
 

 1

Can Single-Loop Detectors Do the Work of Dual-Loop Detectors? 

By Yinhai Wang1 and Nancy L. Nihan2 
 

 

Abstract: Real-time speed and vehicle-classification data are important inputs for modern 

freeway traffic control and management systems. However, these data are not directly 

measurable by single-loop detectors.  Although dual-loop detectors provide speeds and classified 

vehicle volumes, there are too few of them on our current freeway systems to meet the practical 

ATMS (Advanced Traffic Management System) needs, and the cost of upgrading from a single-

loop detector to a dual-loop detector is high. This makes it extremely desirable to develop 

appropriate algorithms to make single-loop detectors capable of performing the tasks of double 

loops.  This paper presents just such an algorithm, i.e., one that uses single-loop measurements to 

provide accurate speed and vehicle-classification estimates. There are three steps in the 

algorithm: the first is to separate intervals with long vehicles (LVs) from those without; the 

second step is to use measurements of intervals without LVs for speed estimation; and the third 

step is to identify LV volumes for the intervals with LVs using the estimated speed. Preliminary 

tests for both spatial transferability and temporal transferability of the algorithm were performed 

and the results were encouraging.   
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INTRODUCTION 

Real-time traffic data are essential for modern traffic control and management systems, and 

inductance-loop detectors are valuable sources of such data. Since its introduction in the early 

1960's, the inductance loop detector has become the most popular form of detection systems 

(ITE, 1998). Many freeway networks have deployed single-loop detectors for collecting volume 

(the number of vehicles passing per unit time) and lane occupancy (the fraction of some total 

time interval that a loop is occupied by vehicles) data. These data have been valuable sources for 

transportation planning and traffic control. However, recent developments in advanced traffic 

management systems (ATMS) require accurate speed and vehicle-classification data, which are 

not directly measurable by single-loop detectors.  To obtain such speed and vehicle-classification 

data, dual-loop detectors are typically employed. 

A dual-loop detector is formed by two consecutive single-loop detectors several meters apart. 

Since a dual-loop detector is capable of recording the time used for a vehicle to traverse from the 

first loop to the second loop and the distance between the two loops is predetermined, a dual-

loop detector can calculate traffic speed fairly accurately based on such information. By applying 

the calculated speed from the dual-loops and the single-loop measured lane occupancies, the 

length of a vehicle can be estimated and the vehicle can be assigned to a certain class based on 

its length. In short, dual-loop detectors distinguish themselves from single-loop detectors by 

giving speed and vehicle-classification data.  

Though dual-loop detectors are ideal for collecting speed and vehicle-classification data, 

there are too few of them on our current freeway systems to meet practical ATMS needs and the 

cost of upgrading from a single-loop detector to a dual-loop detector is high. According to the 

experience of the Washington State Department of Transportation (WSDOT), the cost for 
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upgrading from a single-loop detector to a dual-loop detector ranges from $3250 to $5750 

(includes $750 direct cost for loop placement and $2500 - $5000 indirect cost caused by lane 

closure). Hence, dual-loop detectors are far less widely deployed as are single-loop detectors. 

Making existing single-loop detectors capable of providing better speed and vehicle-

classification data is of practical significance for traffic researchers. 

 

PREVIOUS WORK 

Most studies of single-loop data application have focused on freeway speed estimation. The 

methodologies applied can be basically divided into two types according to whether Athol's 

speed estimation formula (Athol 1965), as shown in Equation (1), is employed.   
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where i = time interval index,  

           s  = space-mean speed for each interval; 

           N = volume (vehicles per interval), 

           O = percentage of time loop is occupied by vehicles per interval (lane occupancy),  

           T = time length per interval, and 

           g = speed estimation parameter. 

