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Quantitative Analysis on Angle-Accident Risk  
at Signalized Intersections 

 
 

Abstract:  
 
This paper demonstrates how a new modeling methodology can be applied to intersection 
angle-accident risk evaluation with data collected from 81 signalized intersections in the 
Tokyo Metropolitan area.  
 
Angle collisions between through traffic flow and opposite right-turn (please note that 
vehicles travel along the left side of the road in Japan) traffic flow are the second most 
common type at signalized intersections in Tokyo, accounting for 25.6% of total 
vehicle-to-vehicle accidents. A risk model for such angle accidents was developed with the 
occurrence mechanism considered in this study. Unlike most existing accident models, 
human factors, which caused about 95% of all the traffic accidents, can be considered 
quantitatively in this model.  Very specific flow data, regulation data, geometric data and 
accident observations of each approach were applied for calibrating the model using a 
modified negative binomial regression. Nineteen explanatory variables were found 
significantly affecting angle-accident risk at signalized intersections. Such estimation results 
may help to improve traffic safety at signalized intersections in metropolitan areas. 
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INTRODUCTION 
 
While traffic fatalities have been fluctuating around 10,000 per year, injury accidents have 
been increasing since 1990. The record high number of injury accidents, 720,880 in 1969, 
was reset by 761,789 in 1995, and has been reset yearly since then (“IATSS”, 1997). In 2000, 
it reached a new high of 930,277. Correspondingly, the number of injuries, 1,153,841 also 
reached a record high in 2000 (“ITARDA” 2001).   
 
Approximately 58.7% of all accidents, or 44.7% of all fatal accidents occurred at 
intersection areas in 1995 (“ITARDA”, 1996). This indicates that intersections are 
accident-prone areas, and to reduce intersection accidents is an urgent task in Japan. 
Statistics show that AG accidents (angle accidents between through vehicles and opposite 
right-turn vehicles) are the second most common accident type, next to rear-end accidents, at 
intersections. AG accidents account for 25.6% of total intersection vehicle-to-vehicle 
accidents. Quantitative study of the relationship between AG accidents and their causal 
factors is a very significant step toward improving traffic safety at signalized intersections. 
 
In this paper, we begin with a brief review of previous work on traffic accident modeling. 
Then, we describe our microscopic methodology for modeling AG accidents considering the 
mechanism of their occurrence. This is followed by the presentation of a modified negative 
binomial approach used for model calibration and the data collected for this study. Finally, 
model estimation results are discussed and study findings are summarized.  
 
 
PREVIOUS WORK 
 
Although many researchers have addressed intersection accidents, very few studies have 
modeled AG accidents specifically. Most previous work has dealt with modeling 
relationships between total accidents at an intersection and the geometric/road-environment 
elements. Methods often adopted have been linear regression, Poisson regression and 
negative binomial regression. For example: Resende et al (1997) used traffic flow, median 
width and surface rating to predict accident numbers on rural interstate highways with a 
linear equation. Hyodo et al (1993) studied effects of landuse, and highway geometric 
factors on aggregated accident numbers of a region by Poisson regression based on GIS 
oriented data. Shankar et al (1995) developed a negative binomial regression model for 
evaluating the impacts of road geometric and environment-related factors on rural freeway 
accident frequencies.  
 
Several studies have addressed the issue of fitness of various models (e.g. Jovanis et al, 1986, 
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Miaou et al, 1993, and Poch and Mannering 1996). The researchers concluded that despite of 
the lack of random features and the existence of negative predictions, linear models are very 
easy to construct and are suitable for long interval and large sample data. Poisson models 
possess most of the desirable features in describing vehicle accident events - discrete, 
nonnegative and random. The problem with Poisson models is that the requirement that the 
mean equals the variance is not met by most collected accident data. If data are 
over-dispersed (i.e. the variance of accident frequency data is greater than the mean), 
Poisson models will result in biased coefficients and erroneous standard errors. Although the 
negative binomial distribution models can deal with over-dispersed data, the fact that a 
constant variance to mean ratio is imposed across samples violates the reality that the 
variance-to-mean ratio varies with the actual mean value. However, Lawless (1987) 
concluded that such a violation would not lead to biased estimations. Some researchers, such 
as Shankar et al (1995), Poch and Mannering (1996), and Wang et al (1999) have already 
successfully applied negative binomial regression models to prediction of traffic accidents 
on rural freeways and intersections. 
 
