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Abstract

We develop and test an integrated forecasting and stochastic programming approach to workforce man-
agement in call centers. We first demonstrate that parametric forecasts can be used to drive stochastic
programs whose results are stable with relatively small numbers of scenarios. We then extend our approach
to include forecast updates and two-stage stochastic programs with recourse and provide a general mod-
eling framework for which recent, related models are special cases. In our formulations, the inclusion of
multiple arrival-rate scenarios allows the call centers to meet long-run average QoS targets, while the use of
recourse actions help them to lower long-run average costs. Experiments with two large sets of call-center
data highlight the complementary nature of these elements.

1 Introduction

Inbound telephone call centers handle service requests that originate from customers calling in, and they use

a hierarchical staffing and scheduling system (Gans et al. 2003, Akşin et al. 2007).). The process begins with

forecasts of the arrival rate of calls over a planning horizon, which may range from a day to several weeks. The

forecasts then drive queueing models that determine how staffing levels affect system congestion over short,

15-minute to 1-hour, time intervals within the horizon. The queueing formulae determine staffing levels over

the short time intervals, and, in turn, constraints to be met as the call center develops staff schedules. A rostering

process then matches employees with required schedules. In this way, the forecasted arrival process of calls to

the center drives employee schedules.

Traditionally, call centers assume that arrival-rate forecasts are correct. They use point forecasts of arrival-

rates to determine staffing levels and, in turn, deterministic staffing-level requirements drive scheduling deci-

sions. But arrival-rate forecasts are often not perfect, and when realized arrival rates do not match the forecast,

system performance naturally deviates from managers’ expectations. Higher-than-expected arrival rates lead to

understaffing, which drives up waiting times and abandonment rates, while unexpectedly low arrival rates result

in overstaffing and the “overservice” of customers.
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Work within the statistics and operations management literatures has begun to address the problem of how

call centers – and other high volume service businesses – can better manage the capacity-demand mismatch

that results from arrival-rate uncertainty. Earlier papers have explored the impact of arrival-rate uncertainty

(Grassman 1988, Chen and Henderson 2001, Jongbloed and Koole 2001, Ross 2001), and more recent work has

explicitly modeled arrival-rate uncertainty and its effects (Robbins et al. 2006, Steckley et al. 2009). Statistical

models in Whitt (1999), Avramidis et al. (2004), Brown et al. (2005), Weinberg et al. (2007), Shen and Huang

(2008), Aldor-Noiman et al. (2009), Ibrahim and L’Ecuyer (2011), Taylor (2012), and others have sought to

better characterize the distribution of arrival rates, by time of day, as they evolve.

Operations management papers account for uncertainty when making staffing and scheduling decisions.

Maman (2009) extends many-server heavy-traffic limits to explicitly account for an arrival-rate distribution.

Papers by Harrison and Zeevi (2005), Bassamboo et al. (2005), Bassamboo et al. (2006), Bassamboo and

Zeevi (2009), Bertsimas and Doan (2010), and Gurvich et al. (2010) have used stochastic programming (Birge

and Louveaux 1997) to account for arrival-rate uncertainty when making short-run staffing and call-routing

decisions. More recent papers, such as Robbins et al. (2010), Robbins and Harrison (2010), and Liao et al.

(2012) extend the stochastic programming framework to employee scheduling, and Mehrotra et al. (2010) uses

mid-day recourse actions to adjust pre-scheduled staffing levels in reaction to realized deviations from arrival-

rate forecasts.

While each of these streams of research has made important progress in addressing elements of the problems

caused by arrival-rate uncertainty, none addresses the whole problem. Statistical papers dedicated to forecast-

ing have used traditional measures of fit for realized arrival counts to assess forecast quality. They have not,

however, considered the downstream cost and quality of service (QoS) implications of arrival-rate forecast er-

rors. While operations management papers have looked carefully at the cost and QoS implications of stochastic

scheduling methods, they have not used sophisticated statistical forecasting methods to better capture the nature

of arrival-rate uncertainty. In turn, their measures of cost and QoS improvements may not accurately reflect the

gains that can be made when better forecasting and scheduling methods are used in concert.

In this paper we integrate these statistical and operations-management approaches, marrying the use of

more sophisticated forecasting methods with stochastic programming formulations of call-center staffing and

scheduling problems. Our work is data driven, and we use two large sets of call-center data to evaluate the

elements of our approach. One set of empirical results shows that parametric forecasting methods can be used to

more efficiently solve stochastic scheduling problems that have traditionally been solved using sampling-based

scenarios. Another set of empirical tests highlights the complementary roles that the use of a priori scenario-

based stochastic programming and the use of recourse actions can play in addressing arrival-rate uncertainty.

More specifically, we make the following contributions.
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In §2 we develop low-dimensional, parametric arrival-rate forecasts and use Gaussian quadrature to trans-

form their continuous distributions into discrete scenarios (Miller and Rice 1983). We apply this scenario gen-

eration scheme to demonstrate that only a small number of scenarios is needed to capture the bulk of arrival-rate

uncertainty in simple, one-stage stochastic workforce-scheduling problems.

Because scenarios are based on arrival rates, while updates are based on the realization of arrival counts,

rather than rates, the development of forecasts suitable for two-stage stochastic programs with recourse is not

trivial. While it is not clear to us how one would develop an effective sampling approach to the generation of

forecasts suitable for recourse programs, in §3 we are able to use our parametric approach to this end.

• We develop a Bayesian procedure that uses realized arrival counts in the early stage of the planning

horizon to update the forecast distribution for arrival rates during the later stage.

• We then extend this updating approach in a manner suitable for two-stage stochastic programs with

recourse, using a multi-stage, tree-based approach to generate arrival-rate scenarios for the later periods

of a two-stage forecast.

• We use these forecasts to evaluate the relative effectiveness of a family of six workforce management

programs, which vary in their use of scenarios – one versus many – as well as in the sophistication of

their updating schemes: no update, simple ex post updates, and more sophisticated a priori stochastic

programs with recourse.

Section 4 then tests these six schemes using two sets of call center data. In both sets of tests we find

that the use of multiple scenarios helps to stabilize system performance and leads to average abandonment

rates that better match a priori targets, while recourse actions help to lower costs. We also find that the value

of the more sophisticated a priori two-stage recourse programs varies across the two examples: in one the

two schemes provide nearly identical cost savings, and in the other the more sophisticated a priori two-stage

recourse program provides some additional savings.

More broadly, our work provides a general framework for formulating and solving workforce management

and scheduling decisions, within which previous, related work represents special cases. Our results show that

effective solutions to workforce scheduling problems will take the form of stochastic programs with recourse.

This approach explicitly accounts for arrival-rate uncertainty, as well as the ability to change these decisions in

response to updates in arrival-rate forecasts.
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2 Parametric Forecasts for Stochastic Programming

In this section, we develop efficient methods for formulating and solving simple, single-stage stochastic pro-

grams for workforce scheduling in call centers. While the basic formulation of this stochastic program is nearly

identical to that in Robbins and Harrison (2010), our approach to scenario generation uses Gaussian quadra-

ture to discretize continuous forecast distributions and differs from the sampling schemes that are common to

that paper, Bertsimas and Doan (2010), and others. This section’s empirical tests show that, in fact, our Gaus-

sian quadrature approach can greatly reduce the numbers of scenarios needed to stably solve these stochastic

programs.

We also show that, for measures of QoS that are convex in the number of agents staffed during a given

interval, we can further reduce the nonlinear constraints that model system performance across multiple scenar-

ios into a single set of piecewise linear constraints. The transformation does not rely on the method by which

scenarios have been generated – through discretization or via sampling – and allows us to efficiently perform

tests that compare the two methods on problems with large numbers of scenarios.

The ability to work with few scenarios, as well as to collapse large numbers of scenarios, when warranted,

becomes particularly important when solving the two-stage stochastic programs with recourse that we analyze

in Section 3.

2.1 Parametric Forecast

Our historical data comprise a D× I matrix of arrival counts, N = (Ndi), where d ∈ D = {1, . . . , D} indexes

days and i ∈ I = {1, . . . , I} indexes the 30-minute intervals within each day. We refer to the dth row of N,

denoted as Nd = (Nd1, . . . , NdI), as the intraday call volume profile of the dth day.

We modelNdi as a Poisson random variable with an uncertain arrival-rate Λdi. Denote Λd = (Λd1, . . . ,ΛdI)

as the dth intraday arrival-rate profile. We are interested in forecasting ΛD+h, the intraday arrival rate profile

for a future day D + h, where h is a positive integer.

Because the underlying rate profiles are uncertain and unobservable, our forecasting model uses the count

profiles {N1, . . . ,ND} to form an I-dimensional time series. The dimensionality of the vector time series is

typically high; for example, there are I = 26 half-hour periods in a 13-hour working day. A good forecasting

model must reduce the dimensionality.

