge (or can be measured), such a policy is very easy to implement, and also gives

significant benefits.
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5.3 Dedicated Policy

So far, we have assumed that the service rates do not depend on the number of previous

attempts to solve the customer’s problem. In practical situations, the service time may

decrease if the customer talks to the same CSR (e.g. call centers dealing with complex issues

such as medical and legal help). In such cases, it may indeed be better to route a callback

to the CSR who answered this call the first time (the original CSR).

In this section we numerically evaluate the performance of a dedicated policy. This policy

allocates new calls according to the pµ-t routing policy, but always routes callbacks imme-

diately to the original CSR. The dedicated policy applies to situations where it is the CSR

who reaches the conclusion that the problem has not been properly addressed. Instead of

handing the call off to another CSR, which would result in another setup time, the CSR

may want to keep the call and give it another try. The dedicated policy also applies to call

centers requiring callbacks to enter a case number at the phone prompt that corresponds to

the particular customer issue. For call centers that cannot identify the reason of a call as it

enters the system, the implementation of the dedicated policy is difficult.

Let us assume that each time a callback is routed to the original CSR, the average service

rate increases by a given percentage δ. In other words, the average service rate for the kth

attempt is equal to (1 + δ)k−1µi for a Class-i CSR. Therefore, the total average service time

(taking the callbacks into account), µ̃i, is equal to µi(pi +δ)/(1+δ). To simplify the analysis

we assume that the total service time is exponentially distributed, and the system becomes

a slow server problem with rates µ̃i.

We compare the dedicated policy with the pµ-t policy. We assume that the pµ-t policy
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does not utilize customer callback information, so that it is unlikely for a callback to be

reassigned to the original CSR. Therefore we assume that under the pµ-t policy the service

rates do not depend on the number of previous attempts. At the end of this section, we

discuss how to use callback information in the pµ-t policy.

When δ = 0, the total service time by a Class-i CSR is a geometric sum of exponential

random times with the same rate µi, and the system is equivalent to a slow server system

with service rates of {piµi}, and no callbacks. As δ increases (i.e., the time saving becomes

larger), the gap between the dedicated policy and the pµ-t should narrow. Eventually there

should exist a δ∗ such that the dedicated policy outperforms the pµ-t policy if δ ≥ δ∗.

We let S1 = S2 = 8, p2µ2 = 1, and let p1µ1 = µ2 vary from 1.1 to 2. Figure 3 depicts

δ∗ as ∆pµ := (p1µ1 − p2µ2)/p2µ2 increases. Although δ∗ is increasing in ∆pµ, for δ∗ to be

significant ∆pµ needs to be large. For instance, when p1µ1 is 50% larger than p2µ2, the

dedicated routing policy should be used as soon as CSRs can improve the service rates at

each attempt by 4%.

This suggests that the dedicated routing policy should work well when ∆pµ is not par-

ticularly large. It also suggests that when the original CSR of a callback can be identified,

the call routing policy should use this information. Here we propose a modified pµ-t policy

that takes advantage of the benefits of the dedicated policy: The pµ-t policy still determines

when (i.e. when the queue length exceeds the threshold) and where (i.e. pµ rule) to route

a call as before. In addition, if the call is a callback, the original CSR is idle and is in the

class identified by the pµ rule, then the modified pµ-t policy should route the call to the

original CSR. Note that if the queue discpline is FCFS, the original CSR may not always

be available. Even when callbacks are given priority in routing, they may still wait in the
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Figure 3: δ∗ as a Function of ∆pµ

queue if, upon their return, all Class-1 CSRs are busy and the queue length is below thresh-

old. By the time the callbacks are routed, their original CSRs may not be available either.

In summary, the modified policy is based on the pµ-t policy but it routes the callbacks to

their original CSR whenever possible. Other modifications of the pµ-t are also possible. We

believe that when δ is significant, these modified pµ-t policies constitute good alternatives

to the dedicated routing policy.

5.4 Delay in call back

So far, we have assumed that when a call is not resolved successfully, the call returns im-

mediately to the system. In many instances, however, the resolution of a call may not be
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immediate. Therefore, the customer leaves the system after being served, and calls back

(if needed) only after a certain amount of time. From a modeling perspective, this system

can be viewed as having a callback “orbit”. Unresolved calls stay in the orbit for an expo-

nentially distributed time with rate ν before coming back to the system. Since the number

of calls in the orbit is usually unknown to the call center, this model is a Partially Ob-

served Markov Decision Process for which general results and algorithms are limited (e.g.,

see Puterman [27]).

Let us call the immediate-callback model in Section 3 the IC model, and the delayed-

callback model the DC model. Note that the IC model corresponds to the DC model in

which ν = ∞. In this section, we test how well the pµ heuristics (developed for the IC

model) perform in the DC model. More precisely, we identify the best threshold of the pµ-t

policy for the IC model and apply the same policy to the corresponding DC model. We also

test the pµ policy.

