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ABSTRACT 
 
Accurate, real-time traffic speed data are important inputs 
to successful freeway traffic management systems. 
Unfortunately, vehicle speeds cannot be directly 
measured by single-loop detectors, which are the most 
common detectors available in current freeway 
infrastructures. Algorithms are required to estimate speed 
using single-loop measurements. In this paper, we present 
a two-step speed estimation algorithm: in the first step, 
single loop measurements are filtered to screen out 
intervals containing long vehicles; and in the second step, 
space-mean speed is calculated using measurements for 
intervals containing only passenger cars. Twenty-four 
hour data that contain both free flow conditions and 
moderately congested conditions are used to test the 
algorithm. Speeds estimated by the proposed method are 
very close to the speeds observed by the corresponding 
dual-loop detector. Compared to the commonly adopted 
speed estimation algorithm with unfiltered data, the 
proposed method improves speed estimation accuracy 
significantly.  
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1. INTRODUCTION 
 
Advanced traffic management systems (ATMS) and 
advanced traveler information systems (ATIS) improve 
the efficiency of freeway networks. Both ATMS and 
ATIS require accurate and reliable speed data for 
successful operation. Although dual-loop detectors 
provide reliable speed data, most freeway networks have 
too few of these to meet the ATMS and ATIS operational 
needs. The current ATMS and ATIS systems rely mainly 
on single-loop data, as single-loop detectors are much 
more widely deployed in the existing freeway systems. 
Single-loop detectors, however, measure nothing but 
volume and lane occupancy directly. Traffic speed must 
be estimated from these volume and lane-occupancy 
measurements. Therefore, the ability to use single-loop 
measurements for accurate speed estimation is of 
practical significance for transportation researchers and 
operators.  
 
In this paper, an adaptive algorithm for freeway speed 
estimation using single-loop outputs is described. First, 
previous studies that estimated traffic speed based on 
single-loop data are briefly reviewed. This is followed by 
a discussion on the inherent inaccuracies associated with 
the most commonly adopted speed estimation algorithm. 
Next, a methodology that can improve the accuracy of 

speed estimation using single-loop data is presented and 
evaluated. There are two steps in the proposed method: 
the first is the identification and separation of interval 
measurements with or without long vehicles (LVs, 
defined as vehicles longer than 26 ft or 7.92 m), and the 
second is the calculation of space-mean speed using only 
measurements for intervals without LVs. Finally, findings 
of this study are summarized and future studies are 
recommended.  
  

2. BACKGROUND 
 
According to the fundamental traffic flow equation, 
space-mean speed can be calculated by Eq. (1) if hourly 
vehicle volume and lane density are known [1],     

 space-mean speed = volume / density             (1) 
Volume is a direct output of a single loop, but 
density is not. However, a single-loop detector 
measures lane occupancy, and the lane occupancy is 
the product of density and the mean effective vehicle 
length (MEVL) under the uniform vehicle length 
assumption [2]. Hence, speed can be estimated using 
single-loop measurements as shown in Eq. (2). 
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Where i = time interval index; s  = space-mean speed;             
n = vehicles per interval; o = percentage of time loop is 
occupied by vehicles (lane occupancy); T = time length 
per interval; and l  = MEVL for the interval. The MEVL 
is roughly equivalent to the sum of vehicle length and the 
length of the single-loop detector. 
 
Athol [3] neglected the MEVL difference from interval to 
interval, and suggested Eq. (3) for speed estimation. 
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Where g is often referred to as speed estimation 
parameter and has a constant value equivalent to the 
reciprocal of the MEVL. Since Eq. (3) does not require 
any complicated calibration and uses only single-loop 
outputs for speed estimation, it has been commonly 
adopted in practice.   
 
In reality, however, since the MEVL may vary 
dramatically from time to time, neglecting the variation in 
MEVLs can result in biased speed estimation [4]. 
Therefore, instead of using a constant g value in Eq. (3), 
Wang and Nihan [5] suggested that the g value should be 
updated periodically in response to the 



 
changing traffic composition. They proposed a log-linear 
model for estimating the MEVL of each estimation 
period using the statistical moments of occupancy and 
volume. Then, the estimated MEVL was applied to 
calculate the g value for the period. This proposed 
methodology reduced estimation bias significantly. 
Coifman et al [6] suggested using Eq. (3) for median 
speed estimation rather than mean speed estimation, for a 
group of consecutive intervals or vehicles, to avoid the 
bias. Since most vehicles are passenger cars under 
typically traffic conditions and passenger car lengths do 
not vary much, a constant g value works much better for 
estimating median speeds than mean speeds. 
  