We develop a forecasting model that combines dimension reduction, a key idea of the data-driven approach

of Shen and Huang (2008), with parametric modeling, which allows us to efficiently discretize the forecast

distribution. In terms of forecast accuracy, our model performance is comparable to that of Weinberg et al.

(2007) and Shen and Huang (2008), both of which have been shown to work well for arrival-rate forecasting.
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Specifically, the following square-root transformation stabilizes the variance of the count data and approx-

imately normalizes the observations. Together, these effects improve forecast accuracy and make the trans-

formed counts amenable for standard statistical modeling. Its proof can be found in Brown et al. (2010).

Proposition 1 (Brown et al. 2010) Suppose a random variable N has a Poisson distribution with rate Λ. As

Λ→∞, y ≡
√
N + 1/4 has a Gaussian distribution with mean

√
Λ and variance 1/4.

Thus, instead of directly modeling the call volumes Ndi, we build our forecasting model using the square

root of the call volumes. Such a square-root transformation has been used in the call center forecasting litera-

ture (Brown et al. 2005, Weinberg et al. 2007, Shen and Huang 2008).

We then consider the following forecasting model for the square-root-transformed counts ydi ≡
√
Ndi + 1/4,

d ∈ D, i ∈ I:

ydi =
√

Λdi + εdi, εdi ∼ N(0, σ2),

Θdi ≡
√

Λdi = ωdϑld,i,

ωd − αld = β(ωd−1 − αld−1
) + ηd, ηd ∼ N(0, φ2),

ϑld,i ≥ 0,
I∑

i=1
ϑld,i = 1,

(1)

where ld is day-of-the-week of day d, ωd is the daily total arrival rate (on the square-root scale), αld is the

adjustment for the day of the week, and ϑld,i is the intraday rate proportion for the ith time interval that also

depends on the corresponding day of the week.

Our forecasting model (1) can be understood as follows. First, on the square-root-transformed scale, the

daily total rate (wd) follows an order-one autoregressive time series model, adjusting for the day of the week

(αld). Second, each weekday has its own intraday arrival proportion profile, (ϑld,1, . . . , ϑld,I). Finally, the

transformed arrival rate Θdi is assumed to follow a multiplicative model. By Proposition 1, we know these

square-root quantities have approximate Gaussian distributions; hence the errors in the above model are as-

sumed to be Gaussian.

The model easily captures the two-way (intraday and interday) time dependence that is common to call

centers and other large-scale service systems. A simpler model is considered by Whitt (1999) for the un-

transformed arrival rates that assumes all days share a common intraday arrival profile.

Our model can be estimated using nonlinear least squares. Below we provide a set of simple estimates,

which are close to the true least-squares estimates (Brown et al. 2005),

α̂ld =

∑
d′:ld′=ld

∑
i ωdi

#{d′ : ld′ = ld}
, ϑ̂ld,i =

∑
d′:ld′=ld

ωd′i∑
d′:ld′=ld

∑
i ωd′i

. (2)

The autoregressive coefficient β̂ can then be estimated using linear regression.
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Once the model (1) is estimated, we make use of the time series model for ωd to obtain a forecast distribution

for ωD+h, which is Gaussian. Observing that ΛD+h,i =
(
ωD+hϑlD+h,i

)2, the forecast distribution for the future

arrival rate ΛD+h,i follows easily.

2.2 Gaussian Quadrature for Scenario Generation

To simplify notation, we now drop the day subscript in ωd, ϑld,i and Λd,i and consider an arbitrary day. The

uncertain arrival rate during its ith time period satisfies

Λi = (ωϑi)
2 (3)

where ω has a (forecast) distribution that is Gaussian with mean ζ and variance φ2.

To account for the uncertainty of Λi, recent papers have used stochastic programs with scenarios generated

via random sampling from the forecast distribution (Bertsimas and Doan 2010, Gurvich et al. 2010, Robbins

et al. 2010, Robbins and Harrison 2010). It is well known, however, that a large number of scenarios may be

needed for the sampling approach to be effective (Shapiro and Philpott 2007, §2.2).

In this paper, we exploit the fact that ω has a known Gaussian distribution to generate scenarios through

discretization. In particular, we use Gaussian quadrature to derive a discrete approximation, ω∗, for ω, where

ω∗ = ωk with probability pk, k ∈ K = {1, . . . ,K}, and ω∗ and ω have the identical first 2K − 1 moments.

Given these ωks and pks, the relation (3) naturally leads to the discrete approximation of Λi as

Λ∗i = λik ≡ ω2
kϑ

2
i with probability pk,

for k ∈ K. Details of the discretization procedure can be found in Miller and Rice (1983).

Remark 1 For the degenerate one-scenario case (i.e. K = 1), special care is needed to make sure that Λi has

the correct mean. Because Gaussian quadrature only matches the first moment of ω when K = 1, it will not

guarantee that the discretized mean matches that for Λi, since Λi = (ωθi)
2. In this case, we set ω1 =

√
µ2 + φ2

instead of the default value µ. 2

Observe that (1) and (3) imply that, for all time periods within a given day, arrival-rate uncertainty is essen-

tially only driven by the one-dimensional random scaling factor ω. Thus, we are able to use Gaussian quadrature

efficiently for a one-dimensional distribution and avoid the usual problem of curse-of-dimensionality.

2.3 Stochastic Programming Formulation

In the retail banking setting from which we have collected data, there is no explicit customer waiting time or

abandonment cost. Rather, these types of call centers often minimize staffing costs, subject to explicit QoS
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constraints. In this paper we impose a 3% limit on the expected fraction of incoming calls that abandon before

service, a QoS limit that can be regularly attained in larger, well-run call centers.

Let T be the length of the planning horizon, which may range from one day to several weeks. In the context

of the math programs we solve in this paper, we fix T to be one day (i.e. T = I), but in practice the horizon

can easily exceed I . As before, I = {1, . . . , I} is a set of equally-divided subintervals within a day.

Let J = {1, . . . , J} be the set of all the feasible work schedules, each of which dictates which intervals

within the planning horizon an agent answers calls. For schedule j ∈ J ,

aij =

 1, if schedule j ∈ J has an agent answer calls during interval i ∈ I, and

0, otherwise,

for i ∈ I and j ∈ J . We let cj be the cost of assigning an agent to schedule j. Costs include hourly wages and

overtime pay, if the schedule requires it. Depending on the setting, the costs may or may not include a prorated

share of benefits payments. The principal decision variables are the numbers of agents to assign to the various

schedules: {xj | j ∈ J }.

Recall that λik is the forecast arrival rate during interval i ∈ I under scenario k ∈ K and that pk is the

probability that scenario k ∈ K occurs. Observe that, when K = 1, then pk = 1, and the stochastic program

with one scenario collapses to become a traditional, deterministic workforce-scheduling IP. For i.i.d. scenarios

based on sampling, each scenario, k, occurs with equal probability pk = 1/k and is determined by sampling ω

and then using the relation (3) to determine the λiks.

In any given interval, i, and scenario, k, our stochastic program determines the quality of service experienced

by arriving customers using a stationary measure of performance from standard queueing models. In particular,

in this paper we track customer abandonment as the measure of QoS and use results from Mandelbaum and

Zeltyn (2007) that characterize the stationary behavior of the M/M/n+M (Erlang-A) model. Given Poisson

arrivals of constant rate λ, i.i.d. exponentially distributed service times with mean 1/µ, i.i.d. exponentially

distributed times until customer abandonment (sometimes called patience) with mean 1/θ, and n servers, the

paper provides explicit expressions for the calculation of the fraction of arriving customers that abandon before

being served, f(λ, µ, θ, n). In our context, the arrival rate during period i under scenario k is λik, and the

number of agents on hand during interval i is ni =
∑

j∈J aijxj . Together with µ and θ they determine the

expected number of customers abandoning during period i under scenario k, λikf(λik, µ, θ, ni).

Remark 2 Our use of the above results implicitly makes two common assumptions. The first is that the arrival

rate is constant over interval i. While common, this assumption is not necessarily innocuous. Nevertheless,

effective measures can be taken to account for time-inhomogeneity within intervals. For a characterization of

time-inhomogeneity, see Brown et al. (2005), and for effective responses see Feldman et al. (2008) as well as

the review article Green et al. (2007). The second is that, even if the arrival rate were constant, the use of
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stationary performance measures assumes that the event rate during interval i under scenario k is large enough

that transient effects, due to initial conditions at the start of the interval, are not significant. In medium to large

call centers this is typically the case. 2

Let α∗ be an upper bound on the expected abandonment rate over the planning horizon. Then we wish

to solve the following nonlinear stochastic integer program, which minimizes total staffing cost, subject to

constraints on expected abandonments.

min
∑

j∈J cjxj

subject to∑
k∈K pkλikf(λik, µ, θ,

∑
j∈J aijxj) = αi i ∈ I∑

i∈I αi ≤ α∗λ̄

xj ∈ Z+ j ∈ J ,

(4)

where λ̄ =
∑

k∈K pk
∑

i∈I λik is the expected number of arrivals over the planning horizon, and Z+ is the set

of non-negative integers. The first set of nonlinear constraints defines the expected number of abandoning calls

for each interval, i. The second constraint defines the upper bound on the expected global abandonment rate.

