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ABSTRACT 

A microscopic model of freeway rear-end crash risk is developed based on a modified 

negative binomial regression and estimated using Washington State data. Compared with most 

existing models, this model has two major advantages: 1) it directly considers a driver’s response 

time distribution; and 2) it applies a new dual-impact structure accounting for the probability of 

both, a vehicle becoming an obstacle ( oP ) and the following vehicle’s reaction failure ( fP ).  

The results show for example that truck percentage-mile-per-lane has a dual impact, it 

increases oP  and decreases fP , yielding a net decrease in rear-end crash probabilities. Urban 

area, curvature, off-ramp and merge, shoulder width, and merge section are factors found to 

increase rear-end crash probabilities. Daily VMT per lane has a dual impact, it decreases oP  and 

increases fP , yielding a net increase, indicating for example that focusing VMT related safety 

improvement efforts on reducing drivers’ failure to avoid crashes, such as crash-avoidance 

systems, is of key importance. Understanding such dual impacts is important for selecting and 

evaluating safety improvement plans for freeways. 
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INTRODUCTION 

Approximately 60% of freeway traffic congestion is caused by incidents (Lindley, 1987). 

Incidents can be classified as either predictable events such as work zones, or unexpected events 

such as accidents. Rear-end crashes are the most common type of crash in Washington State: 

rear-end crashes (35.9%), fixed object crashes (17.0%), and sideswipes (10.7%) (WSDOT, 

1996).  When rear-end crashes occur, they temporarily reduce roadway capacity and cause 

congestion. According to the 2003 Urban Mobility Report (Schrank and Lomax, 2003), the 

annual average delay per person in the 75 surveyed urban areas was 26 hours in 2001, a 371% 

increase compared to 1982. Congestion costs an average of $520 per traveler in the surveyed 

urban areas in 2001. Therefore, through finding the factors which influence rear-end crashes, we 

can identify controllable factors which can improve highway design, leading to a decrease in the 

frequency of rear-end crashes. If successful, this will help reduce number of injuries and reduce 

overall congestion, thus also saving time and money. This paper describes a numerical approach 

that can be used to evaluate freeway rear-end crash risk based on known traffic and roadway 

factors. 

 

LITERATURE REVIEW 

In recent years, a significant amount of research has been performed to understand 

crashes on freeways using modeling methods such as linear regression, Poisson regression, and 

negative binomial regression. Jovanis and Chang (1986) found some undesirable problems with 

the use of linear regression in their study. Miaou et al. (1992) used a Poisson model and found 

that the Poisson constraint (the mean and variance of the crash frequency have to be equal) was 

violated. The performances of the Poisson regression and negative binomial regression were 
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compared and the overdispersion of crash data was addressed (Miaou, 1994 and Shankar et al., 

1995). Poch and Mannering (1996) found that the negative binomial model was the appropriate 

model for determining crash frequency at intersections due to overdispersion in the data. Shankar 

et al. (1997) applied zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) to 

handle data which violate the Poisson and negative binomial model assumptions due to 

numerous observations of sections with no crashes in the observed period. Wang (1998) modeled 

the mean rates of rear-end crashes at four-legged signalized intersections through multiplying 

traffic volume by rear-end crash probability. 

A common criticism of many previous studies is that they do not usually consider human 

factors. Massie et al. (1993), however, pointed out that the classical human factors approach 

ignored the problem associated with classifying collisions and their related causes, be it human 

or otherwise, and failed to address the issue of helping drivers avoid collisions. By identifying 

geometric conditions that lend themselves to producing crashes, these conditions could be 

corrected.   

Milton and Mannering (1998) estimated annual crash frequency on sections of principal 

arterials with negative binomial regression models and found numerous traffic and geometric 

characteristics to be important. Carson and Mannering (2001) identified significant spatial, 

temporal, traffic, roadway, and crash characteristics that influenced ice involved-crash frequency 

and severity. Lee and Mannering (2002) used a nested logit model for run-off-roadway crash 

modeling. Golob and Recker (2003) applied linear and nonlinear multivariate statistical analyses 

to determine how the types of crashes occurring on heavily used freeways in Southern California 

are related both to the flow of traffic and to weather and ambient lighting conditions. Ulfarsson 

and Shankar (2003) explored the negative multinomial model to predict median crossover crash 
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frequencies. Golob and Regan (2004) studied, by applying a multinomial logit model, how 

various types of truck crashes are related to traffic flow conditions and roadway characteristics 

on urban freeways. 

Although a significant amount of research has attempted to study crashes based on crash 

type, location, and severity, very few studies have been conducted to model rear-end crashes on 

freeways. Shankar et al. (1995) noted that separate regression models focused on specific crash 

types have greater explanatory power than an overall frequency model. Therefore, there is need 

for studying rear-end crashes separately from other types of crashes on freeways. 

