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ABSTRACT 

At signalized intersections, rear-end accidents are frequently the predominant accident type.  

These accidents result from the combination lead-vehicle deceleration and the ineffective response of 

the following vehicle’s driver to this deceleration.  This paper mathematically represents this process, 

by expressing accident probability as the product of the probability of the lead vehicle decelerating and 

the probability of the driver in the following failing to respond in time to avoid a collision.  Using this 

premise, a model of rear-end accident probabilities is estimated using information on traffic flow, traffic 

regulations, roadway geometrics and human factors from four-legged signalized intersections in Tokyo, 

Japan.  Estimation findings provide some important preliminary evidence for the development of 

countermeasures to reduce the frequency of rear-end accidents at signalized intersections. 

 

Key words: accident probabilities, rear-end accidents, negative binomial regression, 

perception/reaction time, signalized intersections, driver behavior 
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INTRODUCTION 

Of all accidents in Japan, about 60% of the total, and 45% of the fatal accidents occur at 

intersections.  Rear-end accidents are the most common type at signalized intersections in Japan, 

accounting for 35.4% of intersection accidents and 21.3% of all vehicular accidents (Institute for 

Traffic Accident Research and Data Analysis, 1997).  Given these high percentages, the study of 

intersection accidents is clearly a priority in Japan.  As evidence of this, many researchers have 

studied intersection accidents in recent years, although few have studied rear-end accidents as a 

specific subset of all intersection accidents.  The emphasis of most previous work has focused 

specifically on modeling relationships between accident frequency (number of accidents over 

some time period) at intersections and geometric/road-environment elements.  Popular modeling 

methods have included simple linear regression, Poisson regression and negative binomial 

regression.   

From a methodological perspective, as the field of accident frequency modeling has 

matured, Poisson and negative binomial models have emerged as the preferred methodological 

alternatives (see Jovanis and Chang, 1986, Miaou et al, 1992, and Poch and Mannering, 1996).  A 

primary problem with the Poisson model is that it restricts the mean and variance of the accident 

frequency data to be equal.  This is often not the case with accident frequency data.  Such data are 

often characterized by over dispersion (the variance of the frequency exceeds its mean).  The 
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negative binomial model relaxes the mean/variance equality restriction and thus accounts for over 

dispersed data (Lawless, 1987).  It has been successfully applied to predict the frequency of traffic 

accidents on roadway segments and intersections (Shankar et al, 1995 and Poch and Mannering, 

1996).   

Another characteristic of accident frequency data is a large number of zeros resulting from 

not having an accident occur at a specific location in a given time period.  Recently, researchers 

have applied two-state models  one state has near zero accident probability and the other state 

follows a Poisson or negative binomial counting distribution (see Shankar et al, 1997 and Carson 

and Mannering, 2001). 

While past research has provided valuable methodological insight into accident frequency 

modeling, few studies have explicitly considered rear-end accident probabilities at intersections.  

Two exceptions are Hauer et al (1988) and Poch and Mannering (1996).  Hauer and his colleagues 

classified intersection vehicle-to-vehicle accidents into 15 types according to vehicle movements 

before the collision and analyzed the frequencies of accident types (rear-end, sideswipe, etc.).  

Their classification approach provided a microscopic perspective to analyzing intersection 

vehicle-to-vehicle accident frequencies.  Poch and Mannering (1996) studied the effects of 

intersection approach conditions on the accident frequencies using negative binomial regression to 

study the frequencies of various types of accidents.   
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However, a common criticism of most previous accident-frequency studies is that they 

rarely include considerations of human factors.  Because human factors play a very important role 

in accident occurrence, the absence of human factors in accident modeling is a serious 

specification error.  The intent of this paper is to derive and apply a new model of intersection 

rear-end accident probabilities. 

 

METHODOLOGY 

As shown in the conceptual flow chart of rear-end accident occurrence provided in Figure 1, 

rear-end accidents are the result of a lead vehicle’s deceleration and the ineffective response of the 

following vehicle’s driver.  When a leading vehicle decelerates, it becomes an obstacle vehicle for 

drivers of following vehicles.  The frequency of encountering obstacle vehicles is determined by 

the occurrence of “disturbances” which are defined as anything that interrupts the smooth flow of 

traffic, such as signal-disregarding pedestrians, right-turning vehicles (vehicles in Japan, where 

our data originate, drive on the left side), red lights and so on. 