We emphasize that the upper bound, α∗λ̄, holds only in expectation, across the entire arrival-rate distribution.

If we consider every potential abandonment to have the same (unknown) implicit cost, the Lagrangian relaxation

of (4) would minimize expected total cost of staffing and abandonment. Because the cost of abandonment is

unknown, however, call centers instead place direct constraints on expected QoS.

Remark 3 While for a specific arrival-rate realization the QoS constraint may be violated, given a correctly

forecast arrival-rate distribution and many i.i.d. days, the long-run average abandonment rate should be less than

or equal to α∗. Of course, in our AR(1) setting, arrival-rate distributions need not be i.i.d., and forecast distri-

butions need not be correct. Nevertheless we conjecture that, in our case, the long-run average abandonment

rate will still fall at or below α∗ and are working to formally prove it is so (Gans et al. 2012). 2

It would be straightforward to define other measures of QoS as well. Common variants of (4) define QoS in

terms of delay in queue, place limits on tail probabilities, and require that QoS targets be met over sub-intervals

within the planning horizon. For an interesting discussion of the time-horizon over which QoS targets are set,

see §7 in Gurvich et al. (2010).

The fact that f(λik, µ, θ, ni) may be nonlinear in ni makes the stochastic program (4) potentially difficult to

solve. Nevertheless, Armony et al. (2007) show that, given µ ≥ θ, f(λik, µ, θ, ni) is nonincreasing in ni, with

decreasing differences (discretely convex). This is typically the case. For example, see Zohar et al. (2002) and

Brown et al. (2005). In Section 2.4 we will see that the desired relationship also holds in our data.
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Given µ ≥ θ, we can use a common transformation to replace the nonlinear constraints with a larger set of

linear constraints that provides a lower bound on
∑

k∈K pkλikf(λik, µ, θ, ni). For each i ∈ I and n > 0 we

define slopes, min, and intercepts, bin,

min =
∑

k∈K pk [λik(f(λik, µ, θ, n)− f(λik, µ, θ, n− 1))]

bin =
∑

k∈K pkλikf(λik, µ, θ, n)− n ·min,
(5)

where mi0 = −µ and bi0 =
∑

k∈K pkλik. Then we replace each of the I constraints that define the αi’s in (4)

with a set of Ni = {0, . . . , Ni} linear constraints,

(
∑

j∈J aijxj)min + bin ≤ αi, n ∈ Ni,

where Ni is large enough that the abandonment rate is essentially zero:
∑

k∈K pkf(λik, µ, θ,Ni) ≈ 0.

Remark 4 Here, Ni refers to the number of linear constraints used to define a lower bound on f(λik, µ, θ, n).

In §2.1, however, Ndi was used to define arrival counts. We will continue to use N in both cases, and its

meaning should be clear from the context: stochastic program or arrival-rate forecast. 2

The revised linear, integer stochastic program becomes

min
∑

j∈J cjxj

subject to

(
∑

j∈J aijxj)min + bin ≤ αi i ∈ I, n ∈ Ni∑
i∈I αi ≤ α∗λ̄

xj ∈ Z+ j ∈ J .

(6)

Essentially, we are replacing the abandonment rate function in (4) by the maximum of the linear functions

defined by all the mins and the bins, which is piece-wise linear and convex, a standard practice in math pro-

gramming. In our case, this substitution is exact because the variables only take on integer values.

Remark 5 Robbins and Harrison (2010) use a variant of (6) in which the QoS constraint becomes
∑

i∈I αi ≤
α∗
∑

k∈K pk
∑

i∈I λik + δ, and the objective function is augmented to include a penalty for abandonments

above the nominal target of α∗: min
∑

j∈J cjxj + pδ. Rather than taking expected values, the paper explicitly

represents many scenarios and uses a computationally intensive L-shaped decomposition method (Birge and

Louveaux 1997, §5.1) to solve the math program. 2

Thus, rather than solving the stochastic program (4), which is nonlinear and may have a large number of

scenarios, we use the definitions (5) to develop a deterministic, piecewise linear, “certainty equivalent” program

(6). From (5) we see that the computational effort needed for the transformation is linear in the number of

scenarios, K.
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2.4 Setup for Empirical Tests of Quadrature and Sampling-Based Scenarios

With the machinery developed in §2.1–2.3 at our disposal, we are now in the position to perform large-scale

tests of the efficacy of our quadrature-driven scenarios. We run these tests using a dataset from a European

retail bank’s call center operations.

Our dataset consists of historical arrival counts, abandonment counts, and service-time averages, as well as

the rules and parameters the bank’s workforce management system uses to schedule agents to meet demand.

The arrival and service-time data cover 176 weekdays in 2007. The call center is open 13 hours each weekday,

from 8 a.m. to 9 p.m., and it reports arrival counts and average service times for 30-minute intervals. Hence for

each day we have 26 intervals of data, and we set the planning horizon to be T = 26 intervals, or one day.

Agents work either 7 or 9-hour days, without overtime, and with specific rules for meal breaks: a lunch

break lasts half an hour and must occur between 11 a.m. and 2 p.m.; a late lunch break also lasts half an hour

and must occur between 4:30 p.m. and 6 p.m. An agent qualifies for either the lunch break or the late lunch

break if her/his shift contains a half-hour period within that time window. If her/his shift contains a half-hour

period within each time window, then s/he qualifies for both breaks. Enumeration shows that there are J = 262

feasible schedules.

The bank did not share payroll information with us, and the fact that it used no overtime in constructing

regular schedules motivates us to use a normalized cost of 1 for each half-hour an agent works. Therefore

cj =
∑

i∈I aij .

We apply the approach described in §2.1 to forecast future arrival rates. Each forecast uses the previous

100 days of arrival counts to forecast the next day’s rates. Therefore we have 76 days (days 101 to 176) of

out-of-sample forecasts that we use to develop scenarios and run stochastic programs.

We use these parametric forecasts as the basis for quadrature and sampling-based scenario-generation

schemes. For the former, we follow the procedure detailed in Miller and Rice (1983). For the latter, we

sample ω from its normal distribution, once for each scenario, and apply (3).

Other data used in the stochastic program include the following. The service times in our dataset average

121 seconds, so we set the service rate to be µ = 1800/121 ≈ 14.6 services per agent per 30-minute interval.

To estimate the abandonment rate, we divide the total number of abandoned calls in our dataset by the total

waiting time in queue for all served calls. This provides an upper bound on the abandonment rate of θ = 3.93

calls per 30-minute interval, or equivalently, a lower bound on average caller patience of 1800/3.93 ≈ 458

seconds.1 This implies that, on average, customers are willing to wait (at least) about 3.7 service times before
1The Kaplan-Meier estimator for exponentially-distributed patience divides the total number of abandonments by the sum of the

delays of all calls, including those that are served and those that abandon the queue before being served. See Zohar et al. (2002). Our

dataset includes records of average delay in queue only for served calls, however, and we include the total delay of served calls in the
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abandoning the queue. The data clearly satisfy the requirement that µ ≥ θ.

All of the math programs use an expected daily abandonment rate target of α∗ = 3%. In most cases the QoS

constraint in the optimal solution is tight or nearly tight.

2.5 Empirical Comparison of Quadrature and Sampling-Based Scenario Generation

We compare the results of stochastic programs that use scenarios generated using Gaussian quadrature to those

that use scenarios based on sampling of the forecast distribution. Our results suggest that the quadrature-based

approach is more efficient and stable, in that very few scenarios are needed to obtain performance that is reliable

with respect to our two performance measures: abandonment rate and cost. Our comparison has three parts.

2.5.1 Distributions of Total Cost for One Day

We begin with a detailed look at the two methods’ performance for a single out-of-sample forecast day. Using

data from days 1 through 100 we generate a normally-distributed forecast for ω for day 101 and then use the

forecast to create 909 stochastic programs that we solve. We generate scenarios for 9 of the stochastic programs

– with 1, 4, 9, 16, 25, 49, 100, 225, and 400 scenarios – using Gaussian quadrature. For each of 9 stochastic

programs, we also create 100 analogous i.i.d. sets of scenarios for day 101, each set using an appropriate

number of i.i.d. samples from the arrival-rate forecast. Thus we generate, run, and evaluate 101 instances of

9 stochastic programs for a total of 909. For each of these 909 instances, we record the stochastic program’s

objective function value, the total cost of staffing day 101.

