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ABSTRACT 
 
Classified vehicle volumes are important inputs for traffic operation, pavement design, and 
transportation planning. However, such data are not available from single-loop detectors, the 
most widely deployed type of traffic sensor in the existing roadway infrastructure. Several 
attempts have been made to extract classified vehicle volumes from single-loop 
measurements in recent years. These studies use estimated speed for length calculation and 
classify vehicles into bins based on the calculated vehicle lengths. Due to the stochastic 
features of traffic flow, however, deterministic mathematical equations based on certain 
assumptions for speed calculation typically do not work well for all situations and may result 
in significant speed estimation errors under certain traffic conditions. Such errors accumulate 
when estimated speeds are used in vehicle length calculations and degrade the accuracy of 
vehicle classification. To solve this problem, we develop an artificial neural network method 
to estimate classified vehicle volumes directly from single-loop measurements. The proposed 
neural network is very simple. It is a three-layer neural network with back-propagation 
structure. This method is tested using data collected from several loop stations on I-5 over a 
long duration. The results show that the proposed artificial neural network model produces 
reliable estimates of classified vehicle volumes under various traffic conditions.  

Key words: single loop, dual loop, vehicle classification, and artificial neural network.   
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1. INTRODUCTION  

Large trucks, buses, and recreational vehicles are typically associated with slow acceleration, 
inferior braking, and large turning radius. The Highway Capacity Manual (1) requires 
adjustments to the volumes of these vehicles in highway design and capacity analysis. Due to 
the heavy weight of these vehicles when they are fully loaded, their impact to pavement life 
time is significant and the volumes of these vehicles are indispensable inputs for pavement 
design and maintenance (2). From safety perspective, these large vehicle volumes are also 
desirable because statistics show that large vehicles have higher accident risk and traffic 
accidents with these vehicles involved are more severe. For example, although large trucks 
are only 4% of total registered vehicles in the U.S., they account for 8% of all vehicles 
involved in fatal crashes (3). Therefore, classified vehicle volumes are important for traffic 
operation, pavement design, transportation planning. 

Although recently developed traffic detectors, such as Video Image Processor (VIP), 
Triple-Technology traffic detector (TT-298), etc., are capable of measuring classified vehicle 
volumes, they are not widely available in the existing roadway infrastructure. Single-loop 
detectors are ubiquitously available, but they cannot provide classified vehicle volumes 
unless upgraded to dual-loop detectors. A single-loop detector merely measures vehicle count 
and lane occupancy directly. When two single-loop detectors are placed several meters apart 
on one traffic lane, they form a dual-loop detector. A dual-loop detector produces vehicle 
speed and length in addition to single-loop measurements. In the Washington State 
Department of Transportation (WSDOT) dual-loop detection system, vehicles are classified 
into four categories based on their lengths: Bin 1 represents vehicles shorter than 26 ft (7.92 
m); Bin 2 includes vehicles from 26 ft (7.92 m) to 39 ft (11.89 m) long; Bin 3 vehicle lengths 
range from 40 ft (12.19 m) to 65 ft (19.81m); and Bin 4 contains vehicles longer than 65 ft 
(19.81 m) (4). Though dual-loop detectors are ideal for collecting speed and vehicle-
classification data, there are too few of them on our current freeway systems to meet practical 
needs. Upgrading a single-loop detector to a dual-loop detector requires putting in another 
single loop to pair up with the existing single loop. The cost for such an upgrade is expensive 
considering the hardware cost and the indirect cost resulted from lane closure. This implies 
that using single-loop measurements to estimate classified vehicle volumes is of practical 
significance. 

This paper describes a new Artificial Neural Network (ANN) method, developed at 
the Smart Transportation Applications and Research Laboratory (STAR Lab) in the 
University of Washington, for bin-volume estimation using single-loop data. Before 
presenting the details of the ANN method in the methodology section, related studies are 
briefly introduced. Numerical test results and discussion on the performance of this ANN 
method are described in the section follows the methodology. The final section concludes 
this research effort and proposes further research topics. 
 