The first type of research is based on Equation (1), and improvements are mainly in the 

method of choosing appropriate g values. In practice, g has been assumed to be a constant value, 

determined by the average effective vehicle lengths (EVLs) of the traffic stream. For example, 

WSDOT uses g = 2.4 (Ishimaru and Hallenbeck 1999) and the Chicago Traffic Systems Center 

takes g = 1.90 (Aredonk 1996). In reality, however, g varies as the average EVL changes with 

vehicle composition, which typically varies over time. Wang and Nihan (2000) studied the 
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relationship between lane occupancy and speed, and concluded that, for accurate speed 

estimation, g could be considered constant only when all vehicle lengths were approximately 

equal. They suggested that the value of the speed estimation parameter, g, should be updated 

periodically in response to changing traffic compositions to avoid biased estimations. That is, the 

speed estimation parameter for interval i, g(i), should be determined by the mean of EVLs for the 

interval, )(il ,  as shown in Equation (2). 
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Hall and Persaud (1989) also demonstrated that g was not a constant using site data collected 

from several stations, and found that g varied with lane occupancy.  

The second type of research uses methods other than Equation (1) for speed estimation. 

Pushkar et al (1994) developed a cusp catastrophe theory model to estimate speed. The 

comparison of the estimation results between their model and Equation (1) indicated that the 

cusp catastrophe theory model gave more accurate results. Dailey (1999) considered random 

errors in the measurements and used a Kalman filter for speed estimation. The estimated average 

speeds per interval were basically consistent with the observed average speeds, but the estimated 

variance over the entire study phase was significantly smaller than the observed variance.  

Few studies were found to address the vehicle-classification issue with single-loop detectors. 

Sun et al (1999) used waveforms to extract vehicle lengths for vehicle reidentification and their 

algorithm was found robust under various traffic conditions. However, their algorithm requires a 

single-loop detector to output waveforms, which the majority of the existing single-loop 

detectors cannot produce. This may seriously hinder the application of this method. Wang and 

Nihan (2000) built a log-linear model to estimate mean EVL using statistical moments of 

occupancy and volume. This estimated mean EVL gave one potential means of classifying 
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vehicles with single-loop data. In a more recent study, Wang and Nihan (2001) developed an 

improved algorithm for vehicle classification with single-loop measurements that involved a 

different approach. Computer software was developed and copyrighted based on the algorithm. 

The vehicle-class volumes estimated by the algorithm were close to those measured by dual-loop 

detectors. 

 

METHODOLOGY 

Scheme 

The target of this study is to develop an algorithm that makes single-loop detectors capable 

of doing what dual-loop detectors do. The algorithm should take in single-loop measurements 

and produce reasonable speed and vehicle-classification data. Accurate speed data is the key. 

Since once speed is known, vehicle length can be straightforwardly calculated.  

Vehicles are divided into two classes for this study: short vehicles (SVs) with lengths ≤  

11.89m and long vehicles (LVs) with lengths > 11.89m. This corresponds to Bins 1 & 2 and Bins 

3 & 4 for the WSDOT classification system (see Wang and Nihan 2001 for details).  

The methodology for the current study is based on the findings of two previous studies by 

Wang and Nihan (2001 and 2002). A flow chart of the procedure is shown in FIG. 1. The 

algorithm contains three steps: the first is to separate time intervals with LVs from those without 

(marked as “interval separation” in FIG. 1.); the second step is to use measurements of intervals 

without LVs (where average vehicle-length can be closely approximated) for speed estimation 

(noted as “speed estimation” in FIG. 1.); and the third step is to determine the LV volume of the 

period based on this estimated speed (labeled “LV volume estimation” in FIG. 1.). Please note 

that, in this paper, the terms “period” and “interval” are used with significant distinction. An 
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interval indicates the duration of a single volume or occupancy measurement, and is 

predetermined by the loop detection system (in this study, it was 20 seconds, determined by the 

WSDOT loop detection system). A period represents multiple intervals and is determined by the 

requirements of the proposed algorithm.  

The algorithm processes all interval measurements for a given analysis period simultaneously in 

order to utilize the relative relationships among intervals for interval separation. The 

methodology for speed estimation is still based on Equation (1). However, instead of updating g 

periodically, the proposed algorithm uses a constant g (based on SV data) and forces the input 

data to meet the uniform vehicle-length assumption for Equation (1) by screening out 

measurements for intervals with LVs. With this estimated speed, the mean EVL for an interval 

can be calculated and the vehicle composition for the interval can be identified using the Nearest 

Neighbor (NN) decision rule.  