The performance of drivers in following vehicles can be viewed as consisting of three 

successive components: the perception of changes in the traffic environment; the decision to 

respond to these changes; and an action.  Factors affecting drivers’ ability to perceive, decide and 
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act determine the effectiveness of drivers’ reaction to obstacle vehicles, and thus rear-end accident 

probability. 

Drivers of following vehicles typically gather the majority of their deceleration 

information from the brake lights of leading vehicles implying independence between the 

probability of an encountering an obstacle vehicle and the driver failing to avoid the collision.  

However, in some instances, the driver of the following vehicle may see the disturbance (by seeing 

in front of the lead vehicle) before deceleration of the lead vehicle occurs, implying some 

correlation between the probability of encountering an obstacle vehicle and the driver failing to 

avoid a collision.  To simplify matters, we assume herein that the probability of an encountering an 

obstacle vehicle (Po) is independent from the probability of its driver failing to avoid the collision 

(Pf), giving the rear-end accident probability (P) as, 

           fo PPP ⋅=            (1) 

From this expression an estimable model can be derived. 

 

Formulating the Probability of Encountering an Obstacle Vehicle, Po 

A vehicle becomes an obstacle for the driver of a following vehicle when it decelerates.  

This deceleration can be caused by a variety of emerging disturbances.  For modeling purposes, it 
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is assumed that occurrence of such disturbances follow a Poisson process.  This results in time 

intervals between deceleration-inducing disturbances that are exponentially distributed (see 

Mannering and Kilareski, 1998).  If there is a disturbance j with occurrence rate ηj in time t, then 

the density function is, 

         t
j

jtf η−η= e)(  for t > 0          (2) 

For the exponential distribution, the probability of a disturbance occurring is independent of the 

time that has transpired since the last disturbance occurred.  Because accidents are rare and 

isolated events, this is a reasonable assumption.  However in instances of chain-reaction collisions, 

this assumption may be questioned because the occurrence of a disturbance will be tied to the 

occurrence of the preceding disturbance.  To avoid this problem, in this study we include only 

two-vehicle accidents, or the collision of the first two vehicles in an vehicle accident involving 

more than two vehicles, to avoid this problem.  This gives the probability of the driver of a leading 

vehicle encountering a disturbance j in time t as, 

         ∫ η−η− −=η=
t 

 

tt
jj

jj dtP
0

e1e          (3) 

Because any disturbance can cause the driver of a leading vehicle to decelerate, the probability of 

the driver of a following vehicle encountering an obstacle vehicle is equal to the probability that at 

least one disturbance occurs within some specified time period.  Therefore the formulation for Po 

can be derived as follows, 
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          ∏ −−=
j jo PP )1(1           (4) 

Combining equations 3 and 4, a simpler form for Po can be obtained, 

          ∑−=
−

j jt

oP
η

e1            (5) 

In equation 5, ∑jηjt should always be positive and influenced by external factors (intersection 

characteristics, traffic flow, and other factors that may influence disturbance occurrence).  The 

problem then becomes one of selecting a function to account for these external factors.  For the 

purposes of model derivation, and integrating this model with driver failure probabilities, we 

assume that, 

          βXe=η∑ j jt             (6) 

which, from equation 5 gives, 

           
Xβ−−= e

o e1P            (7) 

where β and X are vectors of estimable coefficients and explanatory variables of disturbance 

frequency respectively. 

 

Formulating drivers’ failure probability (Pf ) 

Driving is a process of perceiving changes in traffic situations and adjusting vehicle 

operations to adapt these changing conditions.  The time needed for drivers to detect changes and 
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the quality of their response determines the probability of their avoiding potential collisions.  As 

noted by Johansson and Rumar (1971), one of the main factors in determining if an accident can be 

avoided is a driver’s perception and reaction time (PRT), which can be regarded as a 

comprehensive reflection of human-related factors.  As is well known, the PRT has a wide range of 

values depending on the complexity of the problem, the complexity of the solution, and drivers’ 

expectancy of hazards (Bates, 1995).   

To incorporate perception/reaction time into a model of drivers’ failure probability (Pf), we 

consider available perception/reaction time (APRT) and needed perception/reaction time (NPRT).  

APRT refers to the time drivers have to complete their perception/reaction under specific traffic 

situations and NPRT is the needed perception/reaction time, which is ability-oriented and varies 

from driver to driver.  Drivers cannot avoid collisions if their NPRT is greater than APRT.  