Although most of the previous studies did not directly focus on modeling intersection AG 
accident risks, they provided methodological insights on dealing with this issue. Hauer et al 
(1988) clearly classified intersection vehicle-to-vehicle accidents into 15 types according to 
the vehicle movements prior to collisions. Also, the frequencies of each accident type were 
attributed to the relevant traffic flows. This classification provided a microscopic 
perspective to the analysis of intersection vehicle-to-vehicle accident frequencies. In 
addition to the impacts of related traffic flows on accident frequencies, Poch and Mannering 
(1996) further studied the effects of intersection approach conditions on accident frequencies 
as well. Negative binomial regression models were developed for calculating the frequencies 
of various types of accidents. Their work advanced a reasonable method for modeling 
intersection AG accident risks. 
 
A common criticism of many previous studies is that they did not include considerations of 
human factors (Poch et al, 1996). Since more than 95% of traffic accidents are caused by 
human factors, either alone or in combination with other factors (Rumar, 1985), the absence 
of human factors in accident models may produce inappropriate results. Consequently, 
further effort is required to take human factors into consideration in accident modeling. In a 
recent study, Wang (1998) developed a microscopic approach for intersection accident 
modeling that clearly takes human factors into account. Following this approach, Wang et al 
(2002) developed a risk model for intersection rear-end accidents; Karim (2000) used the 
approach for estimating lane-change accident risks; and Siddique (2000) applied the 
approach for vehicle-to-bicycle and vehicle-to-pedestrian accident risk evaluation. In this 
study, we apply the approach to the modeling of AG accident risk at signalized intersections.  
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METHODOLOGY 
 

 
The Occurrence Mechanism of AG Accidents 
 
The occurrence of intersection AG accidents is normally a combined result of the hazardous 
right-turn movement of a vehicle from the opposite approach and the ineffective reaction of 
the arriving through-vehicle driver. Hence, from the perspective of the through-vehicle 
driver, the probability of having an AG accident is determined by the probability of 
encountering an obstacle vehicle and the probability of the driver’s reaction failure. There 
might be various reasons for a right-turn vehicle to become an obstacle vehicle for the 
through-vehicle driver, but the most important ones are the misjudgment of the right-turning 
vehicle driver and suddenly dashed-out disturbances, such as legally crossing pedestrians or 
bicyclists. 
 

As an example, consider the case shown in Figure 1. If the intersection is under two-phase 

Figure 1 Conflicts between opposite right-turn flow and through, left-turn, 
and pedestrian/bicyclist flows at two-phase controlled intersections
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signal control, the conflicts between a) through flow and opposite right-turn flow, b) 
opposite right-turn flow and pedestrian/bicycle flow, and c) opposite right-turn flow and 
left-turn flow may be inevitable. If a right-turning vehicle driver accepts a gap but a 
suddenly appearing pedestrian/bicyclist stops the driver from completing the intended 
movement, then the right-turning vehicle may become an obstacle vehicle to the through 
vehicles. If the arriving through-vehicle driver fails to avoid a collision, an AG accident will 
occur.  
 
When passing through an intersection, a through vehicle driver’s performance consists of 
three successive procedures: first, perceiving the changes in the traffic environment; second, 
making a decision to deal with the changes, if any; and, third, carrying out the decision by 
action. Factors affecting a driver’s abilities to perceive, think and act will definitely affect 
his/her reaction effectiveness to the obstacle vehicles, and hence affect the driver’s AG 
accident risk. On the other hand, the possibility of encountering obstacle vehicles depends 
on the frequency of disturbances generated in the intersection.  Thus, causal factors of 
disturbances will also affect AG accident risk indirectly. We need to reflect the effects of all 
these factors in the AG accident risk model. 
 

 
Modeling AG Accident Risk 

 
As mentioned previously, an AG accident is caused by both the hazardous movement of a 
right-turning vehicle from the opposite approach and the ineffective response of the arriving 
through-vehicle driver. Thus, the probability of a randomly selected through vehicle having 
an AG accident at a certain place is determined by both the probability of encountering an 
obstacle vehicle, denoted by Po, and the probability of its driver’s failure to avoid the 
collision, denoted by Pf. As Po and Pf are normally independent, the AG accident risk of the 
vehicle (PAG) can be expressed as the product of Po and Pf, as shown in Equation (1).  

foAG PPP ⋅=                                                                     (1) 

Since Po and Pf are not directly observable, we need to further formulate Po and Pf 
respectively as follows.  
 