              

Separating Intervals with LVs from those without 

The frequency distribution of vehicle lengths observed by a dual-loop detector (ES-

163R:MMS__T3 in the WSDOT loop detection system) at southbound I-5 is shown in FIG. 2. 

Two peaks were obvious in the plot: one at about 5m, representing the concentration of SV 

lengths, and the other at about 23m, representing that for LVs. The fact that the first peak is 

much higher than the second peak indicates a good concentration of SVs with similar lengths. 

The standard deviation of vehicle lengths for SVs is only 0.87m, about 16% of that for both SVs 

and LVs observed. This feature guarantees a reasonable satisfaction with the uniform vehicle-

length assumption when the traffic flow contains only SVs. 
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However, a typical traffic stream contains both SVs and LVs. Since an LV's length is usually 

several times longer than that of an SV, the mix of SVs and LVs seriously breaks the uniform 

vehicle-length assumption for speed estimation underlying Equation (1). Consequently, we need 

to separate intervals with LVs from those without. To do so, all interval measurements for a time 

period must be inspected simultaneously. Relative relationships among the single-loop 

measurements can be used for the separation purpose provided that the following two 

fundamental assumptions hold:  

(1) For each time period that contains m (m > 2) intervals, vehicle speeds are constant; 

(2) Of the m intervals in a period, at least two contain and only contain SVs.  

The first assumption makes occupancy proportional to EVL within each period, and the 

second assumption can be used to calibrate the ratio between occupancy and EVL since SV 

lengths are approximately uniform. Here two interval-measurement sets are used for calibration 

in order to reduce the possible effects of segmentation error, which refers to the mis-assignment 

of a vehicle's scan count number when the vehicle is right over the loop at the segmentation time 

(beginning of a new interval), with single-loop data.  

For satisfying assumption (1), the period length should be as short as possible; but if period 

length is too short, assumption (2) can be easily violated, and vice versa. Thus the determination 

of period length is a trade off between the two assumptions. There should be some mechanism 

for making the tradeoff, and research is currently underway to address this specific issue. In this 

study, interval length was 20 seconds (determined by the WSDOT loop detection system) and 

period length was selected to be 5 minutes, an appropriate value proved by previous studies 

(Wang and Nihan 2001 and 2002). Correspondingly, the m value was determined to be 15.    
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For any time period, there may be intervals with zero vehicles. These must be removed 

before beginning the algorithm. Thus, for any time period j, if there are p zero-measurement sets, 

the rest m - p non-zero measurement sets can be sorted in ascending order of average occupancy 

per vehicle as follows, 
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 Based on assumption (2), measurement sets (Op+1(j), Np+1(j)) and (Op+2(j), Np+2(j)) should 

correspond to intervals with only SVs. Since SV lengths vary narrowly, the mean EVL for these 

first two intervals can be approximated by the observed mean EVL for all SVs. That is 

)(
)(
)(

js
jN
jO

l
sv

sv
sv ⋅=                                                          (4) 

where   sv  = subscript for short vehicles; 

svl  = the observed mean EVL for SVs; 

)()()( 21 jOjOjO ppsv ++ +=                                                                                                (5) 

)()()( 21 jNjNjN ppsv ++ +=                                                                                               (6) 

Then the mean EVL for any interval k of period j and svl  has the following relationship:  
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where   k  = interval index, 

kl  = mean EVL for interval k, 

kN  = volume for interval k, 

kO  = occupancy for interval k. 
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By comparing the length ratio calculated by Equation (7) with some critical value, intervals 

with SVs only can be separated from those with possible LVs. The critical value, )( jkα , for 

interval k can be determined by Equation (8) based on trial and error. 
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where  α  = minimum length ratio for an interval to contain LVs; 

lvl = the observed mean EVL for LVs; 

lvσ  = the observed standard deviation for LV length; 

For the sorted sequence of non-zero measurements, if 

)()( j
l
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q
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q α≥              for mqp ≤<+ 2                       (9) 

then the intervals with possible LVs can be distinguished and, correspondingly, the sequence can 

be divided into the following two groups: 

(1) )},(,),,(),,{( 112211 −−++++ qqpppp NONONO K ; and 

(2) )},(,),,(),,{( 11 mmqqqq NONONO K++ ; 

Group (1) data are measurements for intervals with SVs only, and they are used for speed 

estimation. Group (2) data correspond to intervals with possible LVs. With the estimated speeds 

based on group (1) data, group (2) data are employed for LV volume estimation. 