Therefore, the probability of a driver being involved in a rear-end accident is the probability that 

NPRT is larger than APRT.  If APRT and NPRT are assumed to be random variables with some 

assumed distribution, drivers’ failure probability can be determined.  

Before selecting appropriate distributions, the effect of age on NPRT must be considered.  

While physiological evidence suggests that pure reaction time increases with age, perception times 

may decrease as a result of driver experience and expectations.  For example, while Welford 

(1977) provided empirical evidence that reaction time increased with age, Olson and Sivak (1986) 
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found that old drivers and young drivers had almost the same perception/reaction time under 

surprise and alerted situations.  Thus the net effect of age on NPRT is ambiguous.  Given this, we 

will ignore the effect of driver age on NPRT, although our model could be generalized to take age 

effects into account if such effects were deemed significant. 

In terms of an appropriate probability distribution for NPRT, a normal distribution is an 

obvious choice.  Unfortunately, the normal distribution is computationally cumbersome.  Thus, we 

assume a Weibull distribution because of its empirical flexibility and close approximation to a 

normal distribution.  The Weibull density function is,  

      
αλ−−ααλ=λα tttf e),,( 1  for t > 0        (8) 

where α and λ are the shape and scale parameters, respectively.  A value of 3.25 for α has been 

empirically shown to be a value that gives the Weibull distribution a good approximation to the 

normal distribution (Kao, 1960 and Plait, 1962).  To visualize the behavior of the Weibull 

distribution, Figure 2 illustrates density function curves for various λ values with α fixed to be 

3.25.   

One of the important tasks for traffic engineers is to maintain an acceptable value of 

available perception/reaction time (APRT) through geometric design and traffic regulations.  

Unfortunately, variations in driver skills and changeable traffic/environmental conditions make it 

difficult to estimate the APRT exactly under varying traffic situations.  This has led highway 
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engineers to design highways to provide a conservative, constant value of APRT (2.5 seconds) for 

highway design (Mannering and Kilareski, 1998).  However, the variation in APRT is potentially a 

critical element in the occurrence of traffic accidents.  To account for this variation, APRT is 

assumed to be a random variable from a known distribution.  Again assuming a Weibull 

distribution and letting ta represent available perception/reaction time, the density function is, 

      
αγ−−ααγ=γα at

aa ttf e),,( 1  for tv > 0       (9) 

where α and γ are the Weibull distribution’s shape and scale parameters respectively.  Based on 

these assumptions, drivers’ failure probability can be expressed as, 

   ∫∫ ∫
∞ γ−−αλ−∞ ∞

γλ+
=αγ=γαλα=

αα 

 a
t

a
t 

 

 

 aaf dttdtdttftfP aa

a 0

1

0 t /1
1ee),,(),,(    (10) 

Note that as long as α is assumed to be the same for NPRT and APRT, Pf is determined only by the 

ratio of λ and γ.  Because parameters λ and γ are positive, λ/γ can be related to explanatory 

variables by using an exponential function, 

           φZ−= eγλ           (11) 

Correspondingly, Pf can be rewritten as, 

            φZ−+
=

e1
1Pf              (12) 

where φ and Z are vectors of estimable coefficients and explanatory variables affecting Pf, 

respectively. 
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Overall model and model estimation approach 

We wish to develop an expression for a randomly chosen vehicle pair, from through traffic 

flow, on leg k of intersection i.  Referring to the work above, the vehicle-pair rear-end accident 

probability, Pik, can be specified by replacing Po and Pf in equation 1 by equations 7 and 12 

respectively (and adding subscripts denoting intersection, i, and leg, k) such that, 

         
ik

ik

1
1PPP fikoikik φZ

X

−

−

+
−

=⋅=
e
e eβ

        (13) 

Given this, the number of accidents for some vehicle flow, vik, can be viewed as following a 

binomial distribution with the probability of having nik accidents, 

         ikikik nv
ik

n
ik

ik

ik
ik PP

n
v

nP −−







= )1()(        (14) 

Because accidents are rare events, Pik will be very small and the corresponding traffic volume vik 

will be very large for time periods of reasonable length (in the order of months or years).  Under 

such conditions, the Poisson distribution is a good approximation to the binomial distribution 

(Pitman, 1993) with, 

          
!

e
)(

ik

mn
ik

ik

n

m
nP

ikik −

=          (15) 

where the Poisson distribution parameter is, 
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          ikikikik Pvnm == )(E          (16) 