2. PREVIOUS WORK 

A single-loop detector outputs vehicle volume and lane occupancy periodically. For example, 
the WSDOT loop detection system reports data every 20 seconds and the California 
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Department of Transportation (Caltrans) loop detectors outputs data every 30 seconds. These 
aggregated interval measurements can be used to calculate the mean effective vehicle length 
(defined as sum of vehicle length and the single-loop length) using Equation (1) when 
vehicle speeds are constant and known.  

)(
)(
)( js

jN
jOl ⋅=                                                      (1) 

Where j = time interval index; N = vehicle count per interval; O = lane occupancy 
(percentage of time loop is occupied by vehicles); and s = speed for vehicles. Lane 
occupancy and vehicle count are direct measurements of single loops, but s must be 
estimated. 

Many algorithms have been developed to estimate traffic speed from single-loop 
outputs. Several of these algorithms were based on the Athol's speed estimation formula (5). 
These studies focused on improving speed estimation accuracy by choosing the right speed 
estimation parameter (commonly referred to as the g factor) or preprocessing single-loop data 
before applied to Athol’s speed estimation formula. For example, Coifman et al. (6) 
recommended using the median lane-occupancy per vehicle for speed estimation. Wang and 
Nihan (7) suggested a filtering process to screen out intervals with long vehicles and using 
only short-vehicle measurements for speed calculation. Coifman (8) suggested calibrating g 
in free flow condition when traffic speed is known and applying the calibrated g for speed 
estimation in other time periods. Hellinga (9) proposed to calibrate g using the nearby dual-
loop measured mean effective vehicle length. Wang and Nihan (10) opted to estimate mean 
effective vehicle length using a log-linear regression model that was calibrated using data 
from dual-loop stations. 

Many researchers, such as Mikhalkin (11), have sought sophisticated filtering 
methods to improve speed estimates. Dailey (12) considered random errors in the 
measurements and used a Kalman filter for speed estimation. Pushkar et al. (13) developed a 
cusp catastrophe theory model to estimate speed. Sun and Ritchie (14) proposed a linear 
model to estimate individual vehicle speeds using slew rates of single loop inductive 
waveforms. They concluded that their proposed algorithm performed better than 
conventional speed estimation methods. 

Though the estimated speed enables vehicle-length calculation and length-based 
vehicle classification, few studies were found to address vehicle classification issues using 
single-loop data. Wang and Nihan (10) built a log-linear model to estimate mean effective 
vehicle length using statistical moments of occupancy and volume. This estimated mean 
effective vehicle length gave one potential means of classifying vehicles with single-loop 
data. Kwon (15) developed an algorithm to estimated truck volumes in multi-lane freeway 
using lane-to-lane speed correlation. Cheung et al. (16) proposed a vehicle classification 
method using magnetic sensors. Mittal (17) proposed a statistical approach to estimate truck 
volumes on state highways. Sun et al. (14) used waveforms to extract vehicle lengths for 
vehicle re-identification. However, their algorithm requires a single-loop detector to output 
waveforms, which the majority of the existing single-loop detector cards cannot produce. 
This may seriously hinder the application of this method. Wang and Nihan (7) proposed a 
vehicle classification method based on the nearest neighbor decision rule for classifying 



 

Zhang, Wang, and Wei                                                                                    5 

vehicles into two categories (short vehicle and long vehicle) using single-loop measurements. 
While this algorithm produced reasonably accurate vehicle classification, the classification 
categories were rough. It would be better to classify vehicles into the four categories as has 
been done by the WSDOT dual-loop detectors. To reach such a goal, new research efforts are 
required. 
 

3. METHODOLOGY 

3.1 Artificial Neural Network (ANN) 

Due to the stochastic features of traffic flow, deterministic mathematical equations based on 
certain assumptions for speed calculation typically do not work well for all situations and 
may result in significant speed-estimation errors under certain traffic conditions. When 
estimated speed is used in vehicle-length calculation, the secondary estimation procedure will 
generate significant errors cumulated from each estimation steps. Such problems, however, 
cannot be overcome by deterministic mathematical equations. ANN appears to be an 
effective solution for such a problem. 