 

METHODOLOGY 

For modeling rear-end crashes on freeways, we employ a microscopic modeling approach 

introduced by Wang (1998). This modeling approach has been successfully applied to 

intersection safety studies (Wang et al., 2002 and Wang and Nihan, 2003). The occurrence of 

rear-end crashes on freeways is a combined result of a lead vehicle’s time-headway reduction 

action and a following vehicle’s inadequate action or the following vehicle’s ineffective 

response. In this study, the occurrence of crashes is considered to be based on two premises: one 

is that a lead vehicle becomes an obstacle vehicle to a following vehicle and the other is that a 

following vehicle fails to avoid a collision given the obstacle vehicle.  

When a lead vehicle reduces the time-headway with respect to the following vehicle 

(such as by stopping, decelerating, or performing a cut-in movement), it becomes an obstacle 

vehicle to the following vehicle. The following vehicle driver may need to react to avoid a 

collision with the obstacle vehicle. Depending on the Maneuvering Time (Perception-Response 

Time (PRT) plus vehicle response time) available to the driver, the driver’s reaction may or may 
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not be successful. If unsuccessful, a rear-end crash occurs. Thus, the probability of having a rear-

end crash is determined by: 1) the probability of a leading vehicle becoming an obstacle, denoted 

by oP ; and 2) the probability of the following vehicle driver’s failure to avoid the collision given 

an obstacle vehicle, denoted by fP . Noting the conditional nature of fP  avoids problems related 

to the dependence of the two drivers’ decision making when both see a joint event that leads both 

to brake. Since the following vehicle’s failure to avoid a crash is conditional on there being an 

obstacle vehicle, the total probability of a rear end crash is the multiplication of the probability of 

an obstacle vehicle and the conditional failure to avoid crashing. Then the probability of having a 

rear-end crash can be expressed as the product of oP  and fP : 

 foPPP = . (1) 

Note that different rear-end crashes are assumed to be independent events because chain-reaction 

crashes are excluded and only two-vehicle rear-end crashes are used in this study. There were a 

total of 8,452 rear-end accidents in the data and two-vehicle rear-end accidents accounted for 

about 64% (5,868). Chain-reaction rear-end crashes are more likely under high volume 

conditions. Therefore, excluding the chain-reaction rear-end crashes may affect the traffic 

volume variable. 

 

The Probability of a Leading Vehicle becoming an Obstacle ( oP ) 

An event that causes a lead vehicle to become an obstacle vehicle is called a disturbance. 

Disturbances are rare events, non-negative, and discrete. Also, the occurrences of disturbances 

are independent during non-overlapping time intervals and different disturbances are 

independent of each other. Therefore, the occurrence of disturbances is assumed to follow a 
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Poisson process. The intervals between Poisson-distributed disturbances follow an exponential 

distribution. The probability density function (PDF) of the exponential distribution is 

 0,0,),( >>= −
j

t
jj tforetf j ηηη η , (2) 

where j  is a disturbance, jη  is the occurrence rate of disturbance j , and t  is the time interval. 

This leads to the probability of a disturbance j  occurring at least once in t  

 t
t

t
jj

jj edteP ηηη −− −==∫ 1
0

. (3) 

Since any of the disturbances can cause the lead vehicle to become an obstacle vehicle, 

the probability of that, oP , is the same as the probability that at least one disturbance occurs in t  

expressed as  

 ∏
=

−−=
J

j
jo PP

1

)1(1 , (4) 

where jP−1  is the probability that disturbance j  does not occur, J  is a theoretical maximum 

number of disturbances that can occur in time interval t  (since we cannot have an infinite 

number of disturbances occur in a finite time), and ∏ −
j jP )1(  is the probability that no 

disturbance occurred during time interval t . Substitute jP  in (4) by (3) and oP  can be written 

 ∑−−= j jt
o eP η1 . (5) 

To let (5) depend on a set of explanatory variables such as geometric features and traffic flow we 

parameterize ∑ j j tη , noting it must be positive since probability cannot be greater than 1. A 

loglinear parameterization satisfies this condition: 
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 )(exp oo
j

jt xβ=∑η , (7) 

where oβ  is a vector of estimable parameters and ox  is a vector of explanatory variables. By 

combining (5) and (7), the probability of a leading vehicle becoming an obstacle ( oP ) in a given 

period of time is written 

 
ooe

o eP
xβ−−=1 . (8) 

 

The Probability of Failure to Avoid a Collision given an Obstacle Vehicle ( fP ) 

One of the most important factors to avoid crashes on freeways is a driver’s Perception-

Response Time (PRT). PRT is defined as the PIEV time in the Manual on Uniform Traffic 

Control Devices (MUTCD, 2003), which can be summarized as “the total time needed to 

perceive and complete a reaction”. PRT is not a constant value of all driving situations but 

depends on the complexity of the problem and the driver’s expectation of a hazard (Bates, 1995). 

To model the probability of a driver’s failure to avoid a collision, two concepts are 

considered: Available Maneuvering Time (AMT) and Needed Maneuvering Time (NMT). AMT 

refers to the actual time available for a driver to avoid a collision with an obstacle vehicle. NMT 

refers to the minimum time that a driver needs to avoid a collision (PRT plus vehicle response 

time). If NMT is greater than AMT, a driver cannot avoid a collision.  