Formulating Drivers’ Failure Rate Pf 
Driving is a process of perceiving changes of traffic situation, and adjusting vehicle 
operation to adapt the changed situation. Time needed for a driver to detect emerging 
disturbances and the quality of his/her response within the available time are quite important 
for avoiding potential collisions. As noted by Johansson et al (1971), one of the main factors 
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determining whether or not an accident can be avoided is the driver’s PRT (perception and 
response time). Drivers' PRT can be regarded as a comprehensive reflection of human 
related factors. 

 

The PRT has a wide range of values depending on the complexity of the problem, the 
complexity of the solution, and the driver’s expectancy of the hazard (Bates, 1995). In this 
study, our discussion will be based on the following two concepts concerning PRT, one is 
the available PRT (APRT), and the other is the necessary PRT (NPRT). The APRT refers to 
the amount of time a driver can get for completing his perception and response under certain 
traffic situations. The NPRT is the ability-oriented minimum possible PRT and may vary 
from person to person. It is assumed that a driver cannot avoid a collision if his/her NPRT is 
longer than the APRT. Both the APRT and the NPRT are random variables. If the 
distributions of the two variables are known, it is straightforward to calculate the probability 
of the arriving vehicle driver’s failure (Pf), which is equivalent to the probability of his/her 
NPRT being larger than the APRT.  

 

Researchers began to measure drivers’ NPRT several decades ago. Silva (1936) made a 
brake reaction time test with 2,000 subjects in a laboratory. He found that for drivers from 15 
to 23 years old, PRT decreases with age, but increases with age for drivers older than 23. 
Other researchers also conducted various experiments to understand how drivers’ NPRT 
changes with age and environmental factors (e.g. Liebermann et al, 1995 and Welford et al, 
1977). These researchers obtained both consistent and inconsistent results. For example, 
Welford (1977) concluded that reaction time increases with age, while Olson et al (1986) got 
opposite results, i.e. old drivers and young drivers have almost the same PRT under surprise 
and alerted situations. In this study, the difference in NPRT across age is neglected by 
assuming that all drivers’ NPRT follows the same Weibull (α, λ) distribution. The density 
function of the Weibull distribution is shown in Equation (2),  

αλααλ tettf −−= 1)(     for  t>0                                                (2) 

where α and λ are the shape and scale parameters, respectively. Figure 2 shows the density 
function curves with different λ values and a fixed α. We choose α=3.25 because it has been 
empirically verified that, when shape parameter equals 3.25, the Weibull distribution is a 
very good approximation to the normal distribution (Kao, 1960 and Plait, 1962). If the 
APRT is known as tav, then the shadowed area in Figure 3 represents the failure probability – 
Pf.  
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The APRT, tav, is indeed a random variable relating to many dynamically changing 
variables, such as headway, speed, slope, surface condition and etc. Although in the practice 
of highway design, a constant value of APRT (e.g. 2.5s) is adopted with the consideration of 
compensating for poor driver behavior (“AASHTO”, 1973), it is unsuitable to omit the 
random feature of the APRT when studying the occurrence of traffic accidents, since the 
randomness itself is one of the most determinant features of accidents. In this study, we also 
assume that the APRT is a Weibull (α, γ) distributed variable. The density functions of the 
APRT can be written as 

αγααγ avt
avav ettf −−= 1)(    for  tav>0                                              (3) 

where α and γ are the Weibull distribution’s shape and scale parameters respectively. Please 
note that the shape parameter, α, has been assumed to be the same for both the NPRT and the 
APRT. Then Pf can be calculated by 

∫∫ ∫
∞ −−−∞ ∞

+
===

0

1

0 /1
1),(),(

γλ
αγγλ

αα γαλ
av

t
av

t

t avavf dtetedtdttftfP avav

av

                     (4) 

Equation (4) shows that Pf is only determined by λ/γ, and has no relationship with α. Since 
parameters λ and γ are positive variables, λ/γ can be related to various factors by using an 
exponential link function as shown in Equation (5). Correspondingly, Pf can be written in the 
form of Equation (6). 

hhxβ−= eγ
λ                                                                            (5) 

hhxβ+
= -1

1
e

Pf                                                                            (6) 

In Equations (5) and (6), βh and xh are vectors of unknown parameters and explanatory 
variables, respectively, related to Pf. Variables discerned to affect drivers’ task load and 
action complexity need to be included in xh.  

