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Abstract - Traffic speed is one of the most important 
indicators for traffic control and management. 
Unfortunately, speed can not be measured directly from 
single inductance loops, the most commonly used 
detectors. To calculate space-mean speed, a constant g 
is often adopted to convert lane occupancy to traffic 
density. However, as will be illustrated by our data in 
this study, such a formula consistently underestimates 
speed whenever a significant number of trucks and/or 
other longer vehicles are present. This is due to the fact 
that the g value is actually not a constant, but rather a 
function of vehicle length. To calculate the g value 
suitably, we need to know the long vehicle (LV) 
percentage or mean vehicle length in real-time. 
However, such information is not directly available 
from single loop outputs. In this paper, we show how 
the occupancy variance obtained from single loop data 
can be used to estimate long vehicle percentage, and 
how a log linear regression model for mean vehicle 
length estimation based only on single loop outputs can 
be developed. The estimated mean vehicle length is 
used to calculate the corresponding g value in real-time 
in order to estimate speed more accurately. Our speed 
estimations with corrected g are very close to the 
speeds observed by the speed trap in the current study. 

Key words: speed estimation, single loop data, long 
vehicle percentage, effective vehicle length, lane 
occupancy variance 
 
INTRODUCTION 

 
Traffic speed is one of the most desirable variables for 
real-time traffic control and traveler information 
systems because it is both a potential indicator of 
problems on the roadway and also a good measure of 
system effectiveness. However, traffic speed data are 
not directly measured by detectors for most highway 
systems. This makes it an important goal for 
transportation researchers and managers to obtain 
traffic speed from available measurements.  
 
As mentioned by Dailey (1), many highway 
management systems use inductance loops to gather 

volume (the number of vehicles passing per unit time) 
and occupancy (the fraction of some total time that a 
vehicle occupies a loop) data of each lane. Most of 
these systems rely on single loops spaced at large 
distances rather than loops placed in pairs at a short 
distance. Such single loop detectors are able to measure 
volume and occupancy, but not speed. Speed must be 
estimated from the measured variables, i.e. volume and 
occupancy of each lane. The estimation accuracy 
depends largely on the quality of the measurements as 
well as the traffic condition (i.e., traffic composition).  
 
A commonly adopted method is to use a constant g to 
convert occupancy to density, and use the fundamental 
speed, volume, density formulation to calculate space-
mean speeds as shown in Equation (1) where density is 
given as a function of lane occupancy. The estimation 
inputs are single loop outputs, N(i) (volume) and O(i) 
(occupancy) of the ith time interval.  
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Where i = time interval index,  
           ss  = space mean speed in mph for each interval; 
           N = vehicles per interval (volume), 
           O = percentage of time loop is occupied per 
                  interval (lane occupancy), and 
           T = hours per interval (e.g., for the current study 
                 T = 1/12 hour or 5 minutes). 
 
In Equation (1), )(is s  represents space-mean speed of 
the ith time interval, and g is the constant, which 
converts the units to their proper values and is related to 
mean vehicle length plus detector size. Equation (1) 
was first developed in the 1960s [see (2)], and more 
clearly presented by subsequent researchers such as 
Mikhalkin et al (3) Gerlough et al (4) and Courage et al 
(5). Due to its simplicity, many freeway systems use 
Equation (1) to estimate speed from single loop outputs 
(6 - 7).  
 
Regarding the fitness of Equation (1), there are 
different opinions. On the one hand, Hall et al (6) and 
Pushkar et al (8) collected data from several stations, 
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plotted g versus occupancy, and found that g value is 
not constant but varies with occupancy. They also 
investigated the procedure for deriving Equation (1) 
and concluded that the assumptions that make g a 
constant are normally hard to meet. On the other hand, 
Coifman (9) did similar work but got an opposite 
conclusion, that g is very close to a constant. Whether 
or not we can use Equation (1) to estimate speed 
remains an interesting topic. 
 
In addition to studies that use Equation (1) for speed 
estimation, some other methodologies have also been 
developed. Pushkar et al (8) developed a cusp 
catastrophe theory model to estimate speed. The 
comparison of the estimation results between their 
model and Equation (1) indicated that the cusp 
catastrophe theory model gave more reasonable results. 
Dailey (10) considered random errors in the 
measurements and used a Kalman filter to estimate 
speed. The estimation results were basically consistent 
with the observed speeds, but with a smaller variance. 
To apply the aforementioned models, several 
parameters must be calibrated, and the calibrations 
require information beyond the measurements of single 
loops.  
 