To model NMT and AMT with appropriate distributions, we need to know the 

characteristics of PRT. Summala (2000) addressed the following points: 1) not all drivers 

perform the expected response in on-road studies, and the obtained PRT estimates may be biased 
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due to the drivers who brake the slowest; 2) drivers’ attentions differ between locations so that in 

certain places they are more attentive to their task than in others; 3) although brake reaction 

latencies appear to increase with available time, steering response latencies do not, at least within 

a certain range of time; 4) the total PRT distributions do not differ at all for the two groups (18-

40 years and 50-84 years). This result was also noted by other studies. For example, Olson and 

Sivak (1986) showed that both age groups have the 95th percentile PRT time of about 1.6 s. They 

indicated that while older drivers’ perception time is slower than younger drivers, the brake 

reaction (including foot movement and decision processes) that follows is faster in older drivers. 

Lerner (1993) also pointed out that although most of the fastest observed PRTs were from the 

young group, there were no differences in central tendency (mean = 1.5 s) or upper percentile 

values (85th percentile = 1.9 s) among the age groups. While AASHTO (2001) suggests a 

conservative PRT of 2.5 seconds for highways, Mannering et al. (2005) mentioned that a driver’s 

PRT is a function of a number of factors including the driver’s physical condition, emotional 

state, and complexity of the situation.  

As explained in the above studies, PRT is not a constant value, but a random variable 

relating to many factors such as drivers’ skill, physical condition, traffic condition, and 

geometric features. In this study, we assumed that both the AMT and NMT are Weibull 

distributed because the Weibull distribution is a good approximation to the normal distribution 

(Plait, 1962) and for this model it results in closed-forms, whereas the lognormal and the log-

logistic do not.  

The Weibull distribution is a generalized form of the exponential distribution. The 

Weibull distribution has two parameters, scale 0>θ  and shape 0>α . The density function for 

the Weibull distribution is 
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 0,),,( )(1 >= −− tettf t αθααθααθ . (9) 

A hazard function is a conditional probability that an event occurs between t  and tt ∆+  given 

that an event does not occur until t . The hazard function for the Weibull distribution is 

 .0,)( 1 >= − ttth αααθ   (10) 

When the shape 1=α , the Weibull distribution becomes the exponential distribution, and 

the hazard is constant over time (duration independence). When 1>α , the hazard is 

monotonically decreasing over time (negative duration dependence), and when 1<α , the hazard 

is monotonically increasing over time (positive duration dependence). Note that although the 

Weibull distribution provides a more flexible means of capturing duration dependence than the 

exponential distribution, it does not allow the hazard to increase and then decrease over time 

because it requires the hazard to be monotonic over time. The Log-normal and log-logistic 

distributions have non-monotonic hazard functions but are computationally cumbersome in this 

model because of non-closed form solutions. We therefore use the Weibull distribution here in 

spite of its limitation.  

The failure probability is expressed as )( NMTAMTPPf <= , as mentioned before. The 

probability distributions for AMT and NMT are assumed as follows: 

 0,0,0),,( )(1 >>>== −− tforettfAMT at
a θαθααθ

αθαα , (11) 

 0,0,0),,( )(1 >>>== −− tforettfNMT nt
n λαλααλ

αλαα . (12) 

Here, we employed two assumptions as follows: 1) The shape parameter, α , is the same for both 

AMT and NMT. This is a limitation but is necessary to achieve a closed form result. The scale 
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parameter is however allowed to vary. 2) AMT and NMT are independent maneuvering times. 

Then, the drivers’ probability of failure to avoid a collision can be calculated as, 
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Now, fP  is expressed as a function of λ , θ , and α . Since 0>λ  and 0>θ , αθλ )/(  is 

greater than 0. Then, αθλ )/(  can be related to a set of explanatory variables by using the 

exponential link function:  

 ff xβ−=⎟
⎠
⎞

⎜
⎝
⎛ e

α

θ
λ , (14) 

where fβ  is a vector of estimable parameters and fx  is a vector of explanatory variables. fP  

can then be expressed as 

 
ff xβ−+

=
e

Pf 1
1 . (15) 
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Rear-End Crash Risk Model 

By replacing Equation (1) with (8) and (15), the probability of a rear-end crash of an 

individual vehicle, P , can be rewritten as,  

 
ff

oxoβ

xβ−

−

+
−

==
e
ePPP

e

fo 1
1 . (16) 

The number of crashes ( N ) for a vehicle flow ( ijv ) on section i  in a given period j , follows a 

binomial distribution,  

 ijijij nvn

ij

ij
ij PP

n
v

nNP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== )1()( . (17) 

The mean for this binomial distribution is Pvm ijij = . When ∞→ijv  and 0→P , while Pvij  

remains constant, the number of crashes, N , is a Poisson distributed random variable with the 

parameter ijm , 

 
!

)|(
ij

mn
ij

ijij n
em

mnNP
ijij −

== . (18) 

While the probability of crashes is a very small value, the traffic volume ( ijv ) is a very 

large value for a given time period. Therefore, the Poisson distribution can be a good 

approximation to the binomial distribution as proven above.  