ANN is a powerful data modeling tool that is able to capture and represent complex 
input/output relationships and characteristics, such as associativity, self-organization, 
generalizability, and noise- and fault-tolerance (18 and 19). Along with the development of 
computing science, the modern information processing technologies, such as genetic 
algorithm, expert systems, etc., ANN technologies have developed fast. ANN has been 
extensively used in many transportation studies and proven to be an effective solution to 
problems too complicated to be represented and optimized by conventional mathematical 
methods (20, 21, 22, and 23). Therefore, we propose to use ANN for capturing the 
complicated relationships between single-loop measured variables and classified vehicle 
volumes under various traffic conditions.  

3.2 ANN Architecture and Algorithm  

Based on the observed traffic characteristics and the efforts of trial and error, we design a 
three-layer, feed-forward ANN with the architecture of back-propagation (BP), one of the 
most popular and stable network architectures, to estimate classified vehicle volumes from 
single-loop measurements. Standard back-propagation is a gradient descent algorithm; for 
our problem we adopt the Levenberg-Marquardt algorithm as the training rule, in which the 
network weights are moved along the negative of the gradient of the performance function. 
The term back-propagation refers to the manner in which the gradient is computed for 
nonlinear multilayer networks. Properly trained BP networks tend to give reasonable answers 
when presented with inputs that they have never seen. Typically, a new input similar to the 
input vectors used in training can lead to an output close enough to the correct output. This 
generalization property makes it possible to train a network with a representative set of input 
pairs and get good results without training the network using all possible input and output 
pairs. 
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Following this idea, vehicle classification can be conducted independently without 
applying the estimated speed data. This kind of straightforward estimation avoids 
accumulating errors resulted from the inaccurate speed estimates. For this study, vehicles are 
divided into four classes that are consistent with the four bins used by the WSDOT detection 
system. The four length-based vehicle categories are described in Table 1. 

 
TABLE 1  Four Length-Based Vehicle Categories Used By The WSDOT 

Classes Range of length Vehicle types 
Bin1 Less than 26 ft (7.92 m)  Cars, pickups, and short single-unit trucks 
Bin2 From 26 ft (7.92 m) to 39 ft 

(11.89 m) 
Cars and trucks pulling trailers, long single-unit 
trucks 

Bin3 From 40 ft (12.19 m) to 65 
ft (19.81 m) 

Combination trucks 

Bin4 Longer than 65 ft (19.81 m) Multi-trailer trucks 
 

In order to mine more associated relationships between a series of single-loop 
measurements and the corresponding bin volumes, we employ multi-dimensional input 
vectors to train the proposed ANN. Also, different structures are adopted to best fit the 
specific properties of each vehicle category. For instance, the neural network for estimating 
Bin 1 volume is designed to have 19 nodes in the input layer: 1 node for the time stamp input 
and 9 pairs of nodes for inputting single-loop measurements (volume and lane occupancy) 
over a three-minute period (there are nine 20-second intervals in a three-minute period). As a 
rule, a network with too few hidden units only occasionally discovers hidden dependencies in 
data sets and the network is likely to produce a significant number of errors. On the other 
hand, a network with too many hidden units tends to memorize all data instead of finding the 
associated relations and this often leads to an ineffective model with remarkable network 
errors. The hidden layer of this study is designed to have 35 nodes in order to provide the 
capacity for approximating and converging with the proposed ANN and to balance other 
factors of the sample data set. The output layer contains one node for Bin 1 volume output. 
The network structure for Bin 1 volume estimation can be briefly expressed as 19-35-1. 
Analogously, similar design procedures have been conducted for other vehicle categories. 
For each bin category, a different network structure distinguished by the number of nodes on 
the hidden layer is applied to discover and store the implicit interrelationships among single-
loop measurements and the bin volume. Their input vectors are the same with that of Bin 1, 
which consists of one time stamp, nine continuous 20-second-sampling volumes and nine 
corresponding occupancies in 3 minutes. The network structures for estimating the volumes 
of Bin 2, Bin3, and Bin4 are designed as 19-8-1, 19-5-1, and 19-21-1, respectively, based on 
the characteristics of the data and results of trial and error. The entire network architecture is 
shown in Figure 1. 