Figure 1 summarizes the total costs (the objective function value) of the 909 solutions. Results are grouped,

by number of scenarios, along the horizonal axis, from 1 up to 400. For each number of scenarios, the ver-

tical axis reports total cost. Each box of the box-and-whisker plot shows the 25th percentile, 50th, and 75th

percentiles of the cost of the 100 sampling-based instances of the problem for that number of scenarios. The

whiskers are 1.5 times the interquartile range (75th percentile - 25th percentile) and are used as thresholds for

determining outliers. The circles above and below the whiskers are the outliers. The dashed lines running

across the whiskers display the 2.5% and 97.5% percentiles of the sampling-based results, and the solid line

running across the boxes plots shows the cost of the analogous quadrature-based program.

Several features of Figure 1 are of note. As expected, as the number of scenarios increases, the distribution

of results for sampling-based instances becomes less dispersed. Similarly, it is not surprising that, as the number

of scenarios increases, the average cost of sampling-based programs and the cost of quadrature-based programs,

are (generally) non-increasing. Formulations with fewer scenarios display a well-known, systematic downward

bias that results from solving a convex minimization problem with stochastic data (Shapiro 2000, §5.2). Of

denominator of our calculation. If we were to include the waiting time of abandoning calls, it would therefore lower the estimate of θ.

11
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Figure 1: Day 101 Confidence Intervals, by Number of Scenarios

more interest to us is the fact that the cost of quadrature-based solutions remains nearly constant from 4 to 400

scenarios, and for instances with 16 scenarios or more, the cost is nearly identical to the median costs of the

sampling-based programs.

2.5.2 First Differences in Total Cost for Each of 76 Days

Our second set of tests compare the results of all 76 days. In these tests, we formulate and solve 1,368 math

programs: 9 stochastic programs – with 1, 4, 9, 16, 25, 49, 100, 225, and 400 scenarios – for each of the

two scenario-generation scheme and each of 76 days. Here, we only create one sampling-based instance of a

stochastic program for each day and number of scenarios. For each of the 18 stochastic programming solutions

we generate for a given day, we simulate a common sample path of arrivals to determine a sample abandonment

rate and sample cost per handled call.

To develop a consistent measure of performance across all 76 days, we then use first differences. Given the

relative stability of results for 400 scenarios, we use the 400-scenario results as benchmarks against which we

compare that of formulations with fewer scenarios. For each type scenario-generation scheme, on each day we

record the first difference between the performance of schemes with 1 through 225 scenarios to that of the math

program with 400 scenarios.

Figure 2 plots the first differences, by number of scenarios, of the total costs. The left panel plots the

differences for math programs with quadrature-based scenarios, and the right panel plots the differences for

those using sampling-based scenarios. Each of the 76 lines in a panel plots the first differences for one day, by

number of scenarios. The black circles show the means of the first differences across all 76 days.

Figure 2’s results again suggest that, for quadrature-based formulations with more than one scenario, the

means of the first differences are all quite close to zero; there is no apparent bias introduced by using fewer

12
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Figure 2: First Differences in Cost, by Number of Scenarios

scenarios, as long as there are more than one. Formulations using one scenario, again, display the expected

systematic bias toward understaffing that was noted in Figure 1. Visual inspection also suggests that the results

for sampling-based formulations are systematically noisier than those using quadrature-generated scenarios.

2.5.3 First Differences in Cost per Handled Call and Abandonment Rate Across 76 Days

Observe that our use of the objective function value as a measure of solution stability is crude: two optimal

solutions, x 6= y, can have
∑

j∈J cjxj =
∑

j∈J cjyj . Nevertheless, Figures 1 and 2 both show that, even with

this rough measure of stability, sampling-based solutions appear to be relatively unstable for smaller numbers

of scenarios.

We would similarly like to rule out the possibility that the apparent stability of quadrature-based solutions

is overstated by the use of objective function values. While one alternative would be to use an L2 (or some

other) norm, the possibility that an IP such as (6) has multiple optimal solutions motivates us to look instead at

differences in the abandonment rates across solutions.

For our third test, we therefore consider both costs and abandonment rates for all 76 out-of-sample days.

For each day we use each stochastic program’s optimal solution to determine each half hour’s staffing level and

then use discrete event simulation to calculate a sample realization of the abandonment rate.

More specifically, the numbers of agents on hand each half hour is determined by the optimal solution to

the IP (6). For each of the 76 out-of-sample days we simulate one sample path of a 13-hour day. The simulated

arrival process is driven by our dataset’s 30-minute arrival counts. Because we do not have the arrival time

of each call in the dataset, we turn each 30-minute count into the realization of a Poisson arrival process by

distributing the counted number of arrivals as i.i.d. samples, each of which has an arrival time that is uniformly

distributed over the half-hour. (See §2.3 in Ross (1996).) For each arrival, we sample a virtual service time and

13



virtual patience, each of which is exponentially distributed with mean 1/µ and 1/θ, respectively.

Within each simulation run, the number of agents on hand may decrease from one half hour interval to

the next. In such cases, we remove agents with shortest remaining service time first. (Idle agents have zero

remaining service times.) At the end of the simulated day, we also check to make sure that the number of

unserved calls left in queue is not large enough to bias abandonment-rate statistics, which are calculated as

fractions of arriving calls. Across 1,368 test simulations, the average number of calls left in the end of the

queue was 1.21, out of a total of 8,435.79 average daily arrivals. The maximum across all simulations was 15,

on a day with 8,631 arrivals.

For each simulation run, we track two statistics. First, we calculate the fraction of arrivals that abandon

before being served: the number of abandonments, divided by the number of arriving calls, including those in

queue at the end of the day. Second, we calculate the average cost per handled call: the staffing cost, as recorded

in the objective function value, divided by the number of served calls. Here, the number of served calls equals

the number of arrivals, less the number of abandonments (and again includes calls left in queue at the end of

the day). We use cost per served call, rather than the average cost over all calls, so that staffing plans with high

abandonment rates do not appear to have artificially low cost per call.

number of abandonment rate cost per handled call

scenarios quadrature sampling quadrature sampling

1 0.0097 0.0488 0.0017 0.0083

4 0.0016 0.0215 0.0003 0.0045

9 0.0016 0.0133 0.0003 0.0034

16 0.0010 0.0086 0.0002 0.0030

25 0.0016 0.0065 0.0002 0.0022

49 0.0014 0.0051 0.0002 0.0014

100 0.0014 0.0054 0.0002 0.0012

225 0.0016 0.0037 0.0002 0.0010

Table 1: Standard Deviations of 1st Differences in Abandonment Rate and Cost per Handled Call

Table 1 reports the standard deviations of the first differences for both statistics. In most cases, the standard

deviation of the quadrature approach is one order of magnitude less. As before, the results suggest that stable

quadrature-based solutions are obtained by using as few as four scenarios, while many more sampling-based

scenarios are needed.
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3 Efficacy of Stochastic Programs with and without Recourse

In the previous section, we demonstrated the effectiveness of using Gaussian quadrature to generate scenarios

for simple, one-stage stochastic programs. In this section, we build on the machinery developed in §2 to

compare the effectiveness of this one-stage approach with schemes that, part-way through the planning horizon,

use arrival-count data to revise the arrival-rate forecast and adjust schedules accordingly.

For example, additional agent capacity may be requested for the 2nd part of the horizon. Often this additional

capacity comes in the form of extended hours for existing agents, the addition of short-term call-in agents, or the

use of outsourcing capacity. Conversely, capacity may be reduced during the 2nd part of the horizon, typically

by encouraging agents to take unpaid time off. The use of forecast updates, combined with these so-called

“recourse” actions, adds complexity to both the forecasting and scheduling approaches described in §2.

We consider two forms of updates. In §3.1, we describe a less sophisticated scheme that uses the one-stage

stochastic programming approach of §2 before the start of the planning horizon. Part-way through the horizon,

this method then utilizes realized arrival counts to update the arrival-rate forecast and solve a related one-stage

stochastic program with recourse actions for the remaining time intervals. In §3.2 we detail a more complex

scheduling method. This scheme follows the same overall approach as the simpler one, but it uses a more

sophisticated, two-stage recourse program in the initial planning phase. In setting initial staffing levels, this

two-stage program explicitly accounts for the later use of recourse actions, which the simpler approach of §3.1

does not.

In §4 we test the efficacy of the various schemes on two sets of call-center data. The first test uses the

European call-center data we use in §2. The second uses analogous arrival-count data from the call-center

network of a North American retail bank.