Given data such as traffic flow and geometric features, the expected rear-end crashes 

( ijm ) on section i  in period j  can be parameterized as 

 ijijm xβ=ln , (19) 

where ijx  is a vector of geometric features, traffic flow, and so on for section i  in the given 

period j , and β  is a vector of estimable coefficients.  
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Poisson models are not suitable for over-dispersed data. However, crash data tends to be 

over-dispersed. To overcome this limitation, the Poisson model is generalized by introducing an 

unobserved effect, ijε , into the expected rear-end crashes parameterization (Greene, 2003),  

 
,ln

,lnln'ln

ijij

ijijijijij

um

umm

=

+=+= εβX
 (20) 

where for mathematical simplicity we define ijiju ε=ln  and use the logarithmic rule 

baab lnlnln +=  to simplify further. Then, the distribution of ijn  conditioned on iju  (i.e. ijε ) is 

 
( )

!
)|(

ij

umn
ijij

ijij n
eum

unNP
ijijij −

== . (21) 

The unconditional distribution )( ijnNP =  is the expected value of )|( ijij unNP = , 

 
( )
∫
∞ −

=
0

)(
!

)( ijij
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ij duug
n

eum
nP

ijijij

. (22) 

For mathematical convenience, a gamma distribution is assumed for iju , i.e. exp( ijε ). When 

][ ijuE  is 1 and ][ ijuV  is δ , the density )( ijug  can be expressed as,  

 1

)(
)( −−

Γ
= κκ

κ

κ
κ

ij
u

ij ueug ij , (23) 

where δκ /1=  and )(⋅Γ  is the gamma function. Then, the probability of the number of crashes is 

written, 



 13

 

( )

.,where

,)1(
)()1(

)(

,
))(()1(

)(

,
)()1(

,
)(!

)(

0

1)(

0

1

Pvm
m

m
r

rr
n

n

mn
nm

duue
n

m

duue
n

eum
nNP

ijij
ij

ij
ij

ij
n

ij
ij

ij

n
ijij

ij
n
ij

ij
n

ij
um

ij

n
ij

ijij
u

ij

umn
ijij

ij

ij

ij

ij

ijijij

ij

ij

ijijij

=
+

=

−
Γ+Γ

+Γ
=

+Γ+Γ

+Γ
=

Γ+Γ
=

Γ
==

+

∞
−++−

∞
−−

−

∫

∫

κ

κ
κ

κκ

κκ

κ
κ

κ
κ

κ

κ

κ

κκ
κ

κκ
κ

 (24) 

This distribution has conditional mean ijm  and conditional variance ]][1][[ ijij nEnE δ+  

(where  δκ /1= ). The negative binomial model can be estimated by maximum likelihood. Using 

(24), the log-likelihood function for the negative binomial model is,  
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where 
ff

oxoβ

xβ−

−

+
−

⋅==
e
evPvm

e

ijijij 1
1 , I  is the total number of freeway sections, and T  is the number 

of years of crash data. This function is maximized to obtain coefficient estimates for β  ( oβ  and 

fβ ) and κ . If the estimated κ  is statistically significant (significantly different from zero), the 

negative binomial regression model is more appropriate than the Poisson model.  

 

DATA DESCRIPTION 

Data from the Highway Safety Information System (HSIS) were employed for 

developing the relationships between rear-end crashes and explanatory variables. The crash data 

used for this study are two-vehicle rear-end crashes that occurred on I-5 in Washington State 
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from 2001 to 2002. The HSIS classified roadway sections were used as crash observation units. 

Each roadway section represents a homogenous link in terms of curvature and cross-sectional 

characteristics, such as number of lanes, lane width, median type and width, and shoulder width. 

Traffic factors such as traffic volume and truck percentage play an important role in crashes. 

Unfortunately, traffic data when crashes occur was not available. Therefore, Annual Average 

Daily Traffic (AADT) and percent trucks were used for calibration in our study and roadway 

sections without AADT and truck percentage data were excluded from the quantitative analysis.  

Traffic variables: AADT and Truck percent data. We generalized the AADT variable by 

considering section length and number of lanes. Since the number of lanes varies from section to 

section and the chance for a section to have a crash increases with section length, the AADT 

variable must be generalized to satisfy the requirement of this microscopic approach. The 

generalized AADT is called “Daily VMT per lane”. It was calculated from AADT, section length, 

and number of lanes as follows: 

 
1000×

×
=

lanesofnumberThe
lengthSectionAADTper lane Daily VMT . (26) 

The divisor of 1000 was used to expedite the calculation speed of model calibration.  

Similarly, truck data were also generalized by considering section length and the number 

of lanes. “Truck percentage-mile per lane” is a function of truck percentage, section length, and 

the number of lanes. It was calculated as follows:  

 
lanesofnumberThe

lengthSectionTrucke per laneentage-milTruck perc ×
=

% . (27) 

Here, the variable is divided by lane to explain the effect of the number of lanes. For example, 

although a one lane road and a four lane road have the same truck percentage, the effect will be 

different. Note that although this variable is standardized per lane, there is still potential 
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inaccuracy, since trucks typically concentrate in the right and middle lanes. To account for 

exposure to truck traffic the percent trucks is multiplied by the section length. 