Since the DC model cannot be evaluated, we actually look at another system in which

the orbit size is limited and the full state information, including the size of the callback

orbit, is known to the decision maker. Both assumptions reduce the system cost, resulting

in a lower bound of the system. It is against this lower bound that we numerically test the

performance of the pµ-t and pµ policies (see Appendix C for more details).

Tests for 24 cases are summarized in Table 2. In cases 1-8, 9-16, and 17-24, we have

µ1 = µ2, µ1 > µ2, and µ1 < µ2 respectively. We also start with the IC model (ν = ∞).

Then we gradually decrease ν to 1/64. If an average call lasts 5 minutes, then ν = 1/64

corresponds to an average delay of more than 5 hours before callback. Values for the other

parameter values and the results are given in Table 2.
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Cost Increase Over Lower Bound
Case µ2 ν pµ-t policy pµ policy

1 1 ∞ 0.0% 0.0%
2 1 1 0.0% 0.0%
3 1 1/2 0.0% 0.0%
4 1 1/4 0.0% 0.0%
5 1 1/8 0.0% 0.0%
6 1 1/16 0.0% 0.0%
7 1 1/32 0.0% 0.0%
8 1 1/64 0.0% 0.0%
9 0.8 ∞ 0.1% 0.1%
10 0.8 1 0.2% 0.3%
11 0.8 1/2 0.1% 0.4%
12 0.8 1/4 0.1% 0.4%
13 0.8 1/8 0.0% 0.5%
14 0.8 1/16 0.0% 0.5%
15 0.8 1/32 0.0% 0.5%
16 0.8 1/64 0.0% 0.5%
17 1.2 ∞ 0.0% 0.0%
18 1.2 1 0.0% 0.0%
19 1.2 1/2 0.0% 0.0%
20 1.2 1/4 0.0% 0.0%
21 1.2 1/8 0.0% 0.0%
22 1.2 1/16 0.0% 0.0%
23 1.2 1/32 0.0% 0.0%
24 1.2 1/64 0.0% 0.0%

Table 2: Effect of ν for different µ2, with λ = 4, p1 = 1, µ1 = 1, p2 = 0.6 and S1 = S2 = 4.
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Results in Table 2 suggest that further decreasing ν will not have a significant impact.

Moreover,

• Both the IC pµ-t and pµ policies, when applied to the DC model, have costs that are

extremely close to the DC lower bound (all errors are less than 1%). This suggests

that in practice, the information about the orbit size (i.e., the number of unresolved

calls that will eventually come back) is not necessary.

• As the average delay of callback varies from “immediate” to “more than 5 hours”, no

significant changes are noted, providing another justification for the immediate callback

assumption: The pµ-t and pµ policies generated by the IC model work very well in the

DC model, where there is a significant delay in the callback.

An explanation for the insensitivity of the results to the delay is that, in the MDP

formulation we study the steady-state behavior of a stationary queueing system. With or

without delay, unresolved calls will eventually come back. So the delay orbit simply changes

the timing of the callbacks, but not the rate of the callbacks. Consequently, the total rate of

callbacks to the system is similar for both the IC and the DC models. In the IC model, there

is a strong correlation between service completion and callback arrivals. In the DC model,

due to the (esp. exponential) delay between the two events, the correlation becomes weaker.

Numerical results in Table 2 suggests that the similarity of overall callback rate between the

IC and DC models is much stronger than the difference between the two models caused by

the completion-callback correlation.
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5.5 Lower bound policy

The pµ, pµ-t, and dedicated policies (see Table 4, Column 11 for the performance of the

dedicated policy when δ = 0) perform well in general, but they all provide an upper bound

on the performance of the optimal policy studied in Section 3. To complete the analysis we

provide in this section the closed-form solution to a policy that gives a lower bound on the

optimal system performance.

The lower bound policy we study is the preemptive policy: at any time, even if a call is

already being served by a CSR, we allow it to be handed over to another CSR during the

service. Since the service times are exponentially distributed, we can assume that the call

starts over after the hand-off. The preemptive assumption is very restrictive, making the

policy applicable only to call centers where customers tolerate such hand-offs. Nevertheless,

it provides a good lower bound which is also easy to evaluate.

Because preemption is allowed at any time, it makes sense to not hold calls in the queue

when there are idle CSRs (one can always re-route the calls later). Moreover, a call should

always be routed or re-routed to the highest-pµ available CSR. These intuitions are formalized

by the following theorem.

Theorem 4 The optimal preemptive policy always routes (or re-routes, if the call is already

in service) a call to the available CSR with the highest pµ index.

Proof: To simplify the proof, we introduce a new class of calls, the dummy calls, which are

not generated by real customers but rather by the system controller. At any time instant the

controller can add a dummy call to the queue or to an available server. Once in the system,

dummy calls are routed, re-routed, and served just like the real calls but they do not count
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towards the system cost. As a result, the whole system evolves exactly as if the dummy calls

were real, but the system cost is lower than with the real calls. The role of a dummy call

is essentially that of a “placeholder”: The use of a dummy call is equivalent to idling the

exact same sequence of CSRs that would have been used by a real call, if the real call were

introduced into the system precisely when the dummy call is added. This technique was also

used in Walrand [33] for the 2-server slow server problem.