 

Speed Estimation 

To maximally reduce estimation bias, all qualified measurement intervals (group (1)) are 

used to calculate speed of the period as shown in Equations (10) to (12).  
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Due to the sensitivity difference among single-loop detectors, a vehicle moving at a constant 

speed may have different occupancy measurements at different stations. For eliminating such 

effects, a correction coefficient is introduced, as shown in Equation (13), when calculating g. 

svl
g

β
1

=                                                                    (13) 

where β is the loop sensitivity correction coefficient which needs to be calibrated before applying 

the algorithm.  

A simple but effective way for calibrating β is based on nighttime speed. Traffic speed at 

midnight is generally consistent at each station. For example, from 0:00am to 4:00am on May 

13, 1999, double loop ES-163R:MMS__T3 observed 659 valid interval speeds. The mean of the 

observed speeds was 105.56 km/h and the standard deviation was 7.45 km/h, or about 7% of the 

mean. This feature of speed is consistent day by day. Therefore, by observing midnight speeds at 

the station, β can be calibrated through Equation (14): 
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where  C = number of nighttime intervals involved for calibrating β; 

 h = index of the selected nighttime intervals; 

obs  = observed space mean speed of the nighttime intervals.  
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A simple way to obtain obs  is through radar guns. Omitting the tiny speed variation when 

traversing a loop, obs  can be calculated as the harmonic mean of the observed spot speeds of 

vehicles by radar guns. Once β is calibrated, the algorithm is ready to provide dynamic space-

mean speed estimation for any time period.  

 

Vehicle Classification 

As aforementioned, vehicles are divided into SV and LV classes according to their lengths. 

Descriptive statistics for SV and LV lengths, based on the single-vehicle lengths observed by 

dual-loop detector ES-163R:MMS___3 from May 3 to 16, 1999, are summarized in Table 1. 

Frequency distributions of SV lengths and LV lengths are shown in FIG. 3 and FIG. 4, 

respectively. Associated normal-distribution curves are given in each figure as well, and each 

curve is seen to fit the length distribution histogram very well for both classes. The Kolmogrov-

Smirnov Z statistics for SV and LV lengths were 11.415 and 2.211, respectively, indicating that 

both SV and LV lengths are normally distributed at 0.01 significance levels. Therefore, SV 

lengths are assumed to follow the ),( 2
svsvN σµ  distribution, and LV lengths to follow the 

),( 2
lvlvN σµ  distribution, where µsv and 2

svσ  are the mean and variance of SV lengths, and µlv 

and 2
lvσ  are the mean and variance of LV lengths.   

With the normal distribution assumptions, SV volume and LV volume can be estimated by 

applying the NN decision rule. The NN theory is typically employed to assign an unclassified 

sample to the nearest classification category. Distance between the current sample and each of 

the existing categories needs to be calculated for comparison, and the current sample is assigned 

to the category with the smallest distance from it. 
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The predefined categories developed in this way are possible unique compositions of SVs 

and LVs, and the number of predefined categories depends on the total volume and the possible 

maximal LV volume for the interval. According to previous observations, the maximal LV 

volume per interval for the study stations was 7. Then for any interval k of period j, there should 

be no more than 8 possible vehicle compositions, corresponding to LV numbers from 0 to 7 

respectively. If Nk(j) < 7, there are Nk(j) + 1 categories with LV numbers from 0 to Nk(j). For 

example, if only 3 vehicles are detected in the interval (i.e. Nk(j) = 3), then we have the following 

four predefined categories that can be assigned to, (3 SVs, 0 LV), (2 SVs, 1 LV), (1 SVs, 2 LVs) 

and (0 SVs, 3 LVs). 