Freeway geometric variables: Shoulder width, horizontal curvature, the number of 

ramps, and the number of lanes. To reflect the effects of geometric features on rear-end crashes, 

the variables mentioned above were combined or transformed. Total shoulder width (the sum of 

left and right shoulder widths) was considered due to the high correlation between left and right 

shoulder widths. We also created a new variable called “deviation of shoulder width”. It is 

defined as:  

 }18,0max{ widthshoulderTotalr widthof shouldeDeviation −= . (28) 

Here, we considered 5.5 m (18 feet) as an ideal total shoulder width. This variable explains the 

effect of the deviation of ideal shoulder width for a particular road section.  

Each road section has one horizontal curvature. Curvature-per-length was assumed to 

have different effects on the occurrence of rear-end crashes. The variable called “curvature-per-

length” is defined as:  

 
10

 
×

=
lengthSection

curvatureofDegreeper-lengthCurvature- . (29) 

The divisor of 10 was used to expedite the calculation. 

To explain the effects of merging on freeway rear-end crashes, a variable called “merge 

section” is introduced. It is a binary variable with value “1” if a section is within 0.8 km (0.5 

mile) upstream of a merge point and with value “0” otherwise. We assume that vehicles have a 

tendency to change lanes within 0.8 km (0.5 mile) before a merge point. 

In sections with off-ramps or on-ramps, vehicles are likely to change lanes to exit or enter 

into the mainline of traffic. Also, this phenomenon is more likely to occur in sections containing 
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both merging lanes and ramps. To reflect this fact, a variable called “off-ramp and merge” was 

devised (on-ramps were excluded here because they did not turn out to have statistical 

significance in the model). This variable is defined as:  

 io Merge ratection mps in a s of off-rathe numbernd mergeOff-ramp a ×= , (30) 

where “merge ratio” is defined as,  

 
sectiondownstreamainlanesofnumberThe

sectionupstreamaninlanesofnumberTheoMerge rati = . (31) 

Land use variable: an indicator of land use, split here simply into rural or urban. 

Freeway sections have different characteristics depending on whether they are in an urban area 

or rural area. To include this effect in the model, the variable called “urban area” was created. It 

is a binary variable: “urban area” = 1 when the section is in an urban area; “urban area” = 0 if the 

section is in a rural area.  

Traffic control variable: speed limit. Another important variable in explaining crashes 

on freeways is the posted speed limit. Posted speed limits on freeways can be expected to be 

correlated with travel speed, but this correlation breaks down during congestion as travel speeds 

drop and speeds are governed more by the congestion, not roadway geometrics. During 

congestion, chain-reaction accidents are more likely to occur whereas in this paper we exclude 

these and focus on rear-end crashes between only two vehicles. Such accidents are not as closely 

tied to congestion as chain-reaction rear-end crashes. The posted speed limits are therefore likely 

to be correlated with travel speed in our study and they are correlated with important unobserved 

roadway geometrics, such as sight-distance and interchange density, which can influence the 

likelihood of rear-end crashes. The posted speed limits therefore capture unobserved roadway 
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geometrics and speed effects. The model includes the variable “speed limit” that takes the actual 

value of the posted speed limit for the section.  

In summary, the model includes six continuous explanatory variables: daily VMT per 

lane, truck percentage-mile-per-lane, deviation of shoulder width, curvature-per-length, off-ramp 

and merge, and speed limit; and two binary variables: merge section and urban area. 

 

RESULTS 

The rear-end crash risk model was estimated by maximum likelihood. In total, twelve 

coefficients (including intercepts) on eight explanatory variables were found statistically 

significant at the 90% level in the model (five explanatory variables for oP , five explanatory 

variables for fP , and the reciprocal of the negative binomial dispersion parameter, θ ). Model 

estimation results are shown in Table 1. The sign of an estimated coefficient indicates the 

direction of the impact of the variable, i.e. a variable with a positive coefficient increases the 

probability and a variable with a negative coefficient has a decreasing effect. The 2ρ  in this 

paper compares the log-likelihood at ( 0=β , 1=κ ) to log-likelihood at convergence. 

 

The Probability of a Leading Vehicle becoming an Obstacle ( oP ) 

Two variables were found to decrease the probability of a leading vehicle becoming an 

obstacle and four variables were found to increase the probability. The “daily VMT per lane” 

tends to decrease the probability of a leading vehicle becoming an obstacle. This is somewhat 

counterintuitive as higher volumes suggest greater opportunities for crashes. However, with 

increasing flow, traffic is compacted and more vehicles enter into car-following mode, resulting 

in increasingly similar speeds on the freeway. Importantly, our study focuses on rear-end crashes 
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between two vehicles and omits chain-reaction rear-end crashes. Chain-reaction crashes become 

more likely with higher volume and the relative number of two-vehicle crashes will drop and 

cause a negative relationship with increasing volume. There may also be non-linear effects in 

this variable which are not captured by the model. These effects may contribute to the reduced 

probability of a vehicle becoming an obstacle with higher volumes. It should be noted, that the 

net effect from the model does indicate that there is a higher probability of rear-end crashes with 

higher volumes as expected. That happens because the probability of failing to avoid a crash 

goes up with increasing volume. 