The proof follows two steps. First, we show that whenever possible, it is better to route

a call to an available CSR than to hold it in the queue. Next we show that when routing,

it is best to route to the highest-pµ available CSR. We use coupling arguments to show

contradictions if these are not true.

Step 1 Assume that π is an optimal preemptive policy and, without loss of generality,

assume routing under π is FCFS. Let there be a recurrent state s (transient states are of no

consequence), in which π holds a call in the queue instead of routing it to an available CSR,

i. Tag this call and name it a. Now let π′ be a policy that duplicates all of policy π’s actions,

until the system gets into state s, when π′ routes a to an available CSR i. For the purpose

of this proof, we will call the system under π System 1 and the system under π′ System 2.

Because π is FCFS, it will route a next. Assume that π routes a after T time units

to CSR j (with possibly j = i). Between 0 and T , there may be some job completions

and arrivals, but under π, there will be no routing actions. Under π′, we let the same job

completions and arrivals to occur, and take no routing action either. The only difference

between Systems 1 and 2 is that under π′ there may be an additional event, namely CSR i

completing call a. There are three possibilities:
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1. If under π′, CSR i completes a before T and the customer is satisfied, then we let a

leave System 2, and at the same time, we insert a dummy call into the queue. At this

moment, Systems 1 and 2 are completely coupled in terms of state dynamics, but the

cost is lower for System 2 because it has a dummy call instead of a real one.

2. If under π′, CSR i completes a before T and the customer is not satisfied. Then the

customer calls back right away, and we keep her in the queue. At this moment, the

two systems are completely coupled.

3. If under π′, CSR i does not complete a before T , then at time T , we let π′ preempt a

from CSR i and route it to CSR j . At this moment, the two systems are completely

coupled.

Following these steps, System 1 and System 2 are coupled. Moreover, System 2 does no

worse than System 1 in all three cases, and it is strictly better (has one fewer real call) for a

strictly positive time period in the first case. Since s is recurrent, π′ is strictly better than

π, which leads to a contradiction.

Step 2 We now prove the optimality of the pµ rule also by contradiction. Without loss of

generality, we uniformize the event rates to λ +
∑C

i=1 Siµi = 1, and study the uniformized

Markov chain.

Assume that in a recurrent state s, instead of routing a call (again, name it a) to CSR i,

an optimal policy π routes a to CSR j, where pjµj < piµi. In System 1, after one uniformize

transition, two type of events are possible:

(i) a is satisfied and leaves the system, with probability pjµj ; or

35



(ii) any other event occurs, with probability 1 − pjµj , and a is re-routed to CSR k (with

possibly k = j).

The events in (ii) include a service completion of a that is not satisfactory, a service com-

pletion of another job, an arrival, or a fictitious event due to uniformization.

Let π′ be a policy that duplicates π’s actions until the system gets into state s, when it

routes a to CSR i instead of j. After one uniformized transition,

1. if (i) occurs in System 1, we let a be satisfied and leave System 2;

2. if (ii) occurs in System 1,

• with probability
piµi−pjµj

1−pjµj
, we let a be satisfied and leave System 2; at the same

time, we assign a dummy to CSR k;

• with probability 1−piµi

1−pjµj
, a remains in the system and is re-routed to CSR k.

It is straightforward to verify that in System 2, a is satisfied and leaves the system with

probability piµi (as it should be). Moreover, at the end of one uniformized transition, Sys-

tem 2 is completely coupled with System 1 with the help of the dummy, and, thanks to

the dummy, it has lower system cost for a positive period of time with positive probability.

Therefore, Policy π′ is strictly better than π, which leads to a contradiction.

As a result of Theorem 4, when a service is completed and the customer is dissatisfied,

the call would be routed to the same CSR (otherwise, this call would have been re-routed

earlier). Therefore, without loss of generality, we can set p1 = p2 = . . . = pC = 1, and µi to

be the original piµi in the following analysis.
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Due to preemption, calls in the system will always be handled by the fastest CSRs. For

example, if there are i calls in the system, where S1 < i ≤ S1 + S2, then S1 of the calls

will be handled by Class-1 CSRs and i− S1 of them will be handled by Class-2 CSRs. As a

result, the only variable we need to keep track of is the total number of calls in the system,

i. So if µi denotes the total rate of service completion in state i, then

µi =





iµ1 for 0 ≤ i ≤ S1

S1µ1 + (i − S1)µ2 for S1 < i ≤ S1 + S2
. . .∑C−1

k=1 Skµk + (i −
∑C−1

k=1 Sk)µC for
∑C−1

k=1 Sk < i ≤
∑C

k=1 Sk∑C
k=1 Skµk for

∑C
k=1 Sk < i.

(13)

If we let qi denote the steady-state probability of the system being in state i, then the

state-transition balance equations are: λqi = µi+1qi+1,∀ i.