0
t

f(t)
αλααλ tettf −−= 1)(

∫
∞ −==
av

av

t

t
f edttfP

5.3

)( λ

Figure 3 Illustration of drivers’ failure probability
tav

Figure 2 Weibull distribution’s density functions

α=3.25 for all

λ =2

λ =1

λ =0.5

λ =0.1
λ =0.01

0 1 2 3 4 t

0.5

1.0

1.5

f(t)

αλααλ tettf −−= 1)(

0
t

f(t)
αλααλ tettf −−= 1)(

∫
∞ −==
av

av

t

t
f edttfP

5.3

)( λ

Figure 3 Illustration of drivers’ failure probability
tav0

t

f(t)
αλααλ tettf −−= 1)(

∫
∞ −==
av

av

t

t
f edttfP

5.3

)( λ

Figure 3 Illustration of drivers’ failure probability
tav

Figure 2 Weibull distribution’s density functions

α=3.25 for all

λ =2

λ =1

λ =0.5

λ =0.1
λ =0.01

0 1 2 3 4 t

0.5

1.0

1.5

f(t)

αλααλ tettf −−= 1)(

Figure 2 Weibull distribution’s density functions

α=3.25 for all

λ =2

λ =1

λ =0.5

λ =0.1
λ =0.01

0 1 2 3 4 t

0.5

1.0

1.5

f(t)

αλααλ tettf −−= 1)(



 9

 
Formulating the Probability of Encountering an Obstacle Vehicle Po 
A right-turn vehicle becomes an obstacle vehicle for the opposite through vehicles if its 
turning movement interrupts the smooth movement of the through vehicles. The 
right-turning vehicle’s hazardous movement is normally caused by driver misjudgment. The 
misjudgment probability is closely related to the frequency of disturbances, such as legally 
crossing pedestrians/bicyclists, stop/deceleration of leading vehicles, conflicts with opposite 
left-turn vehicles and so on. However, an emerging disturbance may not necessarily lead a 
right-turning vehicle to an obstacle vehicle. Only disturbances occurring within a certain 
time period may cause the right-turning vehicle to become an obstacle. This time period is 
called “effective time”. Since the occurrence of disturbances is discrete, nonnegative, and 
random, it is a Poisson arrival process. In such a process, intervals between arrivals are 
independent and follow the same exponential distribution (Pitman, 1993). Let’s consider a 
disturbance j whose arrival rate is ηdj, and effective time is tdj. Then, its density function is 

t
dj

djetf ηη −=)(       for t>0                                                             (7) 

According to the memoryless property of the exponential distribution, the probability of 
occurrence of a disturbance j within tdj is independent of the elapsed time. Therefore, the 
probability of the right-turning vehicle to encountering the disturbance j within tdj can be 
calculated by Equation (8).  

∫ −− −== dj djdjdj
t tt

djdj edteP
0

1 ηηη                                                          (8) 

Since any of the disturbances can cause the right-turning vehicle to become an obstacle 
vehicle, the probability of a through vehicle to encountering an obstacle vehicle, Po, is 
equivalent to the probability that at least one disturbance occurs within the effective time 
period. Therefore, Po can be expressed as follows. 

∑ −−=
j djo PP )1(1                                                                (9) 

Replacing Pdj by Equation (8), a simpler form of Po can be obtained as shown in Equation 
(10) 

∑−=
−

j djdjt

o eP
η

1                                                                  (10) 

In Equation (10), ∑jηdjtdj should always be positive and be affected by a set of variables. 
Thus an exponential link function can be employed to reflect the effects of explanatory 
factors as shown in Equation (11).  

ooxβet
j djdj =∑ η                                                                 (11) 
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Then Po becomes 

oxoβe
o eP −−=1                                                                 (12) 

In Equations (11) and (12), βo and xo are vectors of unknown parameters and explanatory 
variables of disturbance frequencies respectively. βo does not change with locations, while 
xo varies from place to place. 