In addition to studies that use Eq. (3) for speed 
estimation, other methodologies have been developed. 
Pushkar et al [7] developed a cusp catastrophe theory 
model to estimate speed. Comparison of the estimation 
results between using their model and Eq. (3) found that 
the cusp catastrophe theory model gave more accurate 
results. Dailey [8] considered random errors in the 
measurements and used a Kalman filter to estimate speed. 
The estimated average speeds per interval were basically 
consistent with the observed average speeds, but the 
estimated variance over the entire study phase was 
significantly smaller than the observed variance. Sun and 
Ritchie [9] proposed a linear model to estimate individual 
vehicle speeds with slew rates of single-loop inductive 
waveforms. They concluded that their proposed algorithm 
performed better than conventional methods with single-
loop measurements, and was robust under different traffic 
conditions.  
 
Though the aforementioned methods have various 
advantages, they are not yet well accepted at present. Eq. 
(3) is still widely adopted in practice. 
 

3. SPEED ESTIMATION WITH Eq. (3) 
 
Several studies [4, 10] have addressed the applicability of 
Eq. (3) for speed estimation, but the results have been 
inconsistent. To further examine the accuracy of Eq. (3), 
we selected two 30-min data sets, including both single 
and dual loop measurements of a dual-loop station (we 
use the first single loop of a dual loop detector as our 
single-loop data source), from the Washington State 
Department of Transportation (WSDOT) loop detection 
system on May 13 (Thursday), 1999. One data set (a) was 
collected from the second-lane (from the right) loop 
detectors of station ES-516R on Eastbound SR-520 from 
7:00 to 7:30 am. The other data set (b) was collected from 
the second-lane (from right) loop detectors of station ES-
167D on Southbound I-5 from 3:30 to 4:00 pm.  
 
Based on Eq. (3), the speed estimation parameter, g, can 
be calculated by 
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Where m is the number of samples and, for a 30-min data 
set, m = 90. Eq. (4) is actually the OLS (Ordinary Least 
Square) estimator of g. By applying this estimated g to 
Eq. (3), speed is calculated for each 20-second interval. 
The estimated speeds and dual-loop observed speeds are 
plotted in Figure 1. We can see that although the same 
equation was applied for speed estimation to both sites, 
the goodness of fit for each is quite different.  
 
If we define estimation error as 

ε(i) = estimated speed – observed speed         (5) 
then we can use this statistical variable to measure the 
accuracies of speed estimates for the two selected sites.   
 
Figure 1(a) shows that the estimated speeds at station ES-
516R on SR-520 are very close to the observed speeds. 
The absolute values of the estimation errors for 20-
second intervals are no larger than 19.45 km/h, or 19.4 
percent of the space-mean speed. The standard deviation 
of the estimation errors is 7.50 km/h. Considering the 
dynamic features of traffic flow and the possible data 
errors, the estimates are not bad. On the other hand, 
Figure 1(b) shows that the estimation errors at station ES-
167D on I-5 are much larger. The maximum absolute 
value for the estimation errors is 110.36 km/h, or 109.0 
percent of the space-mean speed, and the corresponding 
standard deviation of the estimation errors is 28.99 km/h. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1 Comparison of speed trap observed
speeds and Equation (3) estimated speeds
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The key factor that caused the difference in the estimation 
accuracy at stations ES-516R and ES-167D is believed to 
be the vehicle composition. As an example, consider an 
extreme case. In one 20-second interval, only one 3-m-
long car is observed, and in the next 20-second interval, a 
21-m-long truck passed over the loop. Even if the two 
observed vehicles were traveling at the same speed, the 
estimation obtained with a constant g value in Eq. (3) can 
give a car speed six times greater than the truck speed! In 
data set (a), of the 1180 observed vehicles, only 4 are 
LVs. But in data set (b), 18 out of 172 detected vehicles 
are LVs. The difference in the LV percentage between 
the two data sets, 0.34 percent for data set (a) and 10.47 
percent for data set (b), is substantial.   
 