Therefore, if we let S =
∑C

k=1 Sk and µS =
∑C

k=1 Skµk, we must have

qi =





qS ·
∏S

j=i+1

(µj

λ

)
∀0 ≤ i ≤ S − 1

qS ·
(

λ
µS

)i−S

∀i ≥ S
. (14)

Solving the probability uniformization equation
∑∞

i=0 pi = 1, we obtain

qS =
1

∑S−1
i=0

[∏S
j=i+1

(µj

λ

)]
+ 1

1−(λ/µS)

. (15)

This, along with (14), uniquely determine all of the steady-state probabilities. We can

use these steady-state probabilities to calculate the average number in the system, which

will give us a lower bound on the performance of our system:

Ls = qS

[
S−1∑

i=1

(
i

S∏

j=i+1

µj

λ

)
+

λµS

(µS − λ)2
+

SµS

µS − λ

]
. (16)

Using the closed-form expressions given in (14)-(16), we can quickly compute the perfor-

mance of this preemptive system. To see how tight the lower bound is, we test it using the

54 cases in §5.1. Results are included in Table 4. For most cases the lower bound is within
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2.5% of the optimal policy. The cases with bad performance (46, 47, 49, 50, 52, and 53) are

extreme cases in which µ1 >> µ2. They are very unlikely to occur in practice.

5.6 Workforce Scheduling

When callback probability 1 − p is high, there are two ways in which the pµ based policies

can benefit a call center:

1. With the same number of CSRs, a better service level can be achieved (less wait for

the customers); or

2. Fewer CSRs are needed to achieve the same performance.

In this section, we will study the latter, headcount reduction, in the context of a simple

2-class workforce scheduling problem.

We assume that currently the call center uses random assignment policy to achieve the

following service level for every 30-minute time interval: ”Average wait in the system should

be less than 3.25 minutes”. We use a scaled-down version of call volumes at a financial

services company call center as the arrival rates in our example. For simplicity, we will

assume that the mix of two classes in a call center is about 50%-50%. Class-1 and Class-2

CSRs can both serve 20 customers in an hour, but they differ in the service quality: Class-1

CSRs have 90% call resolution probability while Class-2 CSRs have only 50%.

We assume workshifts of 8 consecutive hours. Without loss of much generality, we ignore

the coffee breaks and lunch breaks to simplify the analysis (in a more thorough analysis,

these can be incorporated into the Linear Program we use here). Each shift can start every

half an hour. The tool we use to make daily workforce scheduling is a standard scheduling
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Linear Program (LP). The objective function in LP is headcount minimization, and the

constraints are the standard one that the service level be achieved for all time intervals.

Data and results of the numerical analysis are summarized in the Table 3. Call volumes

by every half-hour are listed in the second column. Because of the random assignment

routing policy and the 50%-50% CSR mix assumption, it is equivalent to view all the CSRs

as the same, with a 70% call resolution probability. In the third column, we then use

the standard Erlang-C formula to calculate the number of CSRs needed under the current

random assignment policy to satisfy the service level.

Next, given the necessary numbers in the third column, we run the scheduling LP to

figure out the minimum total number of CSRs necessary to meet those needs. The result

is that 19 is the minimum. So the call center following the random assignment policy will

schedule 19 people to work, and the work schedule is listed in the fourth column. Clearly,

due to the 8-consecutive-hour workshift restriction, in many time intervals we will have more

CSRs working than necessary. And the service level achieved will be better than the stated

one.

Now we will see how the call center can benefit by using the optimal routing policy. First,

of the 19 people currently employed, we assume that 10 of them are Class-1 and 9 of them

are Class-2. We run a scheduling LP for the 10 Class-1 CSRs first. The result is listed in the

fifth column. Next, for each half-hour, given the number of Class-1 CSRs, we use our model

to numerically calculate the minimum number of Class-2 CSRs needed for that time interval,

so as to achieve the same (or better) service level as achieved by the random assignment

policy (which may be better than the stated one). This is done for each half-hour, and the
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Time Arrival # Needed # Scheduled Class-1 Class-2 Class-2
Interval Schedule Needed Scheduled