 
The Integrated Formulation of the AG Accident Risk Model 
Replacing Po and Pf in Equation (1) by Equation (6) and Equation (12) respectively, and 
adding subscripts denoting intersection (i) and leg (k), we get an integrated AG accident risk 
model formulation as shown in Equation (13). We can see that the model contains not only 
road environmental related factors, but also human related factors. This is the main 
distinction from most existing models.  

hikh

oikxoβ

xβ-1
1

e
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e

fikoikAGik +
−

==
−

                                                  (13) 

 

 

Estimation Strategy 
 
To simplify the problem, it is assumed that vehicles within a traffic stream have consistent 
AG accident risk – PAGik. Then, the number of accidents that occur within this stream follows 
a binomial distribution, 
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n
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⎠
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⎝

⎛
= )1()(                                           (14) 

where fik : through traffic volume of intersection i, leg k. 
          nik : number of AG accidents occurred within fik. 
 
Since an AG accident is normally a very rare occurrence, PAGik should be very small, while 
traffic volume fik is very large. Consequently, Poisson distributions can be used as very good 
approximations to binomial distributions (Pitman, 1993):  

!
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ik n
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ikik −⋅

=                                                          (15) 

with Poisson distribution parameter 
AGikikikik PfnEm ⋅== )(                                                        (16) 

Poisson distribution models have been commonly used for predicting total numbers of 
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accidents. They are usually the fist choice when modeling traffic accidents because of the 
nonnegative, discrete and random features of accidents. Poisson models, however, have only 
one distribution parameter, requiring that the distribution’s expectation and the variance be 
identical. However, in most of cases, accident data are overdispersed, and the applicability of 
the Poisson models is therefore limited. An easy way to overcome this difficulty (i.e. the 
mean must be equal to the variance) is to add an independently distributed error term, εik, to 
the log transformation of Equation (16). That is: 

ikAGikikik Pfm ε+= )ln(ln                                                           (17) 
Assume exp(εik) is a Gamma distributed variable with mean 1 and variance δ. Substituting 
Equation (17) into Equation (15) yields 
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Integrating εik out of Equation (18), we can directly derive a negative binomial distribution 
model as the following: 

ikn

AGikik

AGikik

AGikikik

ik
ik Pf

Pf
Pfn

n
nP )()(

)()1(
)(

)(
θθ

θ
θ

θ θ

+⋅+⋅Γ+Γ
+Γ

=                       (19) 

where θ =1/ δ . The expectation of this negative binomial distribution equals the 
expectation of the Poisson distribution shown in Equation (16). Its variance is changed to be 

)](1)[()( ikikik nEnEnV δ+=                                                 (20) 
Since δ can be larger than 0, the constraint of the mean equaling the variance in the Poisson 
model is released. Therefore, the negative binomial distribution can deal with overdispersed 
data. By applying accident observations to Equation (19), the risk model can be calibrated 
using the maximum likelihood estimation.  
 
 
DATA 
 
About 150 four-legged signalized intersections were randomly selected within the Tokyo 
Metropolitan area at the beginning of this study. This selection was based only on 
considerations of intersection size, surrounding land use pattern, and crossing angles 
(vertical or skewed) of the approaches. Intersection accident histories were not considered. 
The purpose of such a selection was to obtain samples representing the normal situations of 
intersection traffic safety in Tokyo.  
 
Since the occurrence mechanism of AG accidents was considered in our risk model, very 
specific data, such as AG accident number of each approach, traffic volume by direction, 
surrounding land use pattern and etc., were needed to calibrate the model. The existing 
accident data, however, were too aggregated to meet our needs. Thus, all accident data used 
in this study were obtained from the original accident records, the first-hand documents with 
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site figures and specific descriptions about each accident. To guarantee the quality of the 
accident data, the number of accidents at each intersection approach was verified with the 
accident map made by the Department of Construction. Since some of the sample 
intersections did not have complete original accident records or have various traffic 
regulations, only 81 intersections qualified for this study.  
 