Since LV lengths are very different from those for 
passenger cars (PCs, defined as vehicles shorter than 26 ft 
or 7.92 m, corresponding to Bin1 in the WSDOT loop 
detection system), the mixed rate of these two categories 
determines the MEVL for an interval. A constant g value 
in Eq. (3), however, indicates that the MEVL should be 
constant across all time intervals, which correspondingly 
requires the traffic composition to be consistent. If LV 
percentage changes significantly from interval to interval, 
the MEVL may exceeds reasonable fluctuation range and 
cause Eq. (3) to produce erroneous speed estimates. 
 
Based on the above example and analysis, Eq. (3) does 
not fit well when the LV percentage changes significantly 
from interval to interval. Therefore, the speed estimation 
accuracy for Eq. (3) depends on the variation of traffic 
composition over time intervals.  
 

4. METHODOLOGY 
 
Due to the randomness of LV arrivals, it is almost 
impossible to have LVs uniformly presented at each 
interval. Typically, LV percentage various significantly 
over time. Obviously, directly applying single-loop 
measurements to Eq. (3) will probably cause serious 
estimation errors. Our solution to this particular problem 
is to filter single-loop outputs before inputting to Eq. (3) 
so that the MEVL can be consistent across intervals. The 
proposed filtering algorithm is based on the length 
difference between LVs and PCs. Its effectiveness 
depends largely on the features of vehicle-length 
distributions. 
 
Features of Vehicle Length Distributions 
 
Dual-loop detector data are used to examine the 
characteristics of typical vehicle length distributions on 
the freeway system. Since the WSDOT loop detection 
system provides aggregated measurements for 20-second 
intervals, only the average vehicle length is available for 
each interval. This indicates that single-vehicle length is 
not available when two or more vehicles present in one 
interval. Single-vehicle length data can be extracted only 
from intervals with exactly one vehicle presented over the 
entire interval duration. A total of 4703 valid single-
vehicle lengths (those with nonzero error flags, which 

indicating some kind of data error, are excluded) were 
picked up from a fourteen-day (from May 3 through May 
16, 1999) dual-loop data set collected by the second-lane 
(from right) dual-loop detector (_M___T2) at Station ES-
167 on Southbound I-5. Of these observed single 
vehicles, 580 are LVs, which accounted for 12.33 percent 
of the total. The lengths of these LVs, however, ranged 
widely from 8.23 m to 28.35 m. Descriptive statistics of 
the observed LVs and PCs are given in Table 1. 
 
TABLE 1 Descriptive statistics of speed trap measured  
                 vehicle lengths 

 PCs only LVs only All vehicles 
No of cases 4123 580 4703 
Minimum (m) 2.13 8.23   2.13 
Maximum (m) 7.92 28.35 28.35 
Range (m) 5.79 20.12 26.21 
Median (m) 4.57 20.27 4.57 
Mean (m) 4.64 19.44 6.46 
Standard 
Deviation (m) 

0.67 4.29 2.09 

   
The frequency distribution of the observed single-vehicle 
lengths is shown in Figure 2. Two peaks are obvious in 
the plot: one at about 5.0m, representing the length 
concentration for PCs, and the other at about 20.0m, 
representing that for LVs. The fact that the first peak is 
much higher than the second peak indicates that PC 
lengths vary much narrower than LV lengths. In Figure 3, 
the frequency distribution of PC lengths is shown with 
the corresponding normal distribution curve. The normal 
distribution curve fits the count histogram very well. The 
Kolmogrov-Smirnov Z statistic for the PC lengths is 
11.42 (corresponding to p < 0.01), which strongly 
indicates that PC lengths are normally distributed.  
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FIGURE 2 The vehicle length distribution observed by
a dual loop detector at I-5SB & 145th St.
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The same analysis procedure has been applied to several 
other sites in Puget Sound region. The length distribution 
of PCs is fairly consistent, while that of the LVs varies 
very much from site to site. The consistent distribution of 
PCs provides a good foundation for the proposed single-
loop data-filtering algorithm to be described later. 
 
Choosing the value for g 
 
In this study, we choose g=1/(µpc+lloop), where µpc is the 
mean vehicle length for PCs (4.64 m for this study as 
shown in Table 1) and lloop is the loop length (1.83m for 
this study). Such a g value corresponds to traffic stream 
with only PCs. There are two reasons for calculating g in 
this way: First, since PC lengths drift narrowly from their 
mean, the MEVLs for intervals with only PCs should be 
very close to each other and, therefore, g is close to a 
constant. Second, LV percentage is generally less than 
20% for most highway routes in Washington State and 
such a g value should be true for majority of 20-second 
intervals. When such a g value is used in Eq. (3), only 
measurements from LV-free intervals can be used for 
speed calculation. This implies that intervals with LVs 
must be screened out from speed estimation. 
 