In this paper, we will focus on the fitness of using 
Equation (1) to estimate freeway traffic speed. Data 
used in this study is briefly addressed at first, followed 
by a discussion of g and its determinants. Then, based 
on the theoretical derivation of the occupancy and 
effective vehicle length relationship, a log linear model 
for mean effective vehicle length estimation is 
presented. The estimated mean effective vehicle lengths 
are used to calculate the g value of each time interval in 
order to get a more accurate speed estimation. The 
effectiveness of using this corrected g for speed 
estimation will be summarized in the last part of this 
paper. 

 
DATA 

 
The Washington State Department of Transportation 
(WSDOT) has a network of traffic counters embedded 
in the roadway. These traffic sensors are 182.88cm (6 
feet) wide square loops of copper wire connected to 
cabinets located beside the road. They are located about 
every half-mile on mainline lanes and ramps of 
freeways and state highways in the central Puget Sound 
region, including I-5, I-405, I-90, SR520, SR18, SR522 
and SR99 (7). When a vehicle drives over a loop, it is 
counted, and the time that the vehicle spends over the 
loop is measured. The data are transmitted every 20 
seconds to the WSDOT Traffic Systems Management 
Center (TSMC). In other words, the WSDOT’s freeway 

loop detectors do not produce data for each specific 
vehicle, but rather for all vehicles aggregately within 
20-second intervals for processing and archiving. Based 
on these outputs, we can further aggregate the data to 
any desired longer time interval. In our speed 
estimation for this paper, we use data aggregated to 5-
minute intervals (i.e. 15 consecutive 20-second values 
are combined to produce a single 5-minute value). 
 
At Station ES-167D (under 145th Street’s over bridge of 
I-5), there are three general purpose lanes and one HOV 
lane on southbound I-5. Speed traps, two consecutive 
loops several feet apart, are imbedded in each lane for 
measuring vehicle lengths and traffic speeds in addition 
to volume and occupancy.  Loop data collected for 24 
hours on Thursday, May 13, 1999, were applied for 
analysis and model estimation. There was no incident 
detected that day. Loop _MS___2 (the WSDOT uses 
exactly 7 characters as loop code to indicate the loop’s 
location and purpose. See (7) for details) was used to 
collect volume and occupancy for the middle general 
purpose lane. Vehicle lengths, measured by the speed 
trap (The pair loops _MS___2 and _MS __S2), were 
used for the estimation of our proposed effective 
vehicle length model. And the speed trap measured 
speeds were applied for the verification of the 
predictions using our calculated g.  
 
Descriptive statistics of the volume data measured by 
_MS___2 and _MS __S2 are given in Table 1. We can 
see that the volume count difference between the two 
loops is very small, indicating a good quality of the raw 
data. All these data are available in electronic form at 
the University of Washington’s ITS website 
(http://www.its.washington.edu/tdad/tdad_top.html). 

 
TABLE 1 Descriptive Statistics of Loop Measured 
                  Volume at 20-Second Interval 

Loop code _MS___2 _MS __S2 Difference  
(percentage) 

Minimum  0 0      0  (0.0%) 
Maximum 18 17      1  (5.5%) 
Mean 6.73 6.71 0.02  (0.3%) 
Standard  
   Deviation 

3.86 3.83 0.03  (0.8%) 

Total count 
 for 24 hours 

29061  29006    55  (0.2%) 
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DETERMINANTS OF g 
 

As aforementioned, researchers disagree about whether 
g is a constant in Equation (1). In this section, we will 
show what g is, what determines its value and under 
what circumstances it can vary significantly.  
 