3.1 Simple Forecast Updates and Recourse Actions

The simpler update scheme begins by forecasting and scheduling using the approach developed in §2, without

considering the fact that recourse actions can be taken part-way through the planning horizon. Then after some

update time, i∗ ∈ {1, . . . , I−1}, it uses the new arrival counts for the early-stage intervals i ∈ Ie ≡ {1, . . . , i∗}

to develop a revised forecast for late-stage intervals i ∈ Il ≡ {i∗ + 1, . . . , I}, and it runs a new one-stage

stochastic program. This second math program begins with the optimal solution from the original scheduling

program, (6), and it includes decision variables that represent recourse actions that add or remove agent capacity

from the initial solution. Additional constraints limit recourse actions according to work rules and the numbers

of available agents. The solution of the second math program determines how employee schedules will change

in response to the updated arrival-rate forecast.
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Note that this simpler scheme is a generalization of that proposed by Mehrotra et al. (2010), in which

the initial math program and the one-stage recourse program are simple IPs that use only one scenario. The

formulation below generalizes that scheme to use multiple scenarios.

3.1.1 Forecast Updates and Scenario Generation

As in §2, let Λi = (ωϑi)
2 be the uncertain arrival rate of the ith interval within a particular day. We assume

that, using historical data, we have already obtained a forecast distribution for ω as ω ∼ N(ζ, φ2).

We define i∗ to be the index of an interval during the day after which we update the arrival-rate forecast and

adjust agent schedules. We update the forecast, having observed the numbers of calls arriving during Ie, the

intervals prior to the update, and denote these counts as Ne = {N1, . . . , Ni∗}. According to the forecasting

model (1), we then have

yi ≡
√
Ni + 1/4 =

√
Λi + εi = ωϑi + εi, i ∈ Ie, (7)

where εi ∼ N(0, σ2) and ω ∼ N(ζ, φ2). Note that both σ2 and ϑi can be assumed to be known, given the

model (1) has been estimated using historical data. Denote the vector of transformed observations collectively

as ye = (y1, . . . , yi∗)
T.

The problem of interest is to update the distribution of Λi for i ∈ Il based on the new information, ye. The

following proposition describes how the updated distribution for ω, which drives Λi, is calculated.

Proposition 2 Let ϑe = (ϑ1, . . . , ϑi∗)
T, and let Ii∗ be the identity matrix of dimension i∗. Then, having

observed ye, the posterior distribution of ω is normal with a mean of

ζ∗ = γ(ϑT
e ϑe + γ)−1ζ + (ϑT

e ϑe + γ)−1ϑT
e ye, (8)

where γ = σ2/φ2, and a variance of

φ∗2 = φ2 − φ4ϑT
e (φ2ϑeϑ

T
e + σ2Ii∗)

−1ϑe. (9)

From (8), we see that the posterior mean of ω, ζ∗, is a weighted average of the original point forecast, ζ, and

the new observations, ye. From (9), we see that the posterior variance, φ∗2, is always smaller than the original

variance φ2. Thus, the updating process shifts the forecast mean to account for new arrival counts, and these

additional data also reduce uncertainty of the forecast. The updated distribution of Λi, i ∈ Il, then naturally

follows in light of (3).

Remark 6 While the approach taken here is parametric, our updated mean, ζ∗ is equivalent to that obtained

using the penalized-least-squares (PLS) update that was developed as a part of the purely data-driven approach

proposed by Shen and Huang (2008). 2
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Once we have obtained the updated forecast distribution for the arrival rates of the late stage, we again use

the Gaussian quadrature approach of §2.2 to generate a new set of scenarios. The number of updated scenarios

may (in theory) differ from that previously used, and we differentiate updated scenario data by labeling the

revised set of scenarios k ∈ K′ = {1, . . . ,K ′}, with probabilities {p′k | k ∈ K′} and scenario-dependent rates

{λ′ik | i ∈ Il, k ∈ K′}.

3.1.2 Recourse Program for Simple Updates

With the initial set of schedules and the revised forecasts in hand, we solve a schedule-update problem. Its

solution determines a set of recourse actions to be used to adjust staffing levels over the second half of the

planning horizon.

For each schedule assignment, j ∈ J , we define a set of feasible recourse actions, Hj = {1, . . . ,Hj}. If

aij = 0 for some i ∈ Il then we may be able to extend schedule j to have an agent assigned to that schedule to

work during interval i. Similarly, if aij = 1 for some i ∈ Il then we may be able to reduce schedule j to have

an agent assigned to that schedule idle during interval i. We therefore let

rijh =


+1, if recourse action h extends schedule j by having an agent work during interval i;

-1, if recourse action h reduces schedule j by having an agent idle during interval i;

0, otherwise,

for i ∈ Il, j ∈ J and h ∈ Hj . If we define a dummy schedule J to have aiJ = 0 for all i and cJ = 0, then

we can represent the ability to use call-in agents or outsourcing capacity in a similar fashion. As with the aijs,

feasible columns – (ri∗+1,j,h, . . . , rTjh)T – are determined by company policy and employee work rules.

The decision variables {zjh | j ∈ J , h ∈ Hj} denote the set of recourse actions to be taken after the

schedule update. For each zjh, a coefficient djh defines the unit cost of taking the recourse action. Positive

costs are associated with the addition of work hours, either through schedule extensions or the use of call-in

capacity. Negative costs (savings) may results from the ability to reduce agents’ working hours.

The math program, below, is an analogue of that for the first-stage problem, (6), with piecewise-linear

constraints providing lower bounds to expected abandonment rates across the K ′ scenarios. As in (6), each Ni

is the set of linear constraints used to bound the expected number of abandoning customers in interval i ∈ Il,

with {(min, bin) | n ∈ Ni} defining the slopes and intercepts. Here the xj’s are numbers that were previously

determined via (6).

Given fixed initial schedule, x, the following math program then finds a set of recourse actions, z, that
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minimize recourse costs, subjected to the revised QoS constraint, αl:

min
∑

j∈J
∑

h∈Hj
djhzjh

subject to

(
∑

j∈J aijxj +
∑

j∈J
∑

h∈Hj
rijhzjh)min + bin ≤ αi i ∈ Il; n ∈ Ni∑

i∈Il αi ≤ αlλ̄′∑
h∈Hj

zjh ≤ xj j ∈ J

zjh ∈ Z+ j ∈ J , h ∈ Hj .

(10)

Here, the first two constraints of (10) define the piecewise-linear lower bounds on expected abandonment rates

and enforce a revised QoS limit, αlλ̄
′, only over Il.

Specifically, we let λ̄′ =
∑

i∈Il
∑

k∈K′ p
′
kλ
′
ik be the revised expected aggregate arrival rate over the second

part of the planning horizon and let

αl(Ne) =

∑
k∈K

p
′
k

∑
i∈Il

λ′ikf(λ′ik, µ, θ,
∑
j∈J

aijxj)

 / λ̄′ (11)

denote the revised expectation of late-stage abandonment that would have occurred had the original staffing

plan, x, been maintained. We write α(Ne) to emphasize the fact that QoS update, αl, is driven by the early-

interval arrival counts, Ne.

Our definition of αl ensures that, on a sample-path basis, expected abandonment over the late part of the

planning horizon remains the same with and without recourse actions. In turn, over the entire planning horizon,

our simple recourse scheme will achieve the same expected QoS as the one-stage stochastic schedule, developed

in §2, at a (weakly) lower cost. Thus, the recourse scheme offers a Pareto improvement of scheduling without

recourse.

Remark 7 Our definition of αl has the virtue of being straightforward to calculate and analyze. Nevertheless,

there are other definitions of αl that we can consider. For example, we can use the optimal solution to (6) to de-

fine the expected late-period abandonment rate given only the initial forecast (1): αl = (
∑

i∈Il αi)/(
∑

i∈Il λi).

More generally, one may look for mapping of αl(Ne) that satisfies other objectives, such as best stabilizing

late-interval abandonment or minimizing of expected late-interval costs. Space limitations prevent us from ex-

plicitly considering the form of other αl( · ) functions, though we are working on their characterization (Gans

et al. 2012). 2

To summarize, we operationalize the simple scheme in two stages. Before the start of the planning horizon,

we forecast call volumes as in §2 and solve (6) to determine an initial set of schedules, {xj | j ∈ J }, which we

use to staff the call center over the early part of the planning horizon, Ie. During this initial period, we collect
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arrival count data and use the results of Proposition 2 to update the arrival-rate forecast during later part of the

horizon. We feed the initial schedule, {xj | j ∈ J }, along with the updated forecast, into the recourse program

(10), whose solution determines optimal schedule adjustments and, in turn, the number of agents on hand in

each period i ∈ Il.

3.2 Forecasting and Scheduling Using Two-Stage Recourse Programs

A more complex approach explicitly takes the ability to use recourse actions into account when solving the

initial forecast and staffing plan. To support this approach both the initial forecast (1) and scheduling program

(6) become more elaborate.