Removing the Measurements for Intervals Containing 
LVs 
 
Intervals containing LVs have longer MEVLs. However, 
since single-loop detectors measure only volume and 
occupancy for each interval, we cannot tell whether the 
interval contains LVs by looking only at the interval’s 
measurements. To solve the problem, we need to look at 
the measurements for all the consecutive intervals, in a 
period, simultaneously. The relative relationships for 
these consecutive interval measurements provide critical 
information for separating the intervals with LVs. In this 
study, the terms “period” and “interval” are used with 
significant distinction. A period represents a longer time 
duration than an interval. An interval is 20 seconds long 
determined by the WSDOT loop detection system. A 
period contains several intervals and is chosen by the 
requirements of the proposed algorithm. For our data, a 
period of 5 minutes is selected. This is equivalent to a 
time length of 15 intervals. This period length has been 
shown to work reasonably well by our previous studies 
[5,11] using the same data set. 
 
For any period j, there are 15 intervals. We need to assign 
each interval to one of the three categories: (1) intervals 
containing no vehicles; (2) intervals containing only PCs; 
and (3) intervals containing LVs. Only measurements for 
Category (2) intervals will be used for speed estimation 
for period j. Measurements for intervals of Categories (1) 
and (3) will be discarded.  
 
To identify Category (1) intervals is easy (because both 
measurements should be 0), but separating Category (3) 
intervals from Category (2) is difficult. Here, we 
introduce a single-loop data-filtering algorithm to screen 
intervals with LVs from those without. Single-loop data 

filtering is the first step of this proposed adaptive speed 
estimation method. The filtering algorithm starts with 
sorting all the 15 intervals in a period in ascending order 
of average occupancy per vehicle:  
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If an interval b contains no vehicles, then o(b, j)/n(b, j) is 
defined as 0. Suppose there are p-1 intervals that contain 
no vehicles, then these intervals are assigned to Category 
(1). Dropping these Category (1) intervals from further 
analysis yields 
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               for p ≥ 1 and  p ≤ i ≤ 15     (7) 
 
Because of the relatively low LV volumes and the 
randomness of LV arrivals, it is fairly safe to assume that 
there is at least one interval containing only PCs in each 
period. To check the violation probability for this 
assumption, we examine 24-hour data collected by dual-
loop detector ES-167D:_M___T2 on May 13, 1999. For 
all 288 periods, none violates this assumption. Thus, from 
the sorting result shown in Eq. (7), we can conclude that 
interval p should contain only PCs. Since the PC lengths 
vary very narrowly, the MEVL for PCs can be treated as 
a constant pcl  (the sum of µpc and lloop) without 
introducing significant errors. Therefore, pcl  can be used 
to approximate the MEVL for interval p. 
 
Assume that both LVs and PCs travel at the same mean 
speed during each interval and that the mean speed is 
consistent over each time period. Then for any two 
intervals i and k, we have 

),(),( jksjis =                             (8) 
Since the space-mean speed for an interval i can be 
expressed as 
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expanding Eq. (8) and rearranging terms yields the 
relationship of MEVLs between interval k and interval i 
as 
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Eq. (10) indicates that when the MEVL for interval k is 
known, the MEVL for any interval i in period j can be 
easily calculated. So far, we have known that the MEVL 
for interval p is pcl . Then letting k = p, the MEVL for 
any interval i can be calculated by 
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The critical value used for judging whether an interval 
contains LVs is 5.98 m, which is equivalent to the sum of 
the mean and twice the standard deviation of PC lengths 
as given in Table 1. Though such a boundary cannot 



 
guarantee all intervals with LVs are removed, it does 
screen out most of the LV-presented intervals while 
keeping the majority of PC-only intervals in our analysis.  
 
If  ),( jil  - loop length ≤ 5.98 m, then interval i is 
identified as having no LVs, and assigned to Category 
(2). Otherwise, interval i is identified as an LV-presented 
interval, and all the remaining intervals (from i to 15) are 
assigned to Category (3).  
 