If during the ith interval of our analysis, N(i) and O(i) 
are observed, then the following relationship exists, 
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where lj(i) and sj(i) is the jth vehicle’s effective vehicle 
length (the sum of actual vehicle length and detectable 
length of loop detector in feet) and speed in miles per 
hour, respectively, in interval i. T is equal to total hours 
per interval. If we can assume that all vehicles in 
interval i have uniform length, then we can treat the 
mean effective vehicle length, )(il , as a constant and 
get 
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If we use )(is s  to represent the space-mean speed, i.e., 
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equation (3) can be rewritten as  
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Then Equation (5) and Equation (1) yield  
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Equation (6) shows that the g value depends on the 
mean effective length of vehicles. If )(il  does not 
change with time, then g will be a constant. However, 
under at least some of the traffic situations, )(il  varies 
significantly over time. Therefore, Equation (6) should 
be written in a more general form, 
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Table 2 shows the descriptive statistics of observed 
speeds and vehicle lengths in our data set with 
suspected data excluded. Of the 4120 20-second 
observations, 116 had no vehicles present and 1069 
were flagged as suspected errors. The standard 
deviation of vehicle length of all the qualified cases was 
9.33 feet (2.85 meters) as shown in Table 2. This is 
about 46.5% of the mean. If we further exclude the 
cases with trucks and other long vehicles present, the 
standard deviation reduced to 1.31 feet or only 8.63% 
of the mean; the latter indicates a traffic situation which 
reasonably meets the uniform length assumption.  
 
Figure 1 shows the comparison of observed speeds and 
estimated speeds using a constant g = 1.928 at 5 minute 
intervals. Normally the WSDOT uses g = 2.4 for speed 
estimation (7). However, for our data set, if we use g = 
2.4, the estimated space-mean speed is about 9% lower 
than the observed space-mean speed (converted from 
the observed 20 second speed data). To optimize our 
estimation, we use the constant g value that results in 
the same mean between the estimated and the observed 
speeds. The correlation coefficient between the 
estimated mean speeds and the observed mean speeds is 
0.64. This is the best estimation we can get through 
Equation (1) using a constant g, but the bias is still very 
clear, especially the underestimation between 1:00am to 
4:00am.  If we also check the LV percentage curve that 
is plotted in Figure 1, we can find that the fluctuation of 
the curve is basically consistent with the differences 
between the speed curves. The correlation between the 
speed differences and LV percentage is as high as 0.92. 
Hence, the speed estimation with fixed g value has bias. 
When the LV percentage is higher than the average, 
Equation (1) underestimates speeds, and vice versa.  

 

 
TABLE 2 Descriptive Statistics of Speed Trap Observed Mean Speeds and Mean Vehicle  
                 Lengths per 20-Second Interval 

 Speed (mpha) 
(2887 observations) 

Length (feeta) 
(2887 observations) 

Length (feeta) 
(1657 observations without LVsb present) 

Minimum measured 16.70 11.00 11.00 
Maximum measured 82.00 88.00 25.00 
Mean of all the 
         observations 

62.43 20.05 15.18 

Standard deviation 6.16 9.33 1.31 
SD/Mean (%) 9.87 46.53 8.63 

a  1 mile = 1.609 kilometers and 1 foot = 0.305 meters 
b The definition of long vehicle (LV) here is the vehicles with measured length over 7.93m (26 feet). 
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FIGURE 1 Comparison of Observed Speeds and Estimated Speeds by Equation (1) with a Constant g
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As an example, let’s consider an extreme case. In one 
time interval, only one 3-meter-long (equivalent to 9.84 
feet long) car is observed, and in the next time interval, 
a 21-meter-long (equivalent to 69 feet long) truck 
passed over the loop. Even if the two observed vehicles 
were traveling at the same speed, the estimation results 
using a constant g can give a car speed that is 6 times 
higher than the truck speed. 

Such estimation bias may be corrected by using the 
proper g value for each time interval. Instead of using a 
constant g, we calculate the g value at each time 
interval as a function of the observed effective vehicle 
length, and the estimated result is shown in Figure 2. 
The estimated speed curve is very close to the observed 
speed curve. The corresponding correlation coefficient 

is increased to 0.94. This result is fairly ideal 
considering the dynamic features of vehicle 
movements. Therefore, we can get a favorable speed 
estimation through Equation (1) if the appropriate g 
value for each time interval is used. 

 
To calculate the g value suitably, we need to know the 
long vehicle (LV) percentage or mean vehicle length in 
real-time. Although such information can be obtained 
from speed traps, it is not directly available from single 
loop outputs. To obtain good speed estimates for all 
freeway stations, efforts are needed to get the desired 
information from single loop stations as well. In the 
following section, we will show how the mean vehicle 
lengths can be estimated from single loop outputs. 