With the single-loop sensitivity correction coefficient and the estimated period speed, the 

mean EVL for any interval k of period j can be calculated by Equation (15): 
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Then the vehicle combination represented by )( jl k  is the unknown sample that needs to be 

identified. Existing categories are combinations with 0, 1, ..., min(7, Nk(j)) LVs. Since LV 

lengths and SV lengths are assumed to follow the ),( 2
ltltN σµ  and the ),( 2

svsvN σµ  

distributions, respectively, and the LV number and SV number are independent variables, the 

distribution of the mean vehicle length for a category with x LVs (where 0 ≤ x ≤ min(7, Nk(j)) 

can be determined as ))(),(( 2 jjN kxkx σµ , where 
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Then the distance between the unknown sample and the category with x LVs can be calculated 

by Equation (18): 
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j
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kxloopk
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=        for x = 0, 1, ..., min(Nk(j), 7)        (18) 

where loopl  represents loop length.  

Equation (18) transforms variable loopk ljl −)(  (mean vehicle length) into a standardized 

variable (variable that follows the N(0, 1) distribution) )( jdkx , which represents the distance to 

the origin. The smaller the )( jdkx  is, the greater the probability that the current interval's vehicle 

composition belongs to category x. If  

)()( jdjd kxkn ≤            for x = 0, 1, ..., min(Nk(j), 7)               (19) 

then we can allocate this unclassified sample to category n, and the LV volume and SV volume 

can be automatically determined correspondingly. 

 

ESTIMATION RESULTS AND DISCUSSION 

To verify the effectiveness of the proposed algorithm, four stations with dual-loop detectors 

on I-5 in Seattle were chosen for this study. Single-loop measured interval volumes and 

occupancies for one general-purpose lane of each selected station were used for speed estimation 

and vehicle classification. Dual-loop measured speeds and bin volumes were employed to check 

the results. The selected loop detectors are described in Table 2. 

To check the spatial transferability of the proposed algorithm, 24-hour data were collected 

from all the listed detectors on May 13, 1999 (Thursday). For the station at SB I-5 & NE 130th 

St. (ES-163D), an additional 3 days' data, from May 14 to May 16, 1999, were collected for 

examining the temporal transferability of the algorithm. Estimation error, a statistic defined as 
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the estimated value minus the observed value for each period, was adopted for result 

comparisons. Means and standard deviations of the estimation errors for the 24-hour study 

duration of each selected station are given in Table 3.  

For speed estimation, the entire day’s mean of the estimation errors for any station was close 

to 0 while standard deviations were smaller than 6.2 km/h. These figures indicate that for all four 

stations, the proposed algorithm produced favorable speed estimations. The estimation accuracy 

was much higher than that realized by just using Equation (1) (interested readers are referred to 

Wang and Nihan 2002, for comparison results).  

Although the means of the estimation errors for LV volumes were very small for all four 

stations, the standard deviations of these errors, which ranged from 2.76 to 3.38, seemed too 

large, based on the observation that most of the 5-minute periods contained less than 6 LVs. 

However, since there is always a time lag between dual-loop and single-loop detectors, the 

difference between the estimated LV volumes and the dual-loop observed LV volumes might be 

exaggerated. By integrating LV volumes into longer time periods, such time-lag effects can be 

reduced.  

Comparisons of estimation results for different days for station ES-163R are described in 

Table 4. The statistics of estimation errors were roughly consistent with those in Table 3 except 

that the standard deviations of the estimation errors for May 15 (Saturday) and 16 (Sunday) were 

much lower than those for May 13 (Thursday) and 14 (Friday). This was most likely due to the 

difference in traffic flow levels between weekday and weekend.  

Besides the uniform feature of SV lengths, the effectiveness of the proposed algorithm 

depends largely on how well the two fundamental assumptions can be met. If assumption one is 

violated, larger occupancies due to low speeds will be mistakenly attributed to longer vehicle 
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length and, hence, LV volumes will be overestimated; and, because corresponding low-speed 

samples will be cut in the speed estimation, estimated space-mean speeds will be higher than 

ground-truth speed. On the other hand, violations to assumption two will underestimate both 

speed and LV volume. This is because, under such circumstances, the algorithm erroneously 

regards occupancies for intervals with LVs as SV occupancies, and this makes the vehicle 

lengths shortened in the calculation. Using this "ruler" to determine single-loop measurements 

will inevitably result in lower speed and fewer identified LVs. Both of the violations are likely to 

happen when traffic volumes are very high. For example, during morning or evening peak hours, 

traffic volumes may exceed road capacity and cause serious speed changes that violate 

assumption one. Simultaneously, high interval volumes also increase the probability of an 

interval containing at least one LV and reduce, correspondingly, the probability that a period 

satisfies assumption two. Therefore, the algorithm may produce larger estimation errors under 

truly congested conditions. 