For the current study, the unit of observation was defined as an intersection approach (leg) 
and the time period was 4 years, from 1992 to 1995. All the applicable AG accidents were 
cataloged according to their movements before collisions, and assigned to the corresponding 
approaches, to which the through vehicles belonged. Traffic flow data were obtained from 
reports of annual site surveys (“Traffic”, 1992-1995), conducted by the Tokyo Metropolitan 
Police Department, and highway census data (“Report”, 1997). Traffic control information 
and safety improvement histories were extracted from the corresponding database and 
documents. Road and environment related factors were selected according to the findings of 
previous studies and our logical inference. For each observation, a total of 72 possible 
explanatory variables, affecting either Po or Pf, were collected or converted from other 
variables.  
 
For convenient variable interpretation, specific terms such as entering approach, opposite 
approach and so on are used and the illustration of these terms is given in Figure 1. 
 
 
ESTIMATION RESULTS AND DISCUSSION 
 

The AG accident risk model, shown in Equation (13), is estimated by MLE. The 
log-likelihood function used for model estimation is given in Equation (21).  
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In total, 19 explanatory variables were found to significantly affect the AG accident risk at 
the p=0.15 level. Of the 19 variables, 9 had impacts on Pf and 10 had impacts on Po. The 
estimation outline information is given in Table 1. The likelihood ratio index was calculated 
according to Equation (22), in which l(β c,θ) represents the log-likelihood value at 
convergence, and l(C,θ) denotes the log-likelihood value obtained when assigning zeros to 
all the coefficients for explanatory variables inβ c except those corresponding to the 
constant terms. 
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Table 1 Fitness of the AG accident risk model 

Sample number: 324   

Log likelihood at convergence, l(βc,θ): -480.38 

Log likelihood with constants only, l(C,θ): -875.40  

Likelihood ratio index, ρ2: 0.451 

 

 

Factors Affecting Pf 
 

In Table 2, factors affecting the probability of a through-vehicle driver’s reaction failure, Pf, 
are listed with the estimated coefficient values and their significant levels (shown by the 
t-ratio). The sign of each coefficient indicates the effect direction, increasing (positive) or 
decreasing (negative), on the AG accident risk. Four explanatory variables were found to 
decrease the AG accident risk and five were discerned to increase it. 

 

The principle for selecting causal factors in βh was whether they affected drivers’ 
information load for process, action complexity and ease of perceiving dangers. Since the 
number of turning vehicles is proportional to the lane-change frequency of an approach, 
more left-turning vehicles should require more attention from through-vehicle drivers on the 
approach. In this case, the attention of the through-vehicle drivers may be detracted from the 
opposite right-turning vehicles. This results in a shorter APRT for through-vehicle drivers, 
and a corresponding increase in Pf. (Actually, the right-turning volume of the entering 
approach was also expected to have a similar effect on the attention of through-vehicle 
drivers. However, it did not turn out to be significant, possibly because of its correlation with 
the opposite right-turning volume.) Intersections in the central business district (CBD) may 
have higher levels of visual noise that detract drivers’ attention. Thus, intersections located 
in the CBD had a higher Pf. Motorcycles tend to travel on the left side of automobile flows. 
This makes it difficult for motorcycle drivers to see right-turning vehicles. Thus, the APRT 
of motorcycle riders tend to be shorter than that for drivers of other vehicles. There is a 
similar effect from additional right-turn lanes in the opposing approach. Vehicles on the 
outside right-turn lanes may block the detection of vehicles on the inside right-turn lanes. If 
an inside-lane vehicle that is blocked from detection hazardously makes a right turn, the 
APRT for the arriving through-vehicle driver may be very short. The effect of the speed limit 
of the entering approach on Pf is obvious. Since stop distance is proportional to vehicle 
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speed, the higher the speed, the shorter the APRT a driver can receive. A shorter APRT 
implies a higher Pf. 