FIGURE 2 Estimation Results Using g Values Calculated as a Function of Observed Vehicle Lengths 
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FIGURE 2 Estimation Results Using g Values Calculated as a Function of Observed Vehicle Lengths 
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ESTIMATION OF EFFECTIVE 
VEHICLE LENGTH FOR SINGLE 
LOOPS 

 
The Relationship of Effective Vehicle 
Length and Occupancy 

 
As the length of a LV is significantly longer than that of 
a normal passenger car (PC), defined as vehicles with 
length shorter than 7.93m (26 feet), its mix rate with 
PCs will definitely affect the accuracy of speed 
estimation by Equation (1). To evaluate such effects, 
let’s consider the statistical features of the variables in 
our formulations.  
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where ε(i) is the error term with mean 0. Then the 
expectation of O(i) is 
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As our data indicate, the correlation coefficient between 
lj(i) and 1/sj(i) is only –0.096, therefore we treat the two 
as independent random variables. Then we have 
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Considering the random error ∆sj(i) in speed 
measurement, and using power series expansion, we 
get
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Where )(is  is the time mean speed for interval i. Omit 
the items with higher power, and notice that E(∆sj(i))=0 
and )())(( 22 iisE sj σ=∆ , we can obtain, 
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Substitute Equation (12) into Equation (10), we can get 

)
)(

)(1(
)(8.52

))()())(( 2

2

is

i
isT

iliNiOE sσ
+

⋅
⋅

=         (13) 

 
Dailey (10) used Equation (13) to calculate the mean 
speed, assuming that the occupancy measurements were 
perfect, and the mean vehicle length and speed variance 
were known. Dailey also concluded that such 
estimation has less bias than estimation by Equation 
(1). In reality, however, both the mean vehicle length 
and speed variance of each time interval are unknown 
and they may vary a lot from time to time.  
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FIGURE 3 Speed Variance and Mean Speed Square Comparison
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Figure 3 shows the change of )(/)(
22 isisσ  with time. For 

most of the intervals, )(/)(
22 isisσ  is smaller than 0.01. 

Even for the exceptional case with the largest value of 
)(/)(

22 isisσ = 0.079, the contribution of )(/)(
22 isisσ  to 

the occupancy mean is still much smaller than that of 
mean vehicle length. Therefore, to simplify our 
analysis, we neglect the effect of speed variance and 
assume all the vehicles travel at the same speed within 
each time interval (for short time intervals, i.e. 5 
minutes or less). This makes the time mean speed ( )(is ) 
equal to the space mean speed ( )(is s ) for each time 
interval. Then a simplified form of Equation (13) can be 
expressed in Equation (14). 
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Following a similar procedure, and omitting the tiny 
effect of speed variance, we can get the occupancy 
variance V(O(i)) as 
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where )(2 ilσ  is the effective vehicle length variance of 
interval i. Combining Equations (14) and (15) to get rid 
of the speed term, results in Equation (16) 
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Equation (16) shows the relationship between effective 
vehicle length and occupancy moments with speed 
effect excluded. If we assume that there are nc(i) PCs 
and nt(i) LVs present in interval i, then the mean 
effective vehicle length can be expressed as 
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(17) 
where x(i) = nt/N(i) is the LV percentage, )(il c  and 

)(il t  are mean length of PCs and LVs respectively for 
time interval i. Similarly, we can get the variance of 
vehicle length expressed by LV percentage x(i), 
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      (18)               

where )(2 itσ  and )(2 icσ  are the effective length 
variances of  PCs and LVs respectively. Equations (17) 
and (18) reflect how the LV percentage affects mean 
effective vehicle length and variance, and explain why, 
in Figure 1, LV percentages were correlated with the 

differences between the observed speeds and the 
estimated speeds by using a constant g. 

 
Mean Effective Vehicle Length Estimation 
  
As has been proven earlier in this paper, real-time 
effective vehicle length information is the key for more 
accurate speed estimation using Equation (1). If we use 
single loop outputs to estimate the mean effective 
vehicle length of each time interval, our speed 
estimation accuracy using single loop data can be 
significantly improved.  
 