In FIG. 5 and FIG. 6, the observed-speed and estimated-speed curves at ES-163R:MMS___3 

are plotted for weekdays and weekends, respectively. On weekdays, speed dropped significantly 

during peak hours. But for weekends, no abrupt speed changes were found although average 

daily volume for weekends was only slightly lower than that for weekdays. This was due to the 

fact that weekend traffic volumes are generally less concentrated than those for weekdays. 

Highly concentrated traffic during peak hours caused noticeable violations to the two 

fundamental assumptions and resulted in larger estimation errors for weekdays than for 

weekends as shown in Table 4. 

Though the estimation error was larger under serious traffic congestions, FIG. 5 and FIG. 6 

show that the estimated speeds and the observed speeds were very well synchronized over all 
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time. Comparisons between the estimated speeds and observed speeds across locations led to the 

same conclusion, and these facts indicate the robustness of the algorithm for speed estimation.  

For comparison purposes, estimation results for period LV volumes were aggregated into 

hourly LV volumes. The four-day comparison results for ES-163R:MMS___3 are illustrated in 

FIG. 7. Obviously, the discrepancies between the two curves increased at congested periods, 

such as 6:00am - 8:00am on May 13, and decreased under un-congested conditions at night or on 

weekends. In general, the estimated LV-volume curve was basically consistent with the observed 

curve. The maximum relative estimation error for daily LV volume for the four days was 7.12%. 

This indicates that the estimated LV volumes were good enough for planning purposes. 

Comparisons among the four stations are shown in FIG. 8. The consistency between the two 

curves for each location shows that the proposed algorithm works stably and effectively in LV 

volume estimations across locations as well as over time. 

 

CONCLUSION 

Real-time traffic-speed information is essential for ATMS. Additionally, LV volume data are 

desirable for transportation planning and engineering purposes. However, speed and LV volume 

data are not directly available from single-loop detectors that are widely deployed in current 

networks. To obtain these data, another single-loop detector is generally required to upgrade a 

single-loop detector to a dual-loop detector. The cost for such an upgrade is high. Hence, making 

single-loop detectors capable of producing useful speed and LV volume data is economically 

desirable. 

This study described an algorithm that makes single-loop detectors capable of doing the work 

of dual-loop detectors based on two fundamental assumptions: constant average speed for each 
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time period and at least two intervals containing only SVs in each period. Pattern discrimination 

was used to separate intervals with possible LVs from those without. For the intervals without 

LVs, single-loop measurements were employed for speed estimation. With the estimated speed, 

the remaining measurements were further processed to identify LV volumes. The NN decision 

rule was applied to assign the vehicle composition of an interval to one of the predefined vehicle 

composition categories. Once the nearest category was identified, the LV volume and SV 

volume of the interval were automatically estimated. 

24-hour data from four locations were collected on Seattle’s I-5 freeway for checking spatial 

transferability of the algorithm. For station ES-163R, an additional 3 days of data were collected 

for the purpose of testing the temporal transferability. Comparisons between estimated results 

and dual-loop observed results for different locations and different days found that the algorithm 

consistently provided reasonable estimations of period mean speeds and LV volumes. The 

accuracy of the algorithm depends largely on how well the two fundamental assumptions are 

met. Violations to the first assumption make the algorithm overestimate speed and LV volume, 

while breaking the second assumption results in lower speed and LV volume estimations. When 

traffic volume is very high, the probability for violating the assumptions is high. Hence, the 

algorithm should work better under less congested conditions, although it also worked 

reasonably well during peak hours for the selected locations at the selected time. 