The solution to a two-stage recourse program determines optimal values for both initial scheduling decisions

and later recourse actions. But in practice only the values of the initial scheduling decisions, {xj | j ∈ J }, are

used. As in the simpler updating scheme, they are used to schedule staff during the early part of the planning

horizon, Ie, and after i∗ we use the forecast update and recourse machinery developed in §3.1 to update the

forecast, based on actual data, and to determine the specific set of recourse actions to be implemented.

Thus, the practical difference between the simpler and the more complex updating schemes is that the

former develops its initial scheduling decision, {xj | j ∈ J }, without regard to recourse actions, while the

latter develops the initial schedule explicitly accounting for the cost effectiveness of possible recourse actions.

For example, if adding agent capacity after the update is more expensive than initially overstaffing and then

sending agents home, then the two-stage recourse program may set initial staffing levels to be higher than

the simpler early-stage program, which does not account for the relative costs of later capacity increases and

decreases.

3.2.1 Scenario Generation for Recourse

In the more complex approach, we structure the initial forecast as follows. As before, we divide the planning

horizon into two stages, an early stage, Ie, and a late stage, Il, and we generate scenarios on a stage-specific

basis. We construct early-stage scenarios k ∈ K that represent arrival-rate patterns over only the first part of

the horizon. With each early-stage scenario k ∈ K we then associate a distinct set of late-stage scenarios,

Lk = {1, . . . , Lk}. Each set of second-stage scenarios, Lk, occurs conditional on scenario k being realized

during the early part of the horizon.

As in §3.1.1, we assume the original forecast distribution for ω is N(ζ, φ2), and we use the same quadrature

scheme to generate early-stage scenarios: λik ≡ ω2
kϑ

2
i with probability pk for k ∈ K. Because we must

construct late-stage scenarios before the start of the planning horizon, before any arrival counts are observed,
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the results of Proposition 2 do not apply directly, however.

More specifically, Proposition 2 uses the arrival-count pattern during the early stage of the horizon, ye, to

update the forecast distribution of ω. However, the two-stage stochastic program with recourse is run before

the start of the planning horizon, when we have not yet observed ye. In fact, in generating late-stage scenarios

we must consider all possible realized arrival patterns in the early stage; i.e., all possible ye.

Nevertheless, we can use the proposition’s results as the basis for a more elaborate update mechanism, one

in which we generate potential sample paths, ye. For each generated sample path, we calculate a conditional

update, and having calculated all such potential updates, we then aggregate them as a mixture.

Consider the kth early-stage arrival-rate scenario ωk. The model (7) suggests that

yi = ωkϑi + εi, i ∈ Ie,

where εi ∼ N(0, σ2). Applying the Gaussian quadrature approach of §2.2 to the distribution of the error term,

εi, we obtain a discrete approximation with a set, B = {1, . . . , B}, of discrete atoms, {εb | b ∈ B}, each with

probability {qb | b ∈ B}.

Using this discrete approximation for each of the i∗ early-stage error terms, we see that, for any given ωk,

ye has Bi∗ possible sample paths,

yk
b1,...,bi∗

≡ ϑeωk + (εb1 , . . . , εbi∗ )
T with probability pb1,...,bi∗ ≡

i∗∏
i=1

qbi .

The superscript, k, emphasizes the fact that these Bi∗ sample paths are constructed given early-stage scenario

k.

Now consider one “realized” count scenario yk
b1,...,bi∗

. As in Proposition 2, the updated distribution for ω is

Gaussian with mean defined as in (8),

ζkb1,...,bi∗ = γ(ϑT
e ϑe + γ)−1ζ + (ϑT

e ϑe + γ)−1ϑT
e yk

b1,...,bi∗
,

and variance φ∗2 defined as in (9). We denote the updated ωk as ωk
b1,...,bi∗

.

Hence, the updated distribution for ωk over all possible sample paths of ye is a mixture of Gaussian distri-

butions, ωk
b1,...,bi∗

, where the mixture probabilities are pb1,...,bi∗ . Note that, because each ωk
b1,...,bi∗

has variance

of φ∗2, the mixture does as well. For each early-stage scenario, k, we then discretize this mixture distribution

into Lk scenarios, {ωkl | l ∈ Lk} with probabilities {pkl | l ∈ Lk}.

Here, we use a simple approach, dividing the approximate support of the mixture distribution – from roughly

3 standard deviations below the mean of the lowest distribution in the mixture to 3 standard deviations above the

mean of the highest distribution in the mixture – into Lk equal-length intervals, setting pkl to be the conditional

20



probability that, given early-stage scenario k ∈ K, ω is in the lth interval, and letting ωkl be the corresponding

conditional expectation of ω.

Remark 8 An alternative would be to use the Gaussian quadrature approach, described in §2.2, to discretize

the mixtures defined above. Because these second-stage scenarios are not implemented and are used only

indirectly, to account for the effect of later recourse actions on earlier scheduling decisions, we have opted for

computational efficiency at the expense of precision. 2

Finally, we repeat the above procedure for each early-stage scenario, k ∈ K, in order to generate the

corresponding late-stage scenarios, l ∈ Lk. For each k, we transform the resulting ωkls according to (3) to

yield the late-stage arrival rates, {λikl = (ωklϑi)
2 | i ∈ Il, k ∈ K, l ∈ Lk}.

3.2.2 Two-Stage Recourse Program Formulation

As in the simpler scheme, the two-stage recourse program includes decision variables, {xj | j ∈ J }, that

represent initial scheduling decisions, implemented before the start of the planning horizon. It also determines

possible late-horizon recourse decisions, which can vary by scenario. Decision variables {zjhk | j ∈ J , h ∈

Hj , k ∈ K} represent the full set of these recourse decisions. If early-stage scenario k̂ is realized, then recourse

decisions {zjhk̂ | j ∈ J , h ∈ Hj} are taken.

As in (6) and (10), we formulate the piecewise-linear version of the two-stage recourse program. We let

{αi | i ∈ Ie} be the expected number of abandoning calls in each interval of the early part of the planning

horizon. Similarly, for each early-stage scenario, k ∈ K, we let {αik | i ∈ Il} be the analogous quantities in

the second part of the planning horizon. As before, α∗ is an upper bound on the expected abandonment rate

over the entire horizon.

Again, each Ni is set of linear constraints that bounds the expected number of abandoning customers in

intervals i ∈ Ie, with {(min, bin) | n ∈ Ni} defining slopes and intercepts. We let Nik = {0, . . . , Nik} define

the analogous sets of constraints for each interval i ∈ Il in the later part of the planning horizon and under each

early-stage scenario, k ∈ K, with slopes and intercepts {(mikn, bikn) | n ∈ Nik}.

Then the solution to the stochastic integer program, below, determines an optimal set of scheduling and

recourse decisions. Its objective is to minimize the expected cost of initial scheduling and recourse decisions,

subject to an upper bound on the expected number of abandonments over the planning horizon, α∗λ̄. The first

set of constraints provides lower bounds on the expected numbers of abandonments during intervals i ∈ Ie,

and the second set provides a similar bound for each scenario k ∈ K during i ∈ Il. The third constraint

enforces an upper bound on the expected number of abandonments over the planning horizon, and the fourth
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set of constraints ensures that at most one recourse action may be taken for each employee.

min
∑

j∈J cjxj +
∑

k∈K pk
∑

j∈J
∑

h∈Hj
djhzjhk

subject to

(
∑

j∈J aijxj)min + bin ≤ αi i ∈ Ie, n ∈ Ni

(
∑

j∈J aijxj +
∑

j∈J
∑

h∈Hj
rijhzjhk)mikn + bikn ≤ αik i ∈ Il; k ∈ K; n ∈ Nik∑

i∈Ie αi +
∑

k∈K pk
∑

i∈Il αik ≤ α∗λ̄∑
h∈Hj

zjhk ≤ xj , j ∈ J , k ∈ K

xj ∈ Z+ j ∈ J

zjhk ∈ Z+ j ∈ J , h ∈ Hj , k ∈ K

(12)

We operationalize the more sophisticated scheme as in §3.1. First, we use the x determined by the optimal

solution of recourse program (12) to assign agent schedules in the early part of the planning horizon. Then after

interval i∗ we update the arrival-rate forecast and use (10) to determine the actual recourse actions to be taken.

For the current case, we define the late-stage revision of the QoS target as

αl(Ne) =
∑
k∈K

p
′
k

∑
i∈Il

αik / λ̄
′, (13)

which uses revised scenarios probabilities, {p′k | k ∈ K}, along with the 2nd-stage abandonment-rate targets

from (12), {αik | i ∈ I, k ∈ K}, to ensure that the use of (12) followed by an update that uses (10) matches the

expected abandonment rate attained by (6) on a daily basis.