As discussed earlier, Poisson models have been extensively used in accident frequency 

modeling.  However, recent studies  (see Miaou and Lum, 1993; Shankar et. al., 1995, 1997; Poch 

and Mannering, 1996; Milton and Mannering, 1998) have demonstrated that the Poisson model is 

limited in that the requirement that mean and variance of the frequency data be approximately 

equal is often not met in accident data which tend to be over dispersed (having a variance 

significantly greater than the mean).  The most common approach to overcome this limitation is to 

add an independently distributed error term, εik, to the log transformation of equation 16 such that, 

           ik)ln(ln ε+= ikikik Pvm         (17) 

Assuming that exp(εik) is a Gamma distributed variable with mean 1 and variance δ, and 

substituting equation 17 into equation 15 gives 

         
!

)e(e)|(
)e(
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n
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ikik ε− ε

=ε       (18) 

Integrating εik out of equation 18 results in a negative binomial distribution,  
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where θ = 1/δ.  The mean and variance relationship is now, 

         )](E1)[(E)(Var ikikik nnn δ+=        (20) 

where δ is an estimable parameter.  The estimation of δ in equation 20 relaxes the constraint of the 
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mean equaling the variance in the Poisson model. 

Using equation 13 and equation 19, the overall model can be estimated by standard 

maximum likelihood methods with the log-likelihood function being, 
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DATA 

Data were collected by selecting 150 four-legged signalized intersections in the Tokyo 

Metropolitan area.  This selection was based on the considerations of intersection size, 

surrounding land use patterns, and crossing angles of the approaches (being perpendicular or 

skewed).  The purpose of such a selection process was to arrive at a sample of intersections that 

typified four-legged intersections in Tokyo.  

The data collected for the intersections included the number of accidents on each approach 

over the four-year time period from 1992 to 1995, daily traffic volume by direction, traffic signal 

control pattern and other relevant factors.  Additional intersection-related data were available from 

original accident records, which included documents with site figures and specific descriptions 

relating to observed accidents.  Unfortunately, several records were not available or flawed and the 
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number of intersections in the sample was reduced to 115. 

For our analysis, intersection approaches are used as the unit of observation and the 

number of accidents occurring on these approaches over the four-year time period from 1992 to 

1995 are used.  All the applicable rear-end accidents were cataloged according to their movements 

before the collision, and assigned to the corresponding approach.  Unfortunately, a few accident 

records were missing or incomplete for some rear-end accidents.  In cases where police records 

indicated the presence of rear-end accidents on an approach, and all these accidents could not be 

confirmed with detailed accident diagrams (to make certain they occurred on the approach in 

question), the approach was removed from the database to ensure the accuracy of 

approach-assigned accidents counts.  This reduced our sample of 460 approaches (115 

intersections containing 4 approaches) to 365 approaches.  Over the four-year study period on 

these approaches, there were 589 rear-end accidents. 

Traffic flow data were gathered from annual site surveys and highway census data.  Traffic 

control data were extracted from corresponding database documents and roadway and 

environmental data were also gathered.  In addition a measure of visual noise was developed and 

included in the database.  This is potentially relevant because previous studies (e.g., Miura 1992) 

have shown that increasing complexity in the driving environment results in increased reaction 

times.  To account for the effect of driving environment complexity, an index of visual noise level 
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(with values ranging from 0 to 4) is used in this study.  To evaluate the visual noise level, a site 

survey of intersections was conducted by trained survey personnel. They were asked to judge 

visual noise level of the surveyed intersection approaches on a scale from 0 to 4 with: level 0 being 

areas of isolated residential houses and factories; level 1 being residential areas of concentrated 

multistory residential houses; level 2 being mixed residential areas and general office districts; 

level 3 being concentrated office areas; and level 4 being prosperous commercial areas typically 

near railway stations. 

Table 1 provides summary statistics for select continuous variables in the database and 

Table 2 provides frequency results for select integer variables in the database.  To help with 

interpretation of these variables, Figure 3 is provided.  In this figure, the entering approach is the 

one being studied for accident frequency and the others set up left, right, and opposite designations.  

If data are complete, each intersection will generate four observations, with each approach 

becoming the entering approach for one observation. 