Before applying the algorithm to a new location, the value of the loop-sensitivity-correction 

coefficient (β) needs to be determined. Nighttime mean speed is the only variable needed for 

setting β value correctly. Since nighttime traffic speed is normally very consistent on freeways, it 

should not be too difficult to obtain. Therefore, the proposed algorithm should be easy to apply 

in practice. 
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Although the algorithm performed reasonably well at the selected sites and days, future 

research is needed to handle the conditions when one or both of the assumptions are violated in 

order to reduce estimation errors. Also, since choosing the appropriate value of m is important, 

guiding rules on m selection need to be clarified through further research. The proposed 

algorithm will be more robust and accurate when the violation circumstances are properly 

addressed. 
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APPENDIX II - NOTATION 

The following symbols are used in this paper: 

s  = space-mean speed 

l  = effective vehicle length 

C = number of nighttime intervals involved for calibrating β 

d = distance between known and unknown categories 

g = speed estimation parameter 

h, i = interval indices 

j = period index 

l = loop length 

m = number of intervals per period 

N = vehicle volume 

O = occupancy 

T = time length per interval 

x = number of LVs in an interval 

α = minimum length ratio for an interval to contain LVs 

β = loop sensitivity correction coefficient 

µ = mean of normal-distributed vehicle lengths 

σ = standard deviation of normal-distributed vehicle lengths 
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The following subscripts are used in this paper: 

b, k, p, q = interval indices 

loop = refer to loop 

lv = refer to long vehicles 

n, x = category indices 

ob = refer to observed 

sv = refer to short vehicles 
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FIG. 1.  Flow Chart of the Proposed Algorithm  
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FIG. 2.  Length Distribution of Vehicles on Southbound I-5 
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FIG. 3.  SV Length Distribution with Normal Curve 
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FIG. 4.  LV Length Distribution with Normal Curve 
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FIG. 5.  Comparisons between Observed Speeds and Estimated Speeds for Weekdays 
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FIG. 6.  Comparisons between Observed Speeds and Estimated Speeds for Weekends 
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FIG. 7.  Comparisons between Observed Hourly LV Volumes and Estimated LV Volumes for 

Different Days 
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FIG. 8.  Comparisons between Observed Hourly LV Volumes and Estimated LV Volumes for 

Different Stations 
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TABLE 1.  Descriptive Statistics of SV and LV lengths 

Class Number of Cases Mean Std Deviation Minimum Maximum

SV (Bin1 + Bin2) 4443 5.48m 0.87m 1.83m 11.89m

LV (Bin3 + Bin4) 472 22.50m 3.59m 12.19m 30.18m
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TABLE 2.  Selected Loop Detectors for Example Study 

Station 

code 

Location Lane No. 

(from right) 

Dual-loop Code* Single-loop Code* 

ES-211D NB I-5 & 140th St. SW 2 _MN__T2 _MN___2 

ES-210D NB I-5 & 148th St. SW 2 _MS__T2 _MS___2 

ES-209D SB I-5 & 156th St. SW 2 _MN__T2 _MN___2 

ES-163R SB I-5 & NE 130th St. 3 _MS__T3 MMS___3 

* The WSDOT uses exactly 7 characters as loop code to indicate its location and purpose. 
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TABLE 3.  Statistics of Estimation Errors for Different Seattle Freeway Locations 

ES-211D ES-210D ES-209D ES-163R Estimation  

Error Speed 

(km/h) 

Period 

LV vol. 

Speed 

(km/h) 

Period 

LV vol.

Speed 

(km/h) 

Period 

 LV vol. 

Speed 

(km/h) 

Period 

LV vol.

Mean  -0.756 0.066 -0.632 0.570 -0.718 -0.038 -0.631 -0.031

Std deviation 6.151 2.940 5.380 3.220 5.436 3.380 5.583 2.760
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TABLE 4.  Statistics of Estimation Errors for Different Days, Same Location 

May 13 

(Thursday) 

May 14 

(Friday) 

May 15 

(Saturday) 

May 16 

(Sunday) 

 

Estimation  

Error Speed 

(km/h) 

Period 

LV vol. 

Speed 

(km/h) 

Period 

LV vol. 

Speed 

(km/h) 

Period 

 LV vol. 

Speed 

(km/h) 

Period 

LV vol.

Mean  -0.631 -0.031 0.248 0.003 0.365 -0.180 0.591 0.024

Std deviation 5.583 2.760 5.728 3.040 3.549 1.300 3.399 1.240

 

 

 

 

 

 

 

 

 