Though different network structures are proposed for estimating volumes of different 
vehicle categories, the same calculation procedure is adopted and implemented for all the 
four networks. This calculation procedure is described as follows. 
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Every element of the input vector is assigned an independent weighting factor w . The 
sum of the weighted inputs and the constant are transformed by a function ( )f x  of the 

hidden layer. We use the differentiable tan-sigmoid transfer function 1( )
1

x

x

ef x
e

−

−

+
=

−
to 

generate their output to the hidden layer. The output of the input layer to hidden node i  is:  

1
( * ) ( )

N
T

i i i ij j i
j

o f w X f xθ ω θ
=

= + = +∑                                            (2) 

where, io is the output of the tan-sigmoid transfer function, 1 2[ , , , ]T
i i i iNw ω ω ω= L  is the 

vector of weights, iθ  is a constant for node i, and 1 2[ , , , ]T
NX x x x= L is the vector of input 

activations.  
 
 

Tan-Sigmoid Transfer 
Function

Linear Transfer Function

Input Nodes Hidden Nodes

Output Nodes

 

FIGURE 1  The architecture of the proposed artificial neural network model. 

 
Similarly, a linear function is employed for the output layer 

     ( )l x kx b= +                                                           (3) 

where k is the scope and b  is the intercept of the linear function l(x).  



 

Zhang, Wang, and Wei                                                                                    8 

The output of the only node on the output layer is 

1
( * ) ( )

R
T

r r
r

y l O l oσ η δ η
=

= + = +∑                                              (4) 

where 1 2[ , , , ]T
Rσ δ δ δ= L  is the vector weights, 1 2[ , , , ]T

RO o o o= L  is the vector of outputs 
from the hidden layer, η is the constant and y  is the output of network.  

After the neural network structure is set, the most important thing is to prepare the 
training data set and train the network. The training data set must be carefully selected so that 
the ANN can learn all the relationships through the training process. The designed BP 
learning phase consists of a forward phase followed by a backward phase. The optimal 
objective is to minimize the sum of squared errors at the layer at the output side. To do so, 
the gradient of the error with respect to the weights is found and the weights are adjusted 
backward toward the layer at the input side. For example, if a neuron is on the hidden layer, 
it is necessary to calculate the responsibility of the neuron’s weights to the final error. To do 
this, the error at the output neurons is taken and propagated backwards through the current 
weights, e.g., the same weights used to propagate the activation forward. Adjustment to the 
neuron’s weighting factors is needed if the responsibility exceeds a certain threshold. Then 
the training process is repeated until the specified stopping criteria are satisfied; that is, when 
the rate of change of the mean squared error is sufficiently small or the mean squared error is 
sufficiently small, the training stops, and the validation and testing process will be conducted 
successively (24).   

The flow chart of the calculation procedure is shown in Figure 2. The main steps of 
this procedure are as follows: 

1. Initialize the weights to small random values. 
2. Specify the training vector pair (input—time series of volumes, occupancies, and time 

stamp and the corresponding output—detected bin volume) from the training set and present 
the input vector to the inputs of the network. 

3. Calculate the actual outputs (estimated bin volume) as the forward phase. 
4. According to the difference between actual and desired outputs (error), adjust the 

weights to reduce the difference (in a way that minimizes the error). This is the backward 
phase. 

5. Repeat steps 2 through 4 for all training vector. 
6. Repeat from step 2 until the error falls within the threshold value (the error for the 

entire set is acceptably low). 
7. Stop the procedure of training and apply the network for bin-volume estimation. 

After the neural network is properly configured and trained, it is ready for bin volume 
estimates. 
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4. ESTIMATION EXAMPLES AND DISCUSSION 

To demonstrate the effectiveness of the proposed method, numerical experiments were 
conducted. Two loop stations on I-5 were selected for the test. Details of the stations are 
summarized in Table 2. Each station contains a dual-loop detector for each lane. One of the 
two single loops of a dual-loop detector is used as the single-loop data source and the dual-
loop measured bin volumes are employed to verify the results from the proposed ANN.  

The training data set was merely from ES-163R, a dual-loop station at Southbound I-
5 under the NE 130th St over bridge. Fifteen days data, from April 30 to May 13, 1999, were 
used for the training process. The training data set included single-loop measured volume and 
occupancy as well as the bin volumes produced by the corresponding dual-loop detectors.  