 

ESTIMATION RESULTS 

Model estimation results are shown in Table 3.  A total of 19 explanatory variables were 

found to significantly affect the rear-end accident probability.  Of these 19 variables, 13 had 
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impacts on the probability of encountering an obstacle vehicle and 6 had impacts on driver failure 

probabilities.  Table 3 shows that overall model fit was good as represented by ρ2 which is 

calculated as one minus the ratio of the log-likelihood function at convergence (all coefficients 

estimated) over the log-likelihood function with only constants estimated.  The sign of each 

coefficient shows the effect, either increasing (positive) or decreasing (negative) the probability of 

a rear-end accident.  

Turning first to factors affecting the probability of encountering an obstacle vehicle, Po, 

eight explanatory variables were found to decrease the rear-end accident probability and five were 

found to increase it.  Approaches with higher speed limits, signal progression, and elevated roads 

above them lowered the probability of encountering an obstacle vehicle, Po.  Some caution should 

be exercised in interpreting the speed limit finding because roadways may have higher speed limits 

because they are safer.  Thus the negative effect that higher speed limits have on the probability of 

encountering an obstacle vehicle may reflect this.  Signal progression clearly has a smoothing 

effect on traffic and this is reflected in the reduced probability that an obstacle vehicle will be 

encountered.  The elevated road finding may be an artifact of the data with such intersections 

having fewer environmental disturbances. 

The reciprocal of the number of approach lanes was also found to significantly decrease the 

probability of encountering an obstacle vehicle.  This result implies that an increase in the number 
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of lanes will increase the probability of encountering an obstacle vehicle (the variable will become 

smaller and, hence, will increase Po).  This may be due to the increasing conflict frequency 

between through traffic and opposite right-turn traffic when the number of lane in the entering 

approach increases.  

The finding that intersections located in central business district (CBD) lowered the 

probability of encountering an obstacle vehicle is consistent with the findings of Poch and 

Mannering (1996).  They obtained the same result when analyzing intersection rear-end accident 

frequency on a monthly basis using standard negative binomial regression.  This finding can be 

contributed to a number of factors including traffic calming efforts to improve traffic safety and 

stricter enforcement of traffic regulations in CBD areas.   

The total number of lanes in the left approach (see Figure 3 for a graphic) was found to 

decrease the probability of an obstacle vehicle.  With more lanes in the left approach, conflicts 

between left-turn flow and opposite right-turn flow are reduced.  Thus, through-vehicle 

decelerations caused by opposite right-turn flow will go down correspondingly and this is reflected 

in the coefficient estimate. 

Approaches with a median fence and four-phase signal control were found to lower the 

probability of encountering an obstacle vehicle.  The existence of median fences can prevent 

pedestrians from crossing illegally thus reducing disturbances that may cause an obstacle vehicle.  
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The four-phase control reduces conflicts between through-traffic flow and opposite right-turn 

traffic flow and this is reflected in the estimation results. 

When the angle between the entering approach and the left approach was less than 105 

degrees (see Figure 3 for an illustration of entering and left approaches), the likelihood of 

encountering an obstacle vehicle increased.  This is likely a reflection of the more complex turning 

movements associated with smaller-angle approach configurations.  In addition, the volume of 

turning vehicles, including right-turning and left-turning vehicles on the entering approach and 

right-turning vehicles on the opposite approach, increased the probability of encountering an 

obstacle vehicle.  Finally, the higher the average time headway of the entering approach’s traffic, 

the greater the probability of encountering an obstacle vehicle.  This result was unexpected.  One 

possible explanation may be that longer headway time intervals in the data encourage more 

opposite right-turn vehicle movements as well as signal-disregarding pedestrian movements.  

Applications of the model to other data may cast additional light on this finding. 

Turning to factors found to affect drivers’ failure probabilities, Pf, the total number of lanes 

in the entering approach was found to reduce failure probabilities.  This likely relates to the wider 

vision field provided by a higher number of lanes.  In contrast, the greater the number of 

intersection approaches sheltered by elevated roadways, the greater the probability of drivers’ 

failure probabilities.  It is speculated that different light conditions may affect perception times in 
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this regard. 

As expected, the 0 to 4 scale of visual noise was found to significantly increase driver 

failure probabilities indicating that driver distractions significantly increase perception times.  The 

night-to-day flow ratio (defined as nighttime traffic volume divided by daytime traffic volume) 

was found to increase driver failure probabilities.  This finding reflects increased perception times 

(and possibly reaction times) during nighttime conditions.  Because critical traffic volumes are 

directly controlled for elsewhere in the model with variables such as right- and left-turn volumes 

and headways, the night-to-day flow ratio is simply providing an overall increase in accident 

likelihood when traveling at night. 