Based on Equation (16), we know that the mean 
effective vehicle length is a function of E(O(i)), V(O(i)) 
and )(2 ilσ . Both E(O(i)) and V(O(i)) can be calculated 
from measured occupancies, but )(2 ilσ  is not directly 
available. Based on Equation (18), )(2 ilσ  should be 
related to the vehicle composition, i.e., LV percentage, 
and LV percentage is related to the time of day and 
traffic volume. Therefore, besides the occupancy 
moments, we use three more variables, traffic volume, 
low flow dummy (LFD, 1 when hourly volume is lower 
than 300, and 0 otherwise), and high flow dummy 
(HFD, 1 when hourly volume is higher than 1680, and 
0 otherwise), to explain )(2 ilσ . A log linear regression 
model was formed as 

 
)(ln))]((ln))((ln2[)(ln 210 iNiOViOEil ⋅+−⋅+= βββ  

                 εββ +⋅+⋅+ LFDHFD 43                         (19) 
 
where β0, β1, β2, β3 and β4 are estimation coefficients, 
and ε is the error term with E(ε) = 0.  
 
Speed-trap measured vehicle lengths were used to 
calibrate the model shown in Equation (19). Ordinary 
Least Squares method was used in the model 
estimation. The estimated coefficients and their 
significance levels (indicated by t-ratios) are given in 
Table 3. All the selected variables in the model are 
significant at the 0.01 level. Figure 4 gives a 
comparison of the observed and estimated mean vehicle 
length.  
 
Please note that it is important that the terms 2lnE(O(i)) 
and –ln(V(O(i)) have the same coefficient β1 in order to 
eliminate, or at least minimize, the speed effects on 
mean effective vehicle length estimation.  
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TABLE 3 Estimation Results of Equation (19) 

Sample number: 288 
R2 = 0.47 
Variable name Coefficient 

Symbol 
Estimated 
Coefficient  

t-ratio 

CONSTANT β0  3.238   53.41 
Occupancy moments (2LnE(O(i)) - LnV(O(i))) β1 -0.068  -11.20 
Volume (Ln(N(i))) β2  0.059    4.26 
High flow dummy (HFD) β3 -0.024   -2.88 
Low flow dummy (LFD) β4  0.136    5.20 
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FIGURE 4 Comparison of Observed Mean Vehicle Lengths and Estimated Mean Vehicle Lengths 

SPEED ESTIMATION WITH 
CORRECTED g 

 
With the estimated effective mean vehicle length, we 
can calculate the corrected g value for each time 
interval, according to Equation (7). This g value for 
each time interval is shown in Figure 5. The g value is 
obviously lower during the 1:00am to 4:00am time 
period, which corresponds to the period with higher LV 
percentage indicated by Figure 1. 
 
Again, we use Equation (1) to estimate the speed for 
each interval. Instead of using a constant g value, we 
use the corrected g value for each interval calculated by 

Equation (7). The estimation result is plotted in Figure 
6. Comparing this with the constant g based speed 
estimation shown in Figure 1, the underestimation or 
overestimation bias has been significantly reduced by 
using the corrected g. Our current estimation result is 
basically consistent with the observed speeds, but varies 
more.  
 
The comparison of speed estimation using a fixed g 
value and speed estimation using a g value that is a 
function of mean effective vehicle length is 
summarized in Table 4. The improvement of estimation 
accuracy shows that our proposed method is an 
improvement over existing procedures. 

TABLE 4 Comparison of Speed Estimation Results 

Estimated by using Fixed g 
(WSDOT) 

Estimated g values 
(Proposed  Method) 

Estimated g values 
(Based on Observed Vehicle Lengths) 

R2 0.41 0.59 0.89 
Standard error of estimation 4.17 3.47 1.76 
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FIGURE 5 The Estimated g Value for Each Time Interval
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CONCLUSION 

 
To meet the needs of dynamic traffic control and 
management, and advanced traveler information 
systems, providing real-time speed information to road 
users is becoming more and more important. Being one 
of the most common detectors on highway systems, 
single inductance loops produce abundant real-time 
data. To estimate traffic speeds from single loop 
outputs is very desirable.  
 
The traditional speed estimation method using g as a 
constant over time produces biased estimations, 
especially when truck percentages are high. However, 
this does not mean Equation (1) is unsuitable for speed 
estimation. As has been demonstrated in this paper, by 
choosing proper g values, Equation (1) can give very 
good estimations. 
 