Observe that, in contrast to the simple scheme, the use of (12) followed by (10) is not guaranteed to provide

weakly lower costs than (6). While the simple scheme’s early-stage schedules exactly match those of (6), the

cost of the early stage schedules determined by (12) might be higher or lower than those of (6). Thus, while we

expect the use of the more sophisticated 2-stage recourse scheme to lower long-run average costs, over many

days, it need not provide the simpler update scheme’s guarantee of (weakly) lower costs each day.

4 Numerical Tests of Six Scheduling Schemes

We now have the machinery necessary to precisely define each of six scheduling schemes we will evaluate.

(See Table 2.) SP1 and SPm solve the stochastic program (6) to find a schedule x and perform no updating.

UP1 and UPm solve (6) at the start of the planning horizon, update the initial arrival-rate forecast after interval

i∗, and then solve (10) to determine recourse actions to take in Il. RP1 and RPm solve (12) at the start of

the planning horizon, update the initial arrival-rate forecast after interval i∗, and then solve (10) to determine

recourse actions to take in Il. Schemes SP1, UP1, and RP1 use K = 1 scenarios, while SPm, UPm, and RPm

use m > 1 scenarios.
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Label Description

SP1 one-stage stochastic program with 1 scenario and no updating

SPm one-stage stochastic program with m > 1 scenarios and no updating

UP1 one-stage stochastic program with 1 scenario and mid-horizon updating

UPm one-stage stochastic program with m > 1 scenarios and mid-horizon updating

RP1 two-stage recourse program with 1 scenario and mid-horizon updating

RPm two-stage recourse program with m > 1 scenarios and mid-horizon updating

Table 2: Six Scheduling Schemes to be Tested

Note that three of these schemes correspond to approaches found elsewhere: 1) SP1 is a traditional IP, driven

by a point forecast; 2) SPm is the quadrature-based version of Robbins and Harrison (2010) evaluated in §2;

and 3) RP1 is the simple forecast-update approach evaluated in Mehrotra et al. (2010).

For the scheduling schemes that use multiple scenarios, we construct sets of m = 100 scenarios so that the

information content across schemes is relatively constant. In particular, for RP100, we use K = 10 early-stage

scenarios, and for each early-stage scenario we use Lk = 10 late-stage scenarios. Thus, for the second part of

the planning horizon, the number of scenarios is 100.

We calculate each of the Lk = 10 late-stage scenarios using a mixture ofBi∗ posterior, normal distributions,

as described in §3.2.1. We let B = 2 so that calculation uses a standard binomial tree (Cox et al. 1979).

To ensure that the information content for SP100 is analogous to that of RP100 we use the latter’s forecast

data in SP100 as well. To do so, groups of 10 scenarios in SP100 have the same early-stage rate profiles as

that associated with one of the 10 early-stage scenarios in RP100. Then within a given set of 10 with the same

early-stage profile, each has a different late-period profiles just as in RP100.

In both the UP100 and RP100 schemes, we determine actual recourse actions using the sampling-based

update program, (10). In both cases the recourse program has K ′ = 100 distinct scenarios.

In the following sections we test these schemes on two sets of data. The first set of tests uses the European

retail bank data described in §2.4. A second set of tests uses arrival-count data from a network of call centers

operated by a North American retail bank.

4.1 Empirical Results for European Retail Bank

In addition to the data described in §2.4, our empirical tests for the European bank use the definition of the

recourse actions and costs that are used in (10) and (12). Because the European bank’s labor practices are

highly restricted (compared with those in the US, for example), it does not currently use recourse actions,

however. Therefore, we use a set of recourse actions and costs that are analogous to those used by Mehrotra et

al. (2010) .
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Specifically, we consider three sets of recourse actions. For any worker assigned to first-stage schedule,

j ∈ J , we consider two generic actions: 1) the ability to extend the worker’s shift, beyond the time it would

normally end; and 2) the ability to send the worker home early, before his or her schedule would normally end.2

In the former case, we assume a traditional overtime cost of 1.5 per agent per half hour, a 50% premium over

the base rate of 1 per interval, and in the latter we define the cost to be -0.75. A third set of recourse actions

is the ability to (outsourced or) call in workers who are not scheduled to work on a given day. We assume that

the cost of this action is 2 per agent per half hour; these agents receive double-time pay. Given our problem

parameters – 26 half-hour intervals per day and 262 feasible initial schedules – the number of feasible recourse

actions totals 4,973.

We choose a fixed update interval, revising the initial forecast and determining recourse actions at 11 a.m.

– that is, after i∗ = 6 intervals of arrival-count data are observed. In contrast, Mehrotra et al. (2010) do not set

a fixed interval, i∗, for an update. Rather, they perform a sequential procedure that looks for the first period,

i∗, for which they can reject the null hypothesis that the arrival-rate pattern comes from the initial forecast

distribution.

Remark 9 While this more sophisticated sequential procedure is of interest, it would add significant complex-

ity to the large number of forecasts we generate. Of perhaps greater practical interest would be a search for an

optimal static update interval. Such a test would be straightforward, though time consuming, and we do not

pursue it here. 2

As in §2.5 we use 176 days of weekday arrival data from the European bank. For each of the last 76 days,

we use the previous 100 days to construct out-of-sample forecasts for the following day, and we run the math

programs required to implement the six scheduling schemes of interest. For each day and each scheme, we use

the optimal solutions to the initial scheduling and, in the case of the UP and RP schemes, update programs to

determine staffing counts for each half-hour of the day. Then for each day and each scheme, we run a single

sample path of a discrete event simulation to generate the number of realized abandonments. From the objective

function values, arrival counts, and abandonment counts we calculate the realized abandonment rate and cost

per handled call.

Figure 3 summarizes the results of all 76 days. The left panel plots confidence intervals for the 76 realized

abandonment rates, and the right panel intervals for the 76 costs per handled call. The intervals’ point estimates

are calculated as weighted averages of the 76 days’ results, with the number of calls handled on a given day
2Note that we require schedule adjustments of be made over contiguous sets of intervals. For example, an agent who is originally

scheduled to work until 5:00 p.m., and who is asked to work from 6:30 p.m. to 7:00 p.m., must work from 5:00 p.m. to 6:30 p.m. as

well.
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acting as weights. Similarly, the 1/2-widths of the confidence intervals are calculated using standard deviations

whose points are weighted by numbers of calls, along with t-statistics associated with 95% intervals and 75

degrees of freedom.
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Figure 3: Six Schemes’ Performance for European Bank over 76 Days

In the left panel of Figure 3, we see that the three schemes that use 100 scenarios have average abandonment

rates that are close to 3%, while those that use only one scenario – point forecasts for arrival rates – have

significantly higher average abandonment rates. Conversely, the three schemes that use 100 scenarios have

costs that are significantly higher than those that use point forecasts. This result echoes that shown in Figures

1 and 2. Since the abandonment rate is convex and increasing in the arrival rate, schemes that staff to hit

an average abandonment rate of α∗ across all arrival rates will require more staff and obtain lower average

abandonment rates than those that staff to hit α∗ for the average of the arrival rates.

The results also suggest that, for a given number of scenarios, average cost and abandonment rates are quite

similar across the three schemes. In particular, average cost per handled call is only 1.3% lower for UP100 and

RP100 than for SP100, and the wide confidence intervals make the difference look statistically insignificant.

Results from paired t-tests, displayed in Table 3, show that there are systematic differences, however. For

example, the cost per handled call of UP100 and RP100 are both significantly lower than that of SP100, with

vanishingly small p-values for one-sided t-tests. While average abandonment is not significantly different for

SP100 and UP100 it is significantly lower for RP100.

The results have at least three important implications for the European bank’s call center. First, schemes that

are based on point estimates of arrival rates do not appear to provide adequate staffing to meet long-run QoS

targets, while those that are based on distributional forecasts appear to meet QoS goals. Second, although the

cost advantage of using recourse actions is statistically significant, the magnitude of the advantage is not large,

and for the European bank there appears to be no cost advantage in using the more complex RP100 scheduling
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paired abandonment rate cost per handled call

difference t p-value t p-value

SP100 - UP100 -1.04 0.151 6.96 0.000

SP100 - RP100 2.63 0.005 7.00 0.000

UP100 - RP100 6.14 0.000 0.01 0.497

Table 3: One-Tailed Paired t-Tests Comparing SP100, UP100, and UP100 at European Bank

scheme, instead of the simpler UP100 scheme.

4.2 Empirical Results for a North American Retail Bank

The previous section’s results suggest that, for the European bank’s call center, the explicit representation of

forecast error, rather than the availability of recourse actions, may be of the most practical value. To begin

assessing the robustness of this finding, we construct a second set of tests that use arrival-count data from

another operation, a network call centers operated by a North American retail bank. This North American

bank’s call centers operate at a larger scale, with call volumes that are more than six and one half times that of

the European call center studied in §4.1.