Higher speed limits and higher slopes of the entering approach were also found to increase 

driver failure probabilities.  Because vehicle speed is proportional to stopping distance, it is clear 

that higher speeds increase driver failure probabilities.  Slopes of the entering approach can affect 

both stopping distance (downhill) and ease of perception (uphill).  We were unable to find 

significantly different effects between uphill and downhill slopes and their effects are thus 

combined into a single variable.  Finally, the coefficient estimate for reciprocal of negative 

binomial dispersion parameter (θ) is significant indicating that they data are over dispersed and the 

negative binomial assumption was correct (as opposed to a Poisson). 

To get some sense of the relative probabilities of encountering an obstacle vehicle and 
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drivers’ failure probabilities, probabilities were calculated at all approaches.  The average 

probability of encountering an obstacle vehicle, Po was 0.339 and the average probability of a 

following vehicle driver’s failure, Pf was only 0.0000002.  As expected, the likelihood of 

encountering an obstacle vehicle is much higher than the probability of driver failure which is 

reasonable because traffic flow is frequently interrupted by disturbances, but rear-end accidents 

are still relatively rare because drivers’ available perception/reaction time is almost always greater 

than the needed perception/reaction time. 

 

SUMMARY AND CONCLUSIONS 

Because intersections are accident-prone areas, there is a clear need to analyze intersection 

accident data to determine factors causing accidents and the potential effectiveness of 

countermeasures.  This paper presents a new model based on the occurrence mechanism of 

rear-end accidents at intersections.  Using data from hundreds of intersection approaches, the 

occurrence of rear-end accidents was studied considering the probability of encountering an 

obstacle vehicle and the probability of a driver failing to react quickly enough to avoid a collision 

with the obstacle vehicle. 

In our model, the probability of encountering an obstacle vehicle is assumed to be a 
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function of the frequency of disturbances that cause the driver of a leading vehicle in a vehicle pair 

to decelerate.  The probability of the trailing vehicle’s driver failing to respond is the probability 

that this drivers’ needed perception/reaction time is less than the available perception/reaction 

time.  

By considering the occurrence mechanism of rear-end accidents, the model can explicitly 

account for human factors.  Moreover, by considering factors that affect both the probability of 

encountering an obstacle vehicle and the probability of a driver failing to react quickly enough to 

avoid a collision with the obstacle vehicle, explanatory variables can be significant in both 

functions and sometimes affect overall accident probability different directions.  An example is the 

effect of the speed limit that was found to decrease the probability of encountering an obstacle 

vehicle, but increase the probability of a driver failure.  Existing models with just canonical linear 

or log-linear link functions are unable to account for such dual impacts of important explanatory 

variables. 

In terms of future work, there is a need to asses the temporal and spatial transferability of 

our proposed modeling approach.  With additional data from other geographic locations, this 

model has the potential to provide important new insights into rear-end accident occurrence. 
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NOTATION 

The following symbols are used in this paper: 

E(⋅) = expected value 

e = exponential function 

ε = error term 

f = function 

m = Poisson distribution parameter 

n = number of accidents 

t = time 

L(⋅) = log-likelihood function 

P(⋅) = probability of having a specific number of accidents 

P = probability 

v = traffic volume 

X = vector of explanatory variables for Po 

Z = vector of explanatory variables for Pf 

x = specific explanatory variable 

δ = variance of gamma-distributed error term (negative binomial 

dispersion parameter) 

β = vector of estimable coefficients for Po 

φ = vector of estimable coefficients for Pf  
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θ = reciprocal of negative binomial dispersion parameter 

α = Weibull distribution’s shape parameter for both needed 

perception/reaction time (NPRT) and available perception/reaction 

time (APRT) 

λ = Weibull distribution’s scale parameter for needed perception/reaction 

time (NPRT) 

γ = Weibull distribution’s scale parameter for available 

perception/reaction time (APRT) 

Γ(⋅) = refers to gamma function 

η = exponential distribution parameter 

ρ = likelihood ratio index 

 

The following subscripts are used in this paper: 

a = abbreviation for “available” 

i = intersection code  

j = disturbance type 

k = leg code ranges from 1 to 4 

o = obstacle vehicle 

f = response failure 

h = human factor 
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Fig. 1.  Flow chart of rear-end accident causation. 
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Fig. 2.  Weibull density functions with different scale parameters, λ, and constant shape parameter, α. 
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Fig. 3.  Graphic of intersection approaches. 
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Table 1.  Summary statistics for continuous variables. 