 

Algorithm for Offline Calculation 

Sample Data 
Source for 
Training 

ANN

Data Analysis and Preprocessing

Filter the outliers  Normalize Data Data Set Partition for Training 
and Validating 

The Training Processing of Neural Network

Design and Search 
the Optimal Network 

Architecture

Input Data and 
Initialize Weights 

For Network 

Forward Phase--
Calculate Actual 

Outputs 

Backward Phase--
Adjust Weights to 
Reduce the Error

The Error Is 
Acceptably 

Low

Get the 
Trained 
ANN

Algorithm for Online Calculation 

Real-Time
Single Loop Data 

Data Preprocessing:
Normalize and PCA 

Trained 
ANN

Vehicle 
Classification 

Estimation For Real-
Time Data

NO

Yes

Apply For Vehicle Classification Estimation Using Single Loop Data

Validate and Calibrate the Network

 

FIGURE 2  Flow chart of the ANN algorithm. 

As mentioned earlier, the proposed ANN takes all nine 20-second interval 
measurements over a 3-minute period as inputs and outputs the bin volume for the 3-minute 
period. The internal associations among the input data and between the input data and the 
output data are mined and remembered by the ANN through the training process. To improve 
the rate of convergence and precision of approximation, the training set was normalized by 
setting the average of the set to zero and unifying its standard deviation. The Levenberg-
Marquardt algorithm was employed by the training process. The entire ANN method was 
implemented by NeuroIntelligence, a special ANN software tool.  
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TABLE 2  Selected Loop Detectors For Example Study 

Station 
code Location Lane No.  

(From right) Dual-loop Code1 Single-loop Code1 

ES-209D 

ES-163R 

SB I-5 & 156th St. SW 

SB I-5 & NE 130th St. 

2 

3 

_MN__T2 

_MS__T3 

_MN___2 

MMS___3 
1 The WSDOT uses exactly 7 characters as loop code to indicate its location and purpose. 

To verify the effectiveness of the proposed ANN and its temporal and spatial 
transferability, the trained ANN was applied to several test data sets. These test data were 
collected under various traffic conditions and time periods at the different locations. Interval 
volumes and occupancies measured by single-loop detectors were used for estimating 
classified vehicle volumes. The actual bin volumes measured by the corresponding dual-loop 
detectors were employed to check the results. Figures 3 and 4 show the estimated bin 
volumes and dual-loop observed bin volumes for May 13, 1999 (Thursday) at station ES-
163R. Due to the low volumes (typically smaller than 2 per 3-minute period) in Bin 2 and 
Bin 3, results were integrated to 15-minute periods for comparisons and the results are shown 
in Figure 4. In addition to the general comparisons displayed in Figure 4, Figure 3 provides 
comparisons for the observed and estimated Bin-1 volumes at a higher level of resolution (3-
minute level). We can see that the two curves overlap and synchronize very well with each 
other. Since single loop provides vehicle counts for all four bins, if Bin-1 volume is 
estimated accurately, the total large-vehicle volume, which contains Bin 2, Bin 3, and Bin 4, 
can be accurately determined consequently.  
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FIGURE 3 Comparisons between observed and estimated Bin 1 volumes at 3-minute 
level for detector of ES-163R: _MN___2 on May 13, 1999. 
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FIGURE 4 Comparisons between observed and estimated bin volumes at 15-minute 
level for detector of ES-163R: _MN___2 on May 13, 1999. 
 

The same comparison curves for station ES-209D on May 10, 2004 are shown in 
Figure 5. We noticed that the estimated volumes for Bin 2 and Bin 3 were significantly larger 
than the observed Bin 2 and Bin 3 volumes during the afternoon peak period (16:00-18:00). 
This was probably because of the heavy congestion in this period. When traffic is heavily 
congested, vehicle speed is significantly lower, which causes unusually long on-times of 
shorter vehicles mistakenly identified as longer vehicles by the ANN model. Due to the 
relatively low volumes in Bin 2 and Bin 3, the impacts of such misclassifications were 
noticeable. Under such seriously congested conditions, a feasible solution is to re-train the 
ANN model using data collected under the congestion conditions. The ANN model will 
achieve better performance when the training data sets are collected from situations closer to 
the application scenario. 