Speed Estimation Using Measurements of Intervals 
without LVs  
 
The second step of this proposed adaptive speed 
estimation method is to calculate the period speed using 
only measurements of Category (2) intervals. Suppose 
interval q+1 is identified to have LVs, then the number of 
effective measurements in the period is reduced from 15-
p+1 to r (where r = q-p+1) sets, i.e. there are r intervals 
belong to Category (2). These r sets of measurements are 
used to calculate the total applicable volume and 
corresponding occupancy as follows, 
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Then space-mean speed for period j is calculated by 
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We can see that only the measurements for Category (2) 
intervals are used for the speed estimation. This estimated 
speed, though based solely on Category (2) data, is 
regarded as the representative speed for the entire period. 
 

5. ESTIMATION RESULTS 
 
Based on the methodology presented, a computer 
program is developed to implement the entire procedure 
of the proposed method from loading data to printing 

speed estimation results. If real-time single-loop data can 
be provided as inputs to the program, traffic speed 
estimates can be produced in real time. 
 
Twenty-four hour data collected by single-loop detector 
_MS___2 at station ES-167D on May 13, 1999 are used 
for testing the program. Observed speed data from the 
dual-loop detector formed by single loops _MS___2 and 
_MS __S2 are used to verify the estimation results. Since 
the proposed algorithm produces speed estimation for 
every 5-min period, dual-loop observed 20-second 
interval speeds are used to calculate space mean speed for 
each 5-min period. Dual-loop observed speeds, speeds 
estimated using Eq. (3) with unfiltered single-loop data, 
and speeds estimated by the proposed method (using 
filtered data) are compared and illustrated in Figure 4.  
 
The correlation coefficient for the observed speeds and 
the speeds estimated by the proposed method is 0.810, 
which is significantly higher than that of 0.637 for the 
observed speeds and speeds estimated using unfiltered 
data. The standard deviation of estimation error (ε) for 
the proposed method is 5.58 km/h, while that for 
commonly adopted speed estimation method (using 
unfiltered single-loop measurements) is 9.87 km/h. This 
indicates that the proposed algorithm improved speed 
estimation accuracy over the commonly adopted method.  
 

6. CONCLUSIONS 
 
Eq. (3) is widely adopted for speed estimation using 
single-loop outputs. It uses a speed estimation parameter 
g in calculation. Though g is regarded as a constant in 
practice, researchers disagree on whether g should be 
treated as a constant. We addressed this issue first with 
our test data sets. We found that when the MEVL 
changes widely from interval to interval, estimation 
results with Eq. (3) are poor. However, this does not 
mean that Eq. (3) is unsuitable for speed estimation. 
Actually, Eq. (3) has many advantages, such as simplicity 
and transferability, over many of the newly developed 
methods. Under certain traffic circumstances, such as a 
consistent traffic composition over time, Eq. (3) can 
produce favorable speed estimates.  
 

FIGURE 4 Comparison of speed trap observed speeds, Equation (3) estimated speeds using unfiltered 
inputs, and the proposed method estimated speeds.
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Our proposed speed estimation method was intended to 
take the advantage of this commonly adopted equation, 
and overcome its problems by screening out intervals 
containing LVs. The fact that PC lengths vary narrowly 
around their mean provided a sound foundation for our 
single-loop data-filtering algorithm. By utilizing the 
relative relationships among interval measurements, 
intervals were classified into three categories: (1) 
intervals containing no vehicles; (2) intervals containing 
only PCs; and (3) intervals containing LVs. Only 
measurements for Category (2) intervals were used for 
speed estimation. Measurements for Category (1) and 
Category (3) intervals were discarded. Such estimated 
speeds were actually the space-mean speed for PCs 
because LV-presented interval measurements were 
discarded from speed calculation. However, considering 
that the speed difference between PCs and LVs are 
reasonably small compared to the speed estimation error, 
we can regard the estimated speed as the space-mean 
speed for all vehicles in each period.  
 
Comparisons between dual-loop observed speeds, speeds 
estimated by the commonly adopted method, and speeds 
estimated using our proposed method showed that the 
proposed method provided better speed estimation. Its 
estimation accuracy was significantly higher than that 
using unfiltered data. Also, our 24-hour estimation results 
indicated that the method worked reasonably well for 
both free-flow and moderately congested conditions. A 
computer application implementing the proposed method 
has been developed. This application is capable of 
providing instant speed estimates when real-time single-
loop inputs are available.  
 
Further studies are needed to examine whether the 
extracted vehicle length distributions are transferable. If 
yes, the calibration for the proposed algorithm can be 
largely simplified when applying to a different site (only 
loop size is needed in this case). Otherwise, the mean and 
standard deviation for PC lengths are also required before 
executing the proposed algorithm. 
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