 

Variable Mean Standard 

Deviation 

Minimum Maximum 

Rear end accidents per approach 1.61 1.99 0.00 11.00 

Daily left-turn traffic volume of the entering approach 3,109 2,347 0 20,467 

Daily through traffic volume of the entering approach 12,844 9,088 142 51,660 

Daily right-turn traffic volume of the entering approach 3,139 2,244 0 11,928 

Speed limit of the entering approach (km/h) 49.37 8.83 30 60 

Total number of approach lanes (including both entering 

lanes and exiting lanes) 

4.96 1.88 1.00 11.00 

Total number of lanes in left approach (including both 

entering lanes and exiting lanes) 

5.02 1.94 1.00 12.00 

Night-to-day traffic flow ratio 0.49 0.06 0.33 0.78 
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Table 2.  Frequency results for integer variables. 

 

Number of observations  

for each value 

 

Variable 

0 1 2 3 4 

Signal progression (1 if with signal progression, 0 

otherwise) 

183 182 − − − 

Number of intersection approaches sheltered by elevated 

roadways 

277 82 6 − − 

Intersection location (1 if in central business district 

(CBD), 0 otherwise) 

165 200 − − − 

The existence of fence median of the entering approach 

(1 if there is, 0 otherwise) 

188 177 − − − 

Signal control pattern ( 1 for 4 phase control, 0 otherwise) 111 254 − − − 

Angle of the entering approach and left approach (1 if 

less than 105°, 0 otherwise) 

276 89 − − − 

Visual noise (ranging from 0 to 4) 64 101 131 46 23 

Slope of the entering approach (1 if greater than ±3%, 

0 otherwise) 

339 26 − − − 
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Table 3.  Model estimation results. 

 

Variable 

Estimated 

Coefficient 

Standard 

error 

 

p-value 

Variables affecting the probability of encountering an 

obstacle vehicle 

   

Constant 4.236 1.810 0.020 

Speed limit of the entering approach in km/h -0.064 0.028 0.025 

Signal progression (1 if with signal procession, 0 otherwise)  -0.254 0.223 0.257 

Number of intersection approaches sheltered by elevated 

roadways 

-3.653 0.558 0.000 

Reciprocal of number of lanes of the approach  -7.821 0.259 0.001 

Intersection location (1 if in central business district (CBD),  

0 otherwise) 

-0.487 0.059 0.062 

Total number of lanes in left approach (including both entering 

lanes and exiting lanes) 

-0.093 0.057 0.118 

The existence of fence in median of the entering approach (1 if 

there is, 0 otherwise) 

-0.218 0.208 0.295 

Signal control pattern ( 1 for 4 phase control, 0 otherwise) -0.431 0.268 0.108 

Angle of the entering approach and left approach (1 if less than 

105°, 0 otherwise) 

0.566 0.205 0.007 

Right-turn volume in thousands of vehicles (4 years) of the 

opposite approach 

0.073 0.036 0.044 

Right-turn volume in thousands of vehicles (4 years) of the 0.249 0.048 0.000 
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entering approach 

Left-turn volume in thousands of vehicles (4 years) of the 

entering approach 

0.137 0.045 0.002 

Average time headway in seconds of entering approach’s 

through traffic 

0.053 0.013 0.000 

Variables affecting drivers’ failure probability    

Constant -19.455 1.615 0.000 

Total number of approach lanes (including both entering lanes 

and exiting lanes) 

-0.441 0.097 0.000 

Number of intersection approaches sheltered by elevated 

roadways 

2.546 0.437 0.000 

Visual noise (ranging from 0 to 4) 0.130 0.086 0.131 

Night-to-day traffic flow ratio 1.588 0.934 0.001 

Speed limit of the entering approach (in km/h) 0.043 0.016 0.090 

Slope of the entering approach (1 if greater than ±3%, 

0 otherwise) 

0.622 0.173 0.000 

Other estimate    

Reciprocal of negative binomial dispersion parameter (θ = 1/δ) 3.708 1.094 0.001 

Number of observations 365   

Log likelihood with constants only -1842.47   

Log likelihood at convergence -557.27   
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Likelihood ratio index, ρ2 0.698   
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