Truck percentage-mile-per-lane was found to increase the probability. Examples that 

could explain this are as follows: (a) when a leading vehicle is a truck, the following driver may 

be more likely to switch lanes and overtake the truck due to the relatively slow speed of the 

truck, and (b) a passenger car sometimes cuts in front of a truck without allowing sufficient 

headway for a following truck, ignoring the fact that a truck needs a longer headway than a 

passenger car. Therefore, a higher truck percentage results in more frequent lane changes and 

such disturbances could contribute to an increase in oP . Golob and Reagan’s study (2004) 

indicates this tendency. As the number of vehicles increases, lane changes may be difficult and 

drivers may stay in their current lanes.  

Freeway sections in an urban area are associated with a higher probability of a vehicle 

encountering an obstacle vehicle. This may be due to the higher density of entrances and exits 

that create more frequent lane changes (weaving). This reasoning can be supported by Golob et 

al. (2004) who found that rear-end crashes have the highest likelihood of occurring in a weaving 

section.  
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The degree of curvature is directly related to the radius ( R ) of the horizontal curve. 

Therefore, as R  decreases, curvature increases. Carson and Mannering (2001) found that crash 

frequency decreases as horizontal curve radius increases. As shown in Table 1, “curvature-per-

length” is identified to have an increasing impact on the probability of a lead vehicle becoming 

an obstacle.  

The “off-ramp and merge” variable increases the probability of the lead vehicle becoming 

an obstacle. When vehicles’ lane change frequency increases, the likelihood of having a rear-end 

crash grows higher. Jason et al. (1998) found that rear-end crashes involving trucks are more 

likely to occur in sections with off-ramps than in sections with on-ramps. An “on-ramp” variable 

was originally included in the model, but removed from the final form because it was not 

significant. This may indicate that different types of crashes, such as sideswipe, are more 

frequent than rear-end crashes near on-ramps. 

 

The Probability of Failure to Avoid a Collision given an Obstacle Vehicle ( fP ) 

Three variables were found to decrease the rear-end crash probability and three variables 

were found to increase its probability. In the fP  model, “daily VMT per lane” has an increasing 

impact and “truck percentage-mile-per-lane” has a decreasing impact. Obviously, the impacts of 

these two variables are opposite to their effects in the oP  model. As “daily VMT per lane” 

increases, the traffic density increases and the increase of traffic density means the decrease of 

headway distance if all other conditions are the same. As headway distance decreases, AMT 

decreases, and as a result, a driver’s probability of failure to avoid a collision increases. When 

following a truck, drivers tend to keep longer gaps. Also, truck drivers are professional drivers. 

Therefore, the increase of the percent truck means an increase in the number of professional 
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drivers in the traffic stream, and they may be better able to respond to avoid crashes than regular 

drivers. This tendency results in longer AMT and lowers fP . This reasoning can be supported by 

Golob and Reagan (2004). In their study, 45% of crashes not involving trucks were rear-end 

crashes, whereas only 18% of truck-involved crashes were rear-end crashes. 

The fP  model also found that road sections with a higher posted speed limit have lower 

driver failure rate. This is may be due to the correlations between posted speed limits and 

unobserved factors such as travel speed, design speed, and roadway geometrics. For example, 

roadway sections with high posted speed limit have greater stopping sight-distance; other factors, 

such as reduced frequency of interchanges on sections with a higher speed limit, would reduce 

weaving maneuvers which can reduce rear-end crash frequencies. Golob and Recker (2003) drew 

a similar conclusion from their study: rear-end crashes are more likely to occur at lower speeds 

and during higher variations of speed.  

Another variable which increases fP  is “deviation of shoulder width.” It has been found 

that a narrow shoulder width (total shoulder width is smaller than 5.5 m (18 feet) increases the 

probability of a driver’s failure to avoid a collision. On sections with narrow shoulders, drivers 

have less room to avoid rear-end crashes or take corrective actions, which may explain this 

result. Milton and Mannering (1998) also concluded that narrow shoulders (including both the 

right and left shoulders) tend to increase crash frequency. 

The “merge section” variable also increases fP . This indicates that a driver has a greater 

fP  when driving in a merge section. This can be explained by two reasons: 1) cut-in vehicles 

significantly reduce AMT; and 2) other vehicles’ movements can distract a driver’s attention 

which delays the perception of an obstacle vehicle.  
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Finally, the t-statistic of the coefficient estimate for the reciprocal of the negative 

binomial dispersion parameter ( κ ) was 13.918, which means that this coefficient was 

statistically very significant, and that it was correct to reject the Poisson model. 