12:00-12:30 4.15 2 2 1 0 0
12:30-1:00 2.9 2 4 1 0 0
1:00-1:30 2.6 2 3 1 0 0
1:30-2:00 1.8 2 3 1 0 0
2:00-2:30 1.05 1 2 1 0 0
2:30-3:00 1.1 2 2 1 0 0
3:00-3:30 1.1 2 2 1 0 0
3:30-4:00 2.4 2 2 1 0 0
4:00-4:30 0.5 1 4 1 0 0
4:30-5:00 0.95 1 4 1 0 0
5:00-5:30 1.65 2 4 1 0 0
5:30-6:00 3.25 2 4 1 0 0
6:00-6:30 3.2 2 5 1 0 0
6:30-7:00 6.05 2 5 2 0 0
7:00-7:30 10.55 3 5 3 0 0
7:30-8:00 15.8 3 5 3 0 0
8:00-8:30 30.05 5 5 3 0 3
8:30-9:00 46.4 6 6 3 2 3
9:00-9:30 86.25 9 9 5 3 3
9:30-10:00 99 10 10 6 2 3
10:00-10:30 101.85 11 11 6 3 3
10:30-11:00 104 11 11 6 3 3
11:00-11:30 96.45 10 12 6 2 4
11:30-12:00 105.55 11 12 6 4 4
12:00-12:30 99.3 10 10 5 4 4
12:30-1:00 92 10 11 7 1 4
1:00-1:30 93.5 10 11 7 0 4
1:30-2:00 100.15 11 11 7 0 5
2:00-2:30 97.05 10 10 7 0 5
2:30-3:00 93.1 10 10 6 2 6
3:00-3:30 92.8 10 10 5 4 6
3:30-4:00 90.9 10 10 5 4 6
4:00-4:30 85.45 9 12 6 1 3
4:30-5:00 71.25 8 9 6 0 3
5:00-5:30 58.35 7 7 4 2 3
5:30-6:00 49.1 6 6 3 3 3
6:00-6:30 44.4 6 6 3 2 3
6:30-7:00 40.7 6 6 3 2 3
7:00-7:30 35.05 5 5 3 1 2
7:30-8:00 32.4 5 5 3 0 2
8:00-8:30 27.95 5 5 4 0 2
8:30-9:00 26.4 4 4 2 2 2
9:00-9:30 23.2 4 4 2 1 2
9:30-10:00 20.05 4 4 2 1 1
10:00-10:30 18.8 4 4 2 1 1
10:30-11:00 17.15 4 4 2 0 0
11:00-11:30 10.65 3 4 2 0 0
11:30-12:00 9.9 3 4 2 0 0

Table 3: Workforce scheduling example
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results are listed in the sixth column. Finally, we run the scheduling LP again to find the

minimum Class-1 CSR needed. The result is 6, and the schedule is listed in the last column.

This means, using the current random assignment policy, 19 CSRs are needed to satisfy

the service level; while using our optimal pµ policy, we need only 10 Class-1 and 6 Class-2

CSRs to achieve the same (or better) service levels as those under current policy. The impli-

cation is that by incorporating the pµ index in routing decisions and scheduling accordingly,

we can achieve a 15.8% headcount saving.

It is well known, however, that the call volumes vary significantly from day to day and

from week to week. The headcount reduction would be hard to achieve consistently if on

some days the possible reduction is small while on other days it is big. A better way to

interpret this numerical result is that by incorporating the pµ optimal policy in routing, the

call center could have 3 Class-2 CSRs in training for that entire day, without sacrificing the

service level. The 3 CSRs do not have to be the same ones for the whole day: a rotating

training scheduling is possible. That way, the call center can hope to achieve better service in

the long run (by training Class-2 CSRs) without having to sacrificing the short-run system

performance. For companies in the process of migrating from the traditional cost-based

metrics (e.g. average wait time) to the profit-based metrics (e.g. first-call resolution) (see

[28] for details), our procedure helps them to maintain the service measured by current

metrics in the short run, while increasing their service as measured by new metrics in the

long run.
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5.7 More Than Two Classes of CSR

So far we have focused on C = 2, but we would like to extend the results to C ≥ 3. There are

two immediate problems when we extend the pµ-t policy to C ≥ 3: 1) the pµ rule may not

be optimal; 2) even when the pµ rule is optimal, we still have to find C − 1 fixed thresholds

- one for each Class-i, 2 ≤ i ≤ C. It would be helpful if instead, we could find a simpler and

intuitive heuristic that performs well.

In reality, each CSR has a different p and µ value. The categorization of CSRs into

classes is an approximation done for convenience and tractability. We argue that in most

applications, there is a decreasing incremental benefit for having more classes: the benefit

of recognizing the difference in CSRs and having two CSR classes is great; but the benefit

of going from two classes to three is less; and so on. This is just our intuition, which is hard

to show analytically. In this section we carry out numerical experiments to test this idea.

To do that, we assumed that the CSRs could be grouped into three classes, with param-

eters S1, p1, µ1, S2, p2, µ2, and S3, p3, µ3. On the one hand, we could use these parameters to

numerically calculate the optimal routing policy. On the other hand, we could deliberately

choose to have only two classes by merging two of the three classes and using some aggregate

average parameters for the merged class. Then we would use the heuristics we developed in

the previous section to find a routing policy based on these two classes. To see how well this

approach works, we then evaluated it in the three-class situation.

If the three classes are numbered in descending order of their call resolution rate pµ as

usual, then there are three ways to merge the groups: merge Classes 1 and 2; merge Classes

2 and 3; and merge Classes 1 and 3. In this section we will test to see which merge works
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best, and when.