 
Table 2 Estimation results of factors affecting Pf in the AG accident risk model 

Parameters in Pf model (βh) Estimate t-ratio 

Constant -13.739 -13.175 

Left-turn volume in thousands of the entering approach  0.030 1.044 

Average time headway in seconds of through traffic flow of the entering 
approach 

-0.018 -1.486 

Speed limit of the entering approach 0.029 2.430 

Large vehicle ratio of the entering approach -0.017 -1.332 

Total entering lane number of the entering approach -0.460 -4.191 

Motorcycle ratio of through traffic at the entering approach 2.411 1.070 

Angle of the entering approach and opposite approach (0 if within ±30°, 1 
otherwise) 

-1.451 -1.816 

The existence of more right-turn lanes (1 if have more than 2 right-turn lanes, 0 
otherwise) 

0.513 2.161 

Intersection location (1 if in CBD, 0 otherwise) 1.503 1.660 

 

Similarly, we can interpret the four decreasing factors by observing their contributions to the 
APRT/NPRT ratio. Leading vehicles normally restrict a following vehicle driver’s sight. A 
longer gap between two consecutive vehicles can reduce such an effect. Thus longer average 
time headway for through traffic implies a better sight field. Similarly, the width of the 
entering approach is proportional to the number of lanes. The wider the entering approach, 
the better vision a through-vehicle driver may have. Since a better vision corresponds to a 
larger APRT, a decreasing effect for these two factors is expected. The angle of the entering 
approach and through approach was also found to decrease Pf. People tend to think that 
irregular-shaped intersections contain more complex information than regular-shaped 
intersections, and the increased complexity should have increasing effect on the NPRT. If, 
however, the existing angle may seriously reduce through-vehicle speed, and hence increase 
the APRT, a net decreasing effect on Pf is not impossible. In this way the effect of a 
large-vehicle ratio on the entering approach can be explained. Large vehicles, such as trucks 
or buses, block the vision of following vehicles and hence shorten the APRT. On the other 
hand, drivers tend to keep a longer distance from a leading large vehicle in order to maintain 
a reasonable sight distance, which may result in a longer APRT. The net effect, however, 
may depend on driver behavior as well as intersection service level.  
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Factors Affecting Po 
 

The factors affecting Po are listed in Table 3. Again the signs of the estimated factors are 
consistent with their effects on Po. Of the 10 explanatory variables, six have an increasing 
effect and four have a decreasing effect on Po.  

 

Most of the intersections are of regular-shape, i.e. approaches cross perpendicularly. Drivers 
have become used to such intersections, and tend to drive based on their experience at 
regularly-shaped intersections. Hence their judgments and actions may be less exact when 
driving at irregularly-shaped intersections. Consequently, the angle of the opposing 
approach and the right approach increases Po. The increasing effect of the 
opposing-approach slope may be due to the less stable speed and poor sight angle of the 
right-turning vehicles. For right-turning vehicle drivers, whether or not to conduct the 
right-turn movement depends on the through-traffic headway of the entering approach. If the 
headway is large, conflicts between the opposing right-turn flow and the through traffic flow 
may be more frequent. In another case, when right-turn flow is heavy, delay time for 
right-turning vehicles can be longer. Longer delay time may encourage risky right-turn 
behavior. Thus it is easy to understand why longer through-traffic headways or more 
right-turning vehicles increase Po. The result that an increase in median width increases Po 
seems to contradict common sense. However, if we note that a wider median worsens the 
sight angle of the right-turning drivers, the increasing effect becomes understandable. 
Similarly, if the angle of the entering approach and the opposing approach is beyond ±15°, 
right-turning vehicle drivers have difficulties judging the movement of opposing through 
vehicles and therefore are more likely to make mistakes.  

 

Since four-phase control separates right-turn green time from through traffic green time, 
conflicts between through traffic flow and opposing right-turn flow can be significantly 
reduced. If we change a signal’s control pattern from two-phase control to four-phase 
control, AG accidents can be significantly decreased. The existence of a pedestrian overpass 
at the right approach also reduces Po as the conflicts between pedestrian flow and right-turn 
flow are sufficiently lowered. When there are more through lanes on the entering approach, 
right-turning vehicle drivers from the opposing approach tend to be more conservative as 
they know that it takes longer to complete the right turn and the chance to find an acceptable 
gap is rare. Consequently we found a lower Po for approaches with more through lanes. The 
finding that intersections located in the CBD had a lower probability of encountering an 
obstacle vehicle was consistent with the findings of Poch and Mannering (1996) and Wang 
et al (2002). This finding can be attributed to a number of factors including long-term efforts 
toward safety improvement and stricter enforcement of traffic regulations in CBD areas. 
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Table 3 Estimation results of factors affecting Po in the AG accident risk model 