To facilitate the comparison between the estimated bin volumes and the observed bin 
volumes, we define a statistical variable, estimation error, as the observed bin volume minus 
the estimated value for each 3-minute period. Means and standard deviations of estimation 
error in each test case are calculated for the purpose of examining the temporal and spatial 
transferability of the ANN model. In order to evaluate the strength of association and 
synchronization between the observed data series and the estimated data series, correlation 
coefficients (R-value) were also computed. All these results are summarized in Table 3 and 
Table 4. 
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FIGURE 5 Comparisons between observed and estimated bin volumes at 15-minute 
level for detector of ES-209D: _MN___2 on May 10, 2004. 
 

As can been seen from the comparison figures and statistics, this ANN model 
provided reasonably accurate bin-volumes for the test locations and days, especially for Bin 1 
and Bin 4. The comparison curves for different days for station ES-163R indicated that the 
proposed algorithm yielded favorable results for bin volumes. As shown in Table 3, the 
means of estimation errors for Bin 1 were smaller than 0.6 for all the five days tested at 
station ES-163R, and the standard deviations were less than 6 with the estimation periods of 
3 minutes. The R-values for Bin 1 were greater than 0.97, which indicate that the estimated 
and observed bin volumes are highly correlated. The estimation accuracy for Bin 1 was the 
best. Results for other bin volumes were also reasonably good. The result for Bin 4 was 
better than those for Bin 2 and Bin 3. The reason that the estimation results for Bin 2 and Bin 
3 contained larger error was possibly because of the lower volumes in these two categories. 
The relatively smaller training samples for these two bins may leave many associations un-
captured in the ANN model, and hence result in larger uncertainty in volume estimations of 
Bin 2 and Bin 3. However, considering the time lag between dual-loop and single-loop 
reported data and the possible errors with the dual-loop data, the difference between the 
estimated bin volumes and the observed bin volumes might have been exaggerated. From 
practice perspective, the estimated results are acceptable and applicable.  
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TABLE  3  Statistical Comparison Of Estimation Errors And Correlation Coefficients 
Between Measured And Estimated Bin Volumes At The Interval of 3 Minutes For 
Different Days At Station ES-163R 

ES-163D 
Bin 1 Bin 2 Bin 3 Bin 4 Time 

Periods 
Mean STD1 R2 Mean STD R Mean STD R Mean STD R 

May 13, 
1999 -0.47 4.68 0.99 0.07 1.4 0.54 0.09 1.13 0.57 0.44 1.31 0.83

September 
6, 1999 -0.33 3.6 0.99 0.09 0.97 0.33 0.19 0.87 0.41 0.06 0.83 0.73

September 
7, 1999 -0.29 4.95 0.99 0.38 1.37 0.53 0.6 1.31 0.45 0.53 1.24 0.85

September 
8, 1999 -0.34 5.95 0.97 0.22 1.51 0.43 0.46 1.42 0.3 0.44 1.68 0.71
September 
9, 1999 -0.59 4.43 0.98 0.24 1.26 0.52 0.49 1.34 0.36 0.33 1.44 0.79

1 Standard deviation.  2 R is the correlation coefficient that describes the strength of the 
association and synchronization between measured and estimated bin volumes. 
 
TABLE  4  Statistical Comparison Of Estimation Errors And Correlation Coefficients 
Between Measured And Estimated Bin Volumes At The Interval of 3 Minutes For 
Different Days At Station ES-209D 

ES-209D 
Bin 1 Bin 2 Bin 3 Bin 4 

Time 
Periods 
 Mean STD1 R2 Mean STD   R Mean STD R Mean STD R 
May 10, 
2004 -3.17 8.88 0.96 -0.10 1.49 0.52 -0.03 1.48 0.49 0.29 1.67 0.81 
May 11, 
2004 -4.04 9.95 0.95 0.02 1.50 0.50 0.04 1.45 0.45 0.47 1.77 0.78 