Without loss of generality, let’s assume for now that Classes 2 and 3 are merged. Call

this Class 2’. Class 2’ will have S2′ = S2 + S3 CSRs. Moreover, we let (as a heuristic)

S2µ2 + S3µ3 = S2′µ2′ and S2µ2p2 + S3µ3p3 = S2′µ2′p2′,

then

µ2′ =
S2µ2 + S3µ3

S2 + S3

and p2′ =
S2µ2p2 + S3µ3p3

S2µ2 + S3µ3

.

The idea is that if the call center manager collects data only on the processing rate, then

s/he should observe approximately the same average speed from all these CSRs, whether

they are considered to be two classes or one class. Similarly, we want the merged class to

have approximately the same effective service rate as the separate two classes.

Clearly these aggregated parameters are approximations because they should be different

if different routing policies are used.

Once we had S2′, µ2′ and p2′, we then used them, along with S1, µ1 and p1, to calculate

the best pµ-t policy. To evaluate the resulting policy in a three-CSR-class situation, we let

any calls routed to Class 2’ be randomly distributed among the CSRs who originally were

Class 2 or Class 3.

The above procedure was repeated for each merging possibility (1&2, 2&3, 1&3), and we

chose the one with the lowest system cost. This numerical procedure was carried out for 162

tests, which include the following scenarios:

• We let S1 = S2 = S3 = 4.

• We examined heavy and medium traffic intensity (λ = 4.5 and λ = 3). These are the

regions in which call centers are most likely to operate.
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• For each traffic intensity, we fixed p1µ1 = 0.8, p3µ3 = 0.2 and studied p2µ2 = 0.7,

p2µ2 = 0.5, or p2µ2 = 0.2 (representing the cases in which Classes 1 and 2 are close,

all classes are evenly spaced, and Classes 2 and 3 are close).

• For each fixed pµ value, we studied three cases: low p, medium p, and high p.

– For p1µ1 = 0.8, we could have: (p1, µ1) = (0.1, 8), (0.8, 1), or (1, 0.8);

– For p2µ2 = 0.7, we could have: (p2, µ2) = (0.1, 7), (0.7, 1), or (1, 0.7);

– For p2µ2 = 0.5, we could have: (p2, µ2) = (0.1, 5), (0.5, 1), or (1, 0.5);

– For p2µ2 = 0.3, we could have: (p2, µ2) = (0.05, 5), (0.3, 1), or (1, 0.3);

– For p3µ3 = 0.2, we could have: (p3, µ3) = (0.05, 4), (0.2, 1), or (1, 0.2).

Because there were three classes, there were 27 combinations for each fixed p1µ1, p2µ2,

and p3µ3.

We observe from the numerical results that the following “pµ first, µ second” rule-of-

thumb seems to work well:

• pµ is the most important index to use when considering which two classes to merge. In

most of the tests, when Classes 1 and 2 are close, merging them is best; when Classes

2 and 3 are close, merging them is best. It should be intuitive that one should never

merge Classes 1 and 3 because that means treating very different CSRs as if they were

the same. Numerical results confirm this.

• There are some exceptions to the above rule. For example, when p1µ1 and p2µ2 are

close but µ1 and µ2 are very different, merging Classes 2 and 3 could be better. Even
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then, merging Classes 1 and 2 is only slightly worse, so using the above rule-of-thumb

still works well. In reality, these extreme cases rarely occur.

• When the pµ values are evenly spaced (0.8, 0.5, 0.2), we find that µ serves as a very

good secondary index: it’s better to merge the two classes whose µ values are closer.

There are also a few exceptions to the rule, but merging according to this rule is once

again only slightly worse.

As to the efficiency of the proposed “merging + pµ-t” heuristic procedure, we have the

following observations:

• Overall, the heuristic performs quite well. The heuristic performs worst in the cases

where either the pµ’s or the µ’s are widely different. Again, such extreme cases rarely

occur in practice.

• We also tested the random assignment policy for all these cases. In general, the random

assignment policy performs much worse than our heuristic.

Of course, there may be other, better heuristics. But it should be noted that this proposed

heuristic is (relatively) easy to use. The straightforward (pµ then µ) rule-of-thumb helps in

deciding how to merge classes. Compared with what exists in the literature and in practice,

this is a practical way of dealing with a complex situation that still yields good results.

It should also be noted that it is hardly desirable to have many classes in practice. While

having many classes may pave the way for differentiated pay and a clear career path for the

CSRs, in most cases it creates complexity both for routing/scheduling and for management.

Whenever it is desirable to have only 2 classes of CSR, no merging is necessary, and the pµ-t
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policy performs very well.

6 Conclusion

Traditional research on routing decisions focuses on speed and waiting cost. Service quality

related metrics are rarely taken into account for such operational decisions, though they play

a crucial role in the short-term traffic reduction and long-term customer loyalty of a firm.

We see our research as a promising step in showing that service quality can be - and should

be - incorporated into operational decisions.