The average of the probability of encountering an obstacle vehicle ( oP ) was 32.88% and 

the average of the probability of the following vehicle driver’s failure to avoid a collision ( fP ) 

was 0.001158%. This result is consistent with Wang et al. (2002). They reasoned that while 

traffic flow is frequently interrupted by disturbances, the drivers’ AMT is generally greater than 

NMT and hence allow the appropriate perception and reaction time to accomplish an avoidance 

maneuver. 

 

Elasticity 

Two variables in this model have dual impacts with opposite directions on the rear-end 

crash risk: daily VMT per lane and truck percentage-mile-per-lane. To know the overall effects 

on probability of rear-end crashes, elasticity was calculated for those variables. Note that 

elasticity was calculated for Equation (16), the probability of a rear-end crash occurring, but not 

Equation (24) the probability of a certain number of rear-end crashes occurring in a section. The 

elasticities of daily VMT per lane and truck percentage-mile-per-lane were about 102.0  and 

542.0− , respectively. That is, as daily VMT per lane increases, the probability of rear-end 

crashes increases ( 102.0 ); as truck percentage-mile-per-lane increases, the likelihood of rear-end 

crashes decreases ( 542.0− ).  

 



 22

Statistical Tests of Temporal Transferability and Coefficient Stability 

We statistically tested the model for temporal transferability and coefficient stability. 

Table 2 shows the results of the temporal transferability and coefficient stability tests. For the 

temporal transferability test, the null hypothesis is that the coefficients are transferable between 

years. We first estimate the model for the two years (2001 and 2002) together, effectively 

constraining the coefficients to be equal for both years. Then, we estimate the model for the 

years individually using the same model structure and apply a likelihood ratio test to compare the 

constrained model to the two unconstrained models. The likelihood ratio test results indicate a 

2χ  value of 13.36 with 13 degrees of freedom, which is smaller than the table 2χ  value, 

22.3621, at the 95% confidence level. We therefore do not find statistical evidence to reject the 

null hypothesis of transferability, since allowing the coefficients to be different did not result in a 

significant change compared to the constrained model.  

In the second test, for coefficient stability, a similar likelihood ratio test is performed to 

test the null hypothesis of coefficient stability. The model was estimated for the entire two-year 

period. Then, with a uniform distribution, the total data were randomly divided into two sub data 

sets having the same number of observations. The likelihood ratio test results indicate a 2χ  value 

of 12.31 with 13 degrees of freedom, which is smaller than the 2χ  table value, 22.3621, at the 

95% confidence level. There is therefore no statistical evidence to reject the null hypothesis of 

stability and the model specification can be used for sub data sets.  

 
CONCLUSION 

Following the microscopic modeling approach developed by Wang (1998), a rear-end 

crash risk model was developed and estimated using freeway rear-end crash data observed in 

Washington State. Unlike most existing crash models, the model developed in this research 
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considered the occurrence mechanism of rear-end crashes on freeways and was capable of 

capturing the dual impacts of explanatory variables in the occurrence of rear-end crashes.  

When interpreting a model with dual effects, the effects can contradict each other. In that 

case it is necessary to draw the interpretation from the overall model result which will show 

which effect is stronger. Most often, the results are in harmony and it is not necessary to look to 

the overall model results, since the individual models directly yield useful interpretations that can 

lead to safety improvements.  

For example, the “daily VMT per lane” variable has dual impacts with opposite 

directions: It reduces the probability of a vehicle becoming an obstacle ( oP ) as indicated by the 

negative coefficient, and it increases the probability of a following vehicle’s reaction failure ( fP ), 

yielding a net increase in probability of rear-end crash with volume as indicated by the average 

elasticity for the overall model. The dual process in this model therefore suggests the increased 

probability of rear-end crashes with volume happens because of the increasing probability of 

drivers failing to avoid crashes but not because of an increase in probability of a vehicle 

becoming an obstacle vehicle. This indicates that focusing safety improvement efforts on 

reducing drivers’ failure to avoid crashes is of key importance. Potential applications could be 

crash avoidance systems that assist drivers to avoid crashes, e.g., headway warning systems and 

smart cruise controls that reduce the PRT significantly. 

The “truck percentage-mile-per-lane” variable was also significant in both oP  and fP . A 

higher truck percentage increases oP  but decreases fP . When considering the overall model, this 

variable reduces the probability of rear-end crashes.  

Understanding such dual impacts of controllable variables is important for selecting 

safety improvement plans. This finding can for example be used to improve safety on highways 
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through the use of information systems. Although truck percentage-mile-per-lane decreases the 

probability of rear-end crashes under simultaneous consideration of both oP  and fP , this variable 

increases oP . Therefore, real-time information of truck percentage-mile-per-lane may be used in 

warning systems that inform drivers when traffic conditions are more likely to lead to rear-end 

crashes. 

This model mainly focused on the mechanism of freeway rear-end crash occurrence. 

Traditional human factors such as age, experience, health condition, and gender play an 

important role in the mechanism but individual-specific data cannot be used in a frequency 

model because crash information must be aggregated over a time period in each section. 