We control these new tests so that their results are comparable to those from the European bank. In the

new tests we continue to use the scheduling, rate, and cost assumptions and parameters used in the original

experiments. The only differences between the two sets of numerical tests are the half-hour arrival counts

found from day to day.

We have 210 days of arrival-count data for the North American bank and employ the same sampling and

scheduling scheme as before, using the previous 100 days’ arrival-count data to forecast arrival-rate profiles

for days 101 through 210. Thus, in this example we have 110 out-of-sample points that we test. As before,

we determine staffing numbers and costs according to the six scheduling schemes and then run a discrete event

simulation to generate the number of realized abandonments. Again we use the objective function values,

arrival counts, and abandonment counts to calculate realized abandonment rates and costs per handled call.

Figure 4 summarizes the results of the 110 out-of-sample days. The left panel plots confidence intervals for

the realized abandonment rates, and the right panel intervals for cost per handled call. As before, the intervals’

point estimates and 1/2-widths are determined using weighted calculations, with weights that are numbers of

calls handled on each day. The t-statistics used are those associated with 95% intervals and 109 degrees of

freedom. To make the plots visually comparable to those in Figure 3, we use the same vertical scales.

The results differ somewhat from those of the European bank. As before, the schemes that use distributional

forecasts do a good job of reaching a long-run abandonment target of 3%, while those that use point forecasts

26



2.0%

3.0%

4.0%

5.0%

6.0%

SP1 UP1 RP1 SP100 UP100 RP100

ab
an
do

nm
en

t r
at
e

0.072

0.076

0.080

0.084

0.088

SP1 UP1 RP1 SP100 UP100 RP100

co
st
 p
er
 h
an
dl
ed

 c
al
l

Figure 4: Six Schemes’ Performance for North American Bank over 110 Days

appear to have abandonment rates that are biased upward. The differences are not as large as those found in

the European bank’s results, however. In contrast, the use of recourse actions provides more significant cost

savings to the North American bank, with UP100’s average cost per handled call falling 2.9% below SP100’s,

and RP100’s costs falling 3.7% below SP100’s. Table 4 confirms that, as the plots suggest, there are strong

statistical differences among the average costs of the 100-scenario schemes.

paired abandonment rate cost per handled call

difference t p-value t p-value

SP100 - UP100 -1.04 0.151 46.6 0.000

SP100 - RP100 0.07 0.473 66.7 0.000

UP100 - RP100 0.86 0.194 16.6 0.000

Table 4: One-Tailed Paired t-Tests Comparing SP100, UP100, and UP100 at North American Bank

Our numerical results also suggest that the arrival-rate forecasts are noisier for the European bank than they

are for the North American Bank. For example, differences in the widths of the confidence intervals shown in

Figures 3 and 4 are revealing. The widths of the North American bank’s confidence intervals for abandonments

are only 43% to 60% of those for the European banks, and those for average cost per handled call are only 13%

to 15% of the European bank’s.3

Table 5 confirms that, in fact, the CV of the forecast distribution for the daily arrival rate is about four times

larger for the European bank than it is for its North American counterpart. Each row reports the distribution of

the CV, across all out-of-sample forecasts. There are 76 such forecasts for the European bank and 110 for the

North American bank.
3Confidence intervals constructed using the North American bank’s first 76 days of out-of-sample forecasts are similar. The 1/2-

width for abandonment rates are 51% to 71% of those of the European Bank, and those for average cost per handled call are 13% to

16% of the European bank’s.
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Minimum 1st Quartile Median Mean 3rd Quartile Maximum

European Bank 0.1141 0.1235 0.1313 0.1338 0.1407 0.1663

North American Bank 0.0284 0.0321 0.0333 0.0333 0.0346 0.0391

Table 5: Distribution of Daily Forecast-Distribution CVs over Out-of-Sample Tests

As we noted in §4.1, the fact that expected number abandoning is increasing convex in the arrival rate

implies that schemes that staff to the average arrival rate should systematically understaff. Furthermore, the

more disperse the arrival-rate forecast, the stronger the bias. Table 6 shows that, in our setting this intuition

holds true. Noisy arrival-rate forecasts also translate into relatively larger cost differences between analogous

1- and 100-scenario schemes: SP1 vs. SP100; UP1 vs. UP100; and RP1 vs. RP100. For example, the percent

cost increase between 1 and 100-scenarios is 4.2%-4.6% for the European Bank, an order of magnitude larger

than the 0.1%-0.4% increase for the North American bank.

SP1 SP100 % Diff UP1 UP100 % Diff RP1 RP100 % Diff

European Bank 0.084 0.088 4.5% 0.083 0.086 4.2% 0.083 0.086 4.6%

North American Bank 0.077 0.077 0.2% 0.074 0.074 0.1% 0.074 0.074 0.4%

Table 6: Average Cost Per Handled Call at the Two Banks

4.3 Discussion

In both examples, the use of multiple-scenario scheduling schemes was needed to meet long-run average QoS

objectives. For both the European and North American banks, scheduling schemes that used 100 scenarios

had long run average abandonment rates close to 3%, while those that used only one scenario had confidence

intervals that did not cover 3%.

In contrast, the usefulness of the two forms of recourse varied between the two examples. While UP100

and RP100 provided statistically significant cost reductions for the European bank, the overall savings was only

1.3%. In addition, RP100 did not to provide a cost advantage over the simpler UP100. For the North American

bank, the benefits appeared to be stronger, however. The average cost savings provided by UP100 was 2.9%

and that provided by RP100 was 3.7%. Here RP100’s day-by-day costs were statistically different, and lower,

UP100’s.

We also saw that the large North American centers enjoyed much lower levels of forecast uncertainty, when

compared to much smaller the European bank. An interesting question, then, is the extent to which the reduction

in forecast uncertainty enjoyed by the North American bank is the result of an increase in scale. For example, an

arrival process that is an aggregate of separate, independent arrival processes – such as that obtained by pooling

across independent geographic areas – should enjoy a reduced CV of the overall arrival rate. This phenomenon
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would represent an as-yet unaccounted for source of economies of scale that warrants further investigation.

It is also worth noting that an initial motivation for the use of fluid models in complex staffing and routing

problems, found in Harrison and Zeevi (2005), was that arrival-rate uncertainty may dwarf the lower-level

stochastic fluctuations that are modeled by more complex queueing formulae. Our results suggest that this may

be the case for European bank but not for its North American counterpart. To the extent that scale is associated

with less variable forecasts, the rationale for using fluid models may apply most fully only to smaller operations

that we might call “underscale.”

5 Conclusion

Our analysis has provided a number of insights into the value of stochastic programming and recourse for

call-center workforce management. We used a parametric forecasting scheme to generate stochastic programs

that needed only small numbers of scenarios, and our use of a convex measure of QoS allowed us to col-

lapse scenarios in linear time to create efficient, deterministic, piecewise linear, certainty-equivalent versions of

these stochastic programs. Together, the forecasting scheme and certainty-equivalent formulation allowed us to

simply generate and solve large numbers of two-stage recourse programs.

Numerical tests of our forecasting and scheduling schemes showed how the use of multiple scenarios and of

recourse actions provided complementary benefits. Multiple scenarios were needed to achieve long-term QoS

goals, and recourse actions improved system costs. A comparison of the European bank’s and North American

banks’s arrival-rate forecasts also suggested that the same pooling effect that is widely recognized in inventory

systems may provide an as-yet unaccounted for source of economies of scale in call center operations.

In developing our analysis we have remarked on follow-on work that we believe will further strengthen both

the theoretical underpinnings and the practical value of our work. On the one hand, we are working to show

that the arrival-rate distributions used in our stochastic programming formulations are consistent with the AR(1)

models used to generate those forecasts. On the other hand, we are investigating more complex definitions of

the late-interval QoS target αl that will allow other objectives, such as reducing day-to-day fluctuations in

realized abandonment rates.

More broadly, we wish to expand the above analysis to include multiple types of calls. We note that, in order

to provide a comprehensive evaluation of the merits of various recourse schemes, we have limited ourselves

to an operational model in which only one type of call is served. Nevertheless, call centers commonly handle

multiple types of calls, and to accommodate this complexity, the analysis should extend to systems that require

skills-based routing and staffing. A number of papers referred to in the introduction – including Harrison and

Zeevi (2005), Bassamboo et al. (2005), Bassamboo et al. (2006), Bassamboo and Zeevi (2009), Bertsimas
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and Doan (2010), and Gurvich et al. (2010) – use fluid models to account for arrival-rate uncertainty when

making short-run staffing and call-routing decisions. We are currently working to incorporate elements of their

approaches, extending our analysis to include multiple types of calls.
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