May 12, 
2004 -3.89 9.38 0.96 0.02 1.46 0.50 -0.04 1.40 0.43 0.72 1.91 0.76 

May 13, 
2004 -2.83 10.54 0.94 0.06 1.69 0.51 -0.02 1.41 0.50 0.51 1.90 0.75 

May 14, 
2004  -1.98 12.55 0.92 -0.09 1.73 0.44 0.19 1.65 0.48 0.58 2.21 0.71 

May 15, 
2004 -1.76 9.44 0.95 -0.35 1.05 0.36 -0.30 0.92 0.34 -0.29 1.34 0.52 

May 16, 
2004 -2.17 8.30 0.96 -0.27 0.89 0.36 0.01 1.08 0.38 -0.14 0.92 0.67 
May 17, 
2004 -1.40 11.31 0.94 0.05 1.54 0.51 0.02 1.55 0.42 0.28 2.00 0.72 

May 18, 
2004 -1.75 13.94 0.91 0.18 1.81 0.47 0.16 1.61 0.51 0.79 2.40 0.74 

May 
19,2004 -2.01 10.49 0.98 0.14 1.40 0.59 0.18 1.27 0.56 0.43 1.98 0.80 

1 Standard deviation. 2 R is the correlation coefficient that describes the strength of the 
association and synchronization between measured and estimated bin volumes.
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Estimation accuracies for days from Sept. 6 to Sept. 9, 1999 were comparable to that 
for May 13, 1999, a day from the period when the training data set was collected. This 
indicates that no significant error was observed when the trained ANN was applied to a 
different time period at the location from where the training data set was generated. 

One dual-loop detector at station ES-209D was randomly selected to test the spatial 
transferability of the proposed ANN model. Ten days data, from May 10 through May 19, 
2004, were collected for the test. Test results are summarized in Table 4. We can see that the 
means and standard deviations of estimation error became larger and R-values also decreased 
slightly. The largest mean of estimation error was -4.04 for Bin 1 at this station, about 9% of 
the average Bin-1 volume over a 3-minute course. Estimation accuracies for other bins are 
slightly lower than that of Bin 1 with the largest relative estimation error below 24.6%. 
Considering that the data set used for this test was collected five years after the training data 
set and at a different location, this test result is very favorable. This concludes that the 
proposed ANN model is robust and can be applied to different stations on I-5 with reasonable 
accuracy. However, better accuracy can be obtained if the ANN is tuned with recent data to 
adapt to the traffic pattern changes. 
 

5. CONCLUSIONS 

Due to the size and weight carried, trucks, buses, and recreational vehicles have inferior 
performance compared with passenger cars. Classified vehicle volume data are important 
input for traffic operation, pavement design, and transportation planning. However, classified 
vehicle volumes are not directly measured by the ubiquitously deployed single-loop detectors. 
Estimating classified vehicle volumes from single-loop outputs is of practical significance. 

Several studies have tackled this problem using traditional analytical methods. 
However, these methods require either special hardware installations or estimate speed first 
before vehicle classification. Deterministic mathematical equations used for speed 
calculation are typically based on certain assumptions and they do not work well for all 
situations due to the stochastic features of traffic flow. Significant errors result if these 
equations are used for speed estimation under certain traffic conditions. When estimated 
speed is used in vehicle-length calculation, the estimation error accumulates and this 
degrades the accuracy of vehicle classification. To overcome this problem, we proposed an 
ANN method in this paper. The proposed ANN has three layers with back-propagation 
architecture. Vehicle classification categories employed by this study were consistent with 
the four-bin classification system currently used by the WSDOT dual-loop detection system. 
To achieve the best bin volume estimates, a specific neural network is designed and 
configured for each vehicle category. The proposed ANN is trained and tested using data 
collected from loop detector stations on I-5 in the greater Seattle area. 

Our test results indicate that the proposed ANN method worked stably and effectively 
for the studied stations. The estimated bin volumes were reasonably accurate and can be 
applied to transportation practice. The temporal and spatial transferability tests showed that 
the proposed ANN is robust and can be applied to estimate bin volumes during different time 
periods and at different loop stations on I-5 without introducing significant errors. However, 
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since all of the test-stations were from I-5, we cannot conclude that the proposed ANN is 
spatially transferable before conducting more tests using data from different routes.  

Although the proposed ANN method produced favorable bin volumes, further 
improvements to its performance are possible through optimizing its network design and 
training, especially under heavily congested conditions. Additionally, more accuracy tests 
using data from different types of road and different areas also help understand the spatial 
transferability of the proposed method. 
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