In this paper, we consider both service speed and quality in routing decisions for a

telephone call center. We argue that call resolution probability p is a good measure of

call quality. An MDP model is used to characterize the optimal routing policy. Our main

contribution is to identify call resolution rate pµ as a simple priority index in routing calls:

First we show that the use of the pµ rule is optimal in a broad set of cases. Then we show

that the pµ-threshold policies are optimal in certain cases. Finally we show numerically that

simple pµ-based policies work well as heuristics. These numerical tests highlight the benefits

that can be achieved by considering p, in addition to the traditional measure of µ, when

making routing decisions.

Even though results in this paper focus primarily on the short-term benefit of traffic

reduction, incorporating quality related metrics into routing decisions could also provide

significant long-term benefits. For instance, the workforce scheduling example shows that,

to achieve the same service level on customer waiting time, fewer low-pµ CSRs are needed

under a pµ-based policy than under a µ-based policy. The freed-up low-pµ CSRs can then be
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scheduled to receive training. Over the long run, the call center could improve its CSRs’ ser-

vice speed and/or quality, all without adding extra personnel or sacrificing service level. For

companies in the process of migrating from the traditional cost-based metrics (e.g. average

wait time) to the profit-based metrics (e.g. call resolution probability), our procedure helps

them to maintain the service measured by current metrics in the short run, while increasing

their service as measured by new metrics in the long run.

In our future research, we will examine other long-term benefits such as customer loyalty.

For example, when a customer is dissatisfied with a service, s/he may simply defect and

never call back. So if call quality is not carefully considered in routing decisions, a company

could lose many customers in the long run due to poor service quality. For call centers that

outsource, this also has an impact on how both speed and resolution probability should be

specified in contracts.
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A Proof of Theorem 3

Corollary 2 allows us to simplify the state space to x = (x1, x2) where x1 = n1 + n0 and

x2 = n2.

If we allow actions to be taken at fictitious transitions caused by uniformization, then g∗

and v∗(x) will satisfy the following optimality equation:

Γ̃v∗(x) + g∗ = v∗(x), (17)

where

Γ̃v(x) = (x1 + x2) + λTv(x1 + 1, x2) + (1 − p1)µ1Tv(x1, x2) + p1µ1Tv((x1 − 1)+, x2)

+ [(1 − p2)µ2Tv(x1 + 1, 0) + p2µ2Tv(x1, 0)] I {x2=1} + µ2Tv(x1, 0)I {x2=0}, (18)

where I is the indicator function, and

Tv(x) =





min[v(x1, 0), v(x1 − 1, 1)] if x1 ≥ 2 and x2 = 0,

v(x) otherwise.

(19)

We now introduce the set U of all real-valued functions defined on N2 that satisfy the

following properties:

[P.5] ∆12u(x + e1) ≥ ∆12u(x) if x2 = 0 .

[P.6] ∆2u(x + e1) ≥ ∆2u(x) if x2 = 0.

[P.7] ∆iu(x + ei) ≥ ∆iu(x) if xi = 0.

[P.8] ∆iu(x) ≥ 0 if xi = 0.

Property P.5 implies that if u ∈ U , the corresponding routing policy is of the threshold

type. Property P.6 is better known as supermodularity. Together, Properties P.5 and P.6
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imply that u is convex with respect to xi, which is exactly Property P.7. Property P.8 is

equivalent to Properties P.1 and P.2.

The following Lemma plays a crucial role in the proof:

Lemma 4 If u ∈ U , then Γ̃u ∈ U .

Proof: Consider u ∈ U . As stated previously, Property P.7 is implied by P.5 and P.6.

Furthermore Koole [17] shows that Tu(x) and Tu((x1 − 1)+, x2) belong to U . Let us show

that Γ̃u verifies P.5. A direct computation yields:

∆12Γ̃v(x) = λ∆12Tv(x + e1) + (1 − p1)µ1∆12Tv(x) + p1µ1∆12Tv
(
(x1 − 1)+, x2

)

+p2µ2∆1Tv(x1, 0), (20)

which is increasing in x1 from Properties P.5 and P.7.

Similarly for P.6,

∆2Γ̃v(x) = 1 + λ∆2Tv(x + e1) + (1 − p1)µ1∆2Tv(x) + p1µ1∆2Tv
(
(x1 − 1)+, x2

)

+(1 − p2)µ2∆1Tv(x1, 0), (21)

which is also increasing in x1 for the same reasons.

Note also that ∆2Γ̃ is positive since T verifies Property P.8. ∆1Γ̃ can also be easily

checked to be positive which shows P.8.

From Lemma 4 and the application of the value iteration, the optimal value function

v∗ belongs to U . The result directly follows if we define t∗ as the smallest x1 such that

∆12v
∗(x1, 0) is positive or null. The value of t∗ is well defined from Property P.5.
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B Test cases in Sections 5.1

The parameters and results are detailed in Table 4.