The speed estimation parameter, g, changes with the 
mean of effective vehicle length for each time interval. 
To minimize the bias in speed estimation by Equation 
(1), we need to calculate the g value at each time 
interval based on the real-time mean of the effective 
vehicle length. Although vehicle length is not directly 
available, our statistical analysis has shown that it is 
estimable from the occupancy moments and other 
measured variables. Based on our statistical inference, a 
log linear regression model for effective vehicle length 
estimation is developed.  
 
A commonly encountered difficulty for calibrating such 
regression models is how to get rid of the effect of 
speeds on effective vehicle length estimation. In this 
study, we minimized the possible speed effect by 
aggregating the loop outputs to 5-minute intervals and 
properly utilizing the statistical moments of the 
measured occupancies. The estimated mean of effective 

FIGURE 6 Comparison of Observed Speeds and Estimated Speeds by the Proposed Method
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vehicle length was used to calculate the g value for 
speed estimation using Equation (1), and this led to a 
more accurate speed estimation. Although there is still 
some bias in our results, this proposed method largely 
reduced the estimation bias caused by using a constant 
g. The method developed in this study does not require 
information from more than single loop outputs; this 
makes it easier for general site application. 
 
For the application of this methodology, several issues 
need to be clarified which are topics for future research. 
Our first concern is the transferability of the developed 
model. Data from different stations with different 
geometric features are needed to test the variation of the 
model's coefficients. If the model's coefficients are 
significantly affected by geometric features, we may 
have to include geometric factors in our model, or use 
different models for freeways with different geometric 
features. Another concern is the optimal time interval 
for this methodology. To increase the interval, we can 
get more accurate estimations of the occupancy mean 
and variance, but the uniform speed assumption may 
easily be violated. Hence further studies are required to 
address these interesting issues specifically. 

 
ACKNOWLEDGEMENT 

 
We would like to thank Dr. Scott Washburn for his 
valuable comments and helpful materials. Also, we 
appreciate Mr. Mark Hallenbeck and Mr. Mark Morse 
of WSDOT for their kindly help on understanding the 
WSDOT traffic control system and data format. 
 
REFERENCE 

 
1. Dailey, D. J.  Travel-time estimation using cross-

correlation techniques, Transportation Research, 
part B, Vol. 27, No. 2, 1993, pp. 97-107. 

2. Athol, P. (1965), Interdependence of certain 
operational characteristics within a moving traffic 
stream, In Highway Research Record 72, HRB, 
National Research Council, Washington, D.C., 
1965, pp. 58-87. 

3. Mikhalkin, B., H. J. Payne, and L. Isaksen. 
Estimation of speed from presence detectors, 
Highway Research Record 388, HRB, National 
Research Council, Washington, D.C., 1972, pp. 73-
83. 

4. Gerlough, D. L., and M. J. Huber. Traffic Flow 
Theory, A Monograph, TRB Special Report 165, 
TRB, National Research Council, Washington, 
D.C., 1975. 

5. Courage, K. G., C. S. Bauer, and D. W. Ross. 
Operating parameters for main-line sensors in 
freeway surveillance systems, Transportation 

Research Record 601, TRB, National Research 
Council, Washington, D.C., 1976, pp. 19-26. 

6. Hall, F. L., and B. N. Persaud. Evaluation of speed 
estimates made with single-detector data from 
freeway traffic management systems, 
Transportation Research Record 1232, TRB, 
National Research Council, Washington, D.C., 
1989, pp. 9-16. 

7. Ishimaru, J. M., and M. E. Hallenbeck. Flow 
Evaluation Design Technical Report, Technical 
Report WA-RD 466.2, Washington Department of 
Transportation. March 1999. 

8. Pushkar, A., F. L. Hall, and J. A. Acha-Daza. 
Estimation of speeds from single-loop freeway 
flow and occupancy data using cusp catastrophe 
theory model, Transportation Research Record 
1457, TRB, National Research Council, 
Washington, D.C., 1994, pp. 149-157. 

9. Coifman, B. A. New methodology for smoothing 
freeway loop detector data: introduction to digital 
filtering, Transportation Research Record 1554, 
TRB, National Research Council, Washington, 
D.C., 1996, pp. 142-152. 

10. Dailey, D. J. (1999), A statistical algorithm for 
estimating speed from single loop volume and 
occupancy measurements, Transportation 
Research, Part B, Vol. 33, No. 5, pp. 313-322. 

 
 
 
 