Parameters in Po model (βo) Estimate t-ratio

Constant -3.883 -4.445

Through lane number of the entering approach -0.225 -1.715

Angle of entering approach and opposite approach (0 if within ±15°, 1 
otherwise) 

0.329 1.661

Slope of the opposite approach (0 if within ±3%, 1 otherwise) 0.308 1.448

Angle of opposite approach and right approach (0 if within 75° and 105°, 1 
otherwise) 

0.273 2.177

Intersection location (1 if in central business district (CBD), 0 otherwise) -1.688 -1.813

Signal control pattern (0 for two-phase control, 1 for four-phase control) -0.431 -1.800

Pedestrian overpass at right approach (1 if there is, 0 otherwise) -0.438 -1.307

Right-turn traffic volume in thousands (4 years) of the opposite approach 0.179 6.014

Average time headway in seconds of through traffic of the entering approach 0.074 5.119

Road median (0 if none, 1 if less than 2 meters wide, and 2 if wider than 2 
meters) 

0.566 5.131

 

 

Other Factors Estimated in the Model 
 

The reciprocal of the negative binomial dispersion parameter, θ=3.685, with t=3.143. This 
implies that our choice of using negative binomial estimation was correct. Along with the 
coefficients, average values of both the probability of encountering an obstacle vehicle (Po) 
and the probability of the through-vehicle driver’s failure (Pf) were also estimated and are 
shown in Table 4. The average probability of encountering an obstacle vehicle (Po) was 
estimated as 0.123, more than 723,000 times higher than the estimated probability of driver 
failure of 1.7E-6. This explains why obstacle vehicles were often encountered at 
intersections, but very few AG accidents actually occurred. Drivers have very low failure 
probability in dealing with obstacle vehicles. 

 
Table 4 Estimation results of other factors in the AG accident risk model 

Other Parameters in the model Estimate t-ratio 

Reciprocal of negative binomial dispersion parameter (θ=1/α) 3.685 3.143 

Average probability of encountering an obstacle vehicle (Po) 0.123 1.391 

Average probability of the failure of through vehicle drivers (Pf) 1.70E-06 1.474 
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SUMMARY 
 
The increasing trend of traffic accidents makes it an urgent task to find effective 
countermeasures against traffic accidents in Japan. To assess the potential utility of various 
countermeasures, we need models to estimate the possible changes of traffic accident risks 
resulting from such improvements. This paper addressed this practical issue by applying a 
new methodology for intersection AG accident modeling.  
 
Unlike most existing accident models, the AG accident risk model developed here 
considered the occurrence mechanism of intersection AG accidents. Based on a microscopic 
analysis of hundreds of original records of intersection AG accidents, we found that the 
occurrence of AG accidents was usually due to the hazardous turning movement of opposing 
right-turn vehicles and the ineffective reaction of arriving through-vehicle drivers. A 
right-turning vehicle becomes an obstacle vehicle when its turning movement interrupts the 
smooth movement of opposing through vehicles. For a randomly selected vehicle in the 
through traffic flow of an intersection approach, the probability of having an AG accident is 
the product of the probability of encountering an obstacle vehicle (Po) and the probability of 
its driver failing to respond effectively (Pf), as Po and Pf are usually independent.  
 
Both Po and Pf were formulated based on their probabilistic characteristics. Since the 
probability of drivers’ failure was formulated based on their perception reaction time 
distribution, human effects, which account for more than 95% of accidents, were clearly 
taken into account. Such quantitative evaluation results on human effects are very desirable 
for countermeasure selections.  
 
The AG accident risk model was successfully estimated by a modified negative binomial 
regression. The estimated negative binomial distribution parameter was found to be 
significantly different from zero, showing that the data were over dispersed and the Poisson 
regression was inappropriate. Several explanatory variables were found to affect AG 
accident risk significantly through Po or/and Pf. Most of the estimation results were 
consistent with our expectations, and this indicated that our modeling methodology was 
reasonable.  
 
Since we did not simply use the canonical linear or log-linear formulation, factors affecting 
both Po and Pf but in different directions could also be reflected. These estimation results 
may help traffic engineers evaluate the effects of accident causal factors quantitatively and 
effectively. However, further studies are needed for the temporal and spatial transferability 
of the model before applying it in practice.  
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