Therefore, a distribution of drivers’ response time was employed as a surrogate variable for 

reflecting the impacts of human factors.  

A modified negative binomial regression approach was employed to calibrate the risk 

model using observed rear-end crash data and was successfully estimated by maximum 

likelihood. The estimated negative binomial distribution parameter was found statistically 

significant, which indicates the data was overdispersed, and that the Poisson model would have 

been less appropriate. 

For future study, we recommend the use of micro-scale traffic data, such as 5 minute 

volumes at the time of each crash to better explain the effect of traffic flow on rear-end crashes 

in a microscopic model. 

In summary, this study demonstrated that a microscopic modeling approach can be 

applied to freeway rear-end crashes and it produced reasonable results. This type of microscopic 

crash frequency modeling adds to the understanding of the relationships between the risks of 

freeway rear-end crashes and causal factors. It can also help decision-makers select effective 
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countermeasures against freeway rear-end crashes, especially in the realm of design of roadways 

(e.g., roadways can be designed with certain shoulder widths and less curvature). 
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NOTATION 

The following symbols are used in this paper: 

][⋅E  = expected value 

e  = exponential function 
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f  = function 

)(⋅g  = density function of a gamma distribution 

h  = hazard function 

I  = total number of freeway sections 

J  = maximum number of disturbances 

)(⋅L  = log-likelihood function 

m  = Poisson distribution parameter 

N  = number of crashes 

n  =  number of crashes on a given section in a given time period 

P  = probability 

p  = probability value or p -value 

T  = number of years of crash data 

t  = time 

][⋅V  = variance 

v  = vehicle flow 

x  = vector of explanatory variables for a single observation 

α  = shape parameter of the Weibull distribution 

β  = vector of estimable parameters 

)(⋅Γ  = gamma function 
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δ  = variance of gamma distributed error term 

ε  = unobserved error term 

η  = parameter of the exponential distribution 

θ  = scale parameter of the Weibull distribution for Available Maneuvering Time 

κ  = dispersion parameter of the negative binomial model 

λ  = scale parameter of the Weibull distribution for Needed Maneuvering Time 

2ρ  = rho-squared statistic 

2χ  = chi-squared distributed likelihood ratio test statistic 

 

The following subscripts are used in this paper: 

a  = available maneuvering time 

f  =  following vehicle failure 

i  = freeway section 

j  = disturbance type or given period 

n  = needed maneuvering time 

o  = obstacle vehicle 
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TABLE 1 Model Estimation Results 

Variable Estimated Coefficient t -statistic 

Variables affecting the probability of becoming an obstacle vehicle ( oP ) 
Constant -1.158 (0.483)  -2.397

Daily VMT per lane -0.581 (0.107) * -5.421

Truck percentage-mile-per-lane 0.771 (0.139) * 5.552

Urban area 0.695 (0.133) * 5.237

Curvature per length 0.019 (0.011)  1.651

Off-ramp and merge 0.190 (0.105)  1.811

Variables affecting the probability of following vehicle's driver failure ( fP ) 
Constant -8.239 (0.749) * -11.000

Daily VMT per lane 0.552 (0.113) * 4.875

Truck percentage-mile-per-lane -0.779 (0.146) * -5.329

Speed limit -0.103 (0.009) * -11.069

Deviation of shoulder width 0.040 (0.006) * 6.824

Merge section 0.540 (0.100) * 5.415

Reciprocal of negative binomial 
dispersion parameter (κ ) 0.888 (0.064) * 13.918

Log-likelihood at zero (β  = zero, κ  = 1) -63,984.570
Log-likelihood at κ only ( β  = 0) -6,536.126
Log-likelihood at constants and κ  (other β  = 0)  -3,826.912
Log-likelihood at convergence  -3,484.632

2ρ  0.946
Standard errors are in parentheses. 
Level of significance: all greater than 90% and * > 99.9%. Coefficients that weren’t significant 
at the 90% level were restricted to zero and omitted from the table. 

2ρ was calculated by comparing the log-likelihood at zero (β  = zero, κ  = 1) to log-likelihood at 
convergence. 
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TABLE 2 Transferability and Stability Test Results 

Temporal transferability Test 
LL ( tβ ) = -3484.63 
LL ( aβ ) = -1781.94 
LL ( bβ ) = -1696.01 

2χ  = -2(LL ( tβ )- LL ( aβ )- LL ( bβ )) 
= -2(-3484.63-(-1781.94)-( -1696.01)) 
= 13.36 
(13.36 < 22.3621, with 95% confidence and 13 degrees of freedom) 
Transferable 

Coefficient Stability Test 
LL ( tβ ) = -3484.63 
LL ( aβ ) = -1819.27 
LL ( bβ ) = -1659.21 

2χ  = -2(LL ( tβ )- LL ( aβ )- LL ( bβ )) 
= -2(-3484.63-(-1819.27)-( -1659.21)) 
= 12.31 
(12.31< 22.3621, with 95% confidence and 13 degrees of freedom) 
Transferable 

 