C Formulation of the delayed-callback model

In the delayed-callback model, dissatisfied customers go into an orbit, and stay there for an

exponentially distributed time before calling back. The average time in orbit is 1/ν. We

represent the states by (n(t), u(t)), where u(t) is the number of dissatisfied customers in the

callback orbit at time t. Then the total callback rate at time t is equal to νu(t). Because u(t)

is unbounded, to apply the uniformization procedure, we need to impose an upper bound

M on the number of calls in orbit and assume that λ +
∑C

i=1 Siµi + Mν = 1.

The state of the orbit is not directly observable, but we will use this information to solve

the problem. Clearly, the solution will be a lower bound on the optimal solution of the

POMDP. Since M limits the callback, a finite M imposes a further lower bound. It is this

lower bound that we compare with the IC model pµ-t and pµ policies. Note that these two

policies are based only on the observable part (number of calls in queue, number of busy

CSRs, etc.) of the system.

We can find the lower bound by numerically solving the following optimality equation

using value iteration:

v∗(n) + g∗ =
C∑

i=0

ni + λTv(n + e0, u) + νuTv(n + e0, u − 1) +
C∑

i=1

ni(1 − pi)µiTv(n− ei, u + 1)

+
C∑

i=1

nipiµiTv(n− ei) +

[
C∑

i=1

(Si − ni)µi + (M − u)ν

]
v(n). (22)
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where g∗ is the optimal cost and

Tv(n) =





min{v(n + ei − e0,min(u,M)), v(n,min(u,M)) | i ∈ K(n)} if n0 > 0

v(n,min(u,M)) otherwise

.

(23)

The numerical tests in Table 2 are restricted to medium utilization rate, a few CSRs,

small ν, and large ρ. This is due to the curse of dimensionality (common with most MDP

approaches) and the fact that we need to choose M and the truncated queue sufficiently

large to obtain accurate results. We believe that the results hold for general cases as well.
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Cost Increase Over Optimal Policy

Case p1 µ1 p2 µ2 ρ rand. assign. pµ pµ-t preemptive dedicated

1 0.65 1 1 0.6 0.2 4.74 % 0 % 0 % -0.06 % 0.07 %

2 0.65 1 0.6 1 0.2 3.95 % 0 % 0 % -0.04 % 0.09 %

3 0.65 1 0.06 10 0.2 1.02 % 0 % 0 % 0 % 0.12 %

4 1 0.65 1 0.6 0.2 4.05 % 0 % 0 % -0.06 % 0.07 %

5 1 0.65 0.6 1 0.2 3.26 % 0 % 0 % -0.04 % 0.09 %

6 1 0.65 0.06 10 0.2 0.73 % 0 % 0 % 0 % 0.12 %

7 0.1 6.5 1 0.6 0.2 7.09 % 0 % 0 % -0.06 % 0.07 %

8 0.1 6.5 0.6 1 0.2 6.63 % 0 % 0 % -0.04 % 0.09 %

9 0.1 6.5 0.06 10 0.2 3.29 % 0 % 0 % 0 % 0.12 %

10 0.95 1 1 0.3 0.2 94.07 % 0.23 % 0 % -0.01 % 0 %

11 0.95 1 0.3 1 0.2 52.45 % 0.06 % 0 % -0.01 % 0 %

12 0.95 1 0.03 10 0.2 8.95 % 0 % 0 % -0.01 % 0 %

13 0.5 1.9 1 0.3 0.2 116.68 % 0.23 % 0 % -0.01 % 0 %

14 0.5 1.9 0.3 1 0.2 73.8 % 0.06 % 0 % -0.01 % 0 %

15 0.5 1.9 0.03 10 0.2 15.59 % 0 % 0 % -0.01 % 0 %

16 0.1 9.5 1 0.3 0.2 161.45 % 0.23 % 0 % -0.01 % 0 %

17 0.1 9.5 0.3 1 0.2 130.51 % 0.06 % 0 % -0.01 % 0 %

18 0.1 9.5 0.03 10 0.2 50.45 % 0 % 0 % -0.01 % 0 %

19 0.54 0.5 1 0.23 0.5 5.76 % 0 % 0 % -1.62 % 1.31 %

20 0.54 0.5 0.46 0.5 0.5 5.07 % 0 % 0 % -0.97 % 1.97 %

21 0.54 0.5 0.1 2.3 0.5 3.02 % 0 % 0 % -0.3 % 2.67 %

22 1 0.27 1 0.23 0.5 4.68 % 0 % 0 % -1.62 % 1.31 %

23 1 0.27 0.46 0.5 0.5 3.96 % 0 % 0 % -0.97 % 1.97 %

24 1 0.27 0.1 2.3 0.5 2.18 % 0 % 0 % -0.3 % 2.67 %

25 0.1 2.7 1 0.23 0.5 8.31 % 0 % 0 % -1.62 % 1.31 %

26 0.1 2.7 0.46 0.5 0.5 8.05 % 0 % 0 % -0.97 % 1.97 %

27 0.1 2.7 0.1 2.3 0.5 6.09 % 0 % 0 % -0.3 % 2.67 %

28 0.8 0.5 1 0.1 0.5 82.41 % 14.49 % 0 % -2.36 % 0.01 %
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