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Abstract 
 
Because of heavy weights and large turning radii, large truck (LT) movements have very 

different characteristics than those of smaller vehicles, such as passenger cars. This difference 

makes collection of LT volume data very important for accurate analysis of traffic stream 

characteristics in transportation planning and engineering. Since LT travel patterns are seasonal, 

data obtained by surveys conducted for a short period of time every one to three years may not 

be adequate for safety planning, traffic management, and infrastructure maintenance. Therefore, 

the ability to collect such data continuously via loop detectors is highly desirable. In this paper, 

an algorithm for estimating LT volumes using only single-loop outputs is presented. LT volumes 

estimated by the proposed algorithm were compared with those observed by dual-loop detectors, 

and the two LT volume series fit each other very well, especially when traffic volume was low.  
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INTRODUCTION 

Large truck (LT) movements have very different characteristics than those of smaller vehicles, 

such as passenger cars, due to their size as well as weight carried. An LT is defined in this paper 

as any truck that is longer than 11.89m (39 feet). The characteristics associated with LT 

movements require special attention in transportation planning and management, and many 

studies have been conducted to address specific problems caused by LTs. For example, 

Hutchinson (1990) studied the influences of LT characteristics on highway design and concluded 

that many procedures used for infrastructure design should be revised since the characteristics of 

many of the LT types using the highway system are incompatible with a variety of the 

assumptions underlying highway infrastructure design methods. Garber and Joshua (1989) 

analyzed LT-involved accidents in Virginia and determined that highway alignment is a 

predominant factor influencing the occurrence of crashes resulting from driver errors. As the 

presence of large and/or low-performance vehicles in the traffic stream reduces the total number 

of vehicles that can use the highway (Cunagin and Messer, 1983), the Highway Capacity Manual 

explicitly stipulates that passenger-car equivalents under different conditions should be used for 

highway design (Transportation Research Board, 1998).  

 

Therefore, LT volume data are essential for many purposes. Transportation planners require such 

data for route planning and traffic assignment; highway engineers need the data for road 

geometric and structural designs; and traffic managers need the data for traffic control and 

operation. Traditionally, such volume data are obtained by surveys. Due to their high cost, traffic 
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volume surveys are normally conducted periodically (every 1 to 5 years) at some "typical" 

locations for limited data collection durations. Though the survey-obtained data may be good for 

planning and design purposes, it is obviously too rough for dynamic traffic control and 

management as truck volume patterns vary with time (Hallenbeck, 1993). To meet the 

requirements of modern traffic control and advanced traffic management systems (ATMS), new 

techniques have been developed and are being applied to collect real-time LT volume data. As an 

example, Nihan et al. (1995) used the Mobilizer image processing system to collect volume data 

for different vehicle categories. Though the results of applying this type of vehicle classification 

procedure were favorable, there are still some feasibility problems with site application, as the 

system requires detailed calibration information and a good video perspective for satisfactory 

results. Such conditions are generally difficult to obtain. Another technique more widely applied 

is dual-loop detection which involves measurements using two consecutive loops placed several 

meters apart. Since a dual-loop detector (also called a speed trap or a double loop detector) is 

capable of measuring vehicle length, all the measured vehicles can be classified by their lengths. 

Dual-loop-measured vehicle lengths can also be used for vehicle identification purposes 

(Coifman, 1998). However, dual-loop detectors are not as widely available as single-loop 

detectors due to the costs. Obtaining LT volume information from single-loop measurements is, 

therefore, highly desirable. Sun et al. (1999) used waveforms to extract vehicle lengths for 

vehicle reidentification and their algorithm was found robust under various traffic conditions. 

However, their algorithm requires a single-loop detector to output waveforms, which the 

majority of the existing single-loop detectors cannot produce. This may hinder the application of 

this method.  
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Since most single-loop detectors are known to measure only gross volume and lane-occupancy 

directly, further efforts are needed to extract the desired vehicle length information from single-

loop outputs (volume and lane occupancy). In this paper, an algorithm that uses pattern 

discrimination and nearest-neighbor (NN) methods for LT volume estimation from single-loop 

measurements is described. Features of vehicle-length distribution for the selected site are 

addressed first, followed by the presentation of a pattern discrimination algorithm for separating 

intervals with possible LTs from those without. Then a NN method for LT volume estimation for 

those intervals with possible LTs is described. The estimated LT volumes are compared with 

those measured by dual-loop detectors and estimation errors are analyzed. In the last section, 

conclusions of this study are summarized.  

 

FEATURES OF VEHICLE-LENGTH DISTRIBUTION 

Study Data 

All data used for this study were obtained from the loop detection system of the Washington 

State Department of Transportation (WSDOT). The WSDOT has a network of traffic counters 

embedded in the roadway infrastructure. These counters are 6 feet (1.83m) wide square-loops of 

copper wire connected to cabinets located beside the roads (Ishimaru and Hallenbeck, 1999). 

Such counter stations are deployed about every half-mile on mainline lanes and ramps of 

freeways and state highways in the central Puget Sound region.  

 

Most stations have only single-loop detectors that measure volume and lane-occupancy in real 

time. Some stations are equipped with dual-loop detectors and are capable of measuring traffic 

speeds and vehicle lengths in addition to volumes and lane-occupancies. Loop measurements are 
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aggregated into 20-second intervals and transmitted to the WSDOT Traffic Systems 

Management Center (TSMC) for processing and archiving. Station ES-163R, located under NE 

130th Street's over-bridge of southbound I-5, is equipped with both single-loop detectors and 

dual-loop detectors. As shown in Figure 1, at this station on southbound I-5, there are five lanes, 

one HOV lane and four general-purpose (GP) lanes. The third general-purpose lane from the 

right was chosen for this study. Two single-loop detectors that form the dual loop are ES-163R: 

MMS___3 and ES-163R: MMS__S3. Measurements of ES-163R: MMS___3 were used as input 

for LT volume estimation. Dual-loop (ES-163R: MMS__T3) measurements were used to 

calculate vehicle length statistics and to verify the results produced by the proposed algorithm 

using single-loop measurements.  

 

FIGURE 1. Snapshot of southbound I-5 at NE 130th Street. 

 

Vehicle Classification Categories 

Dual loops in the WSDOT freeway detection system classify vehicles into four bins according to 

their lengths. Because of variations in the lengths of vehicles within specific FHWA vehicle 

classes, the four WSDOT length-based vehicle classes do not directly relate to the 13 FHWA 

vehicle classes (Hallenbeck, 1993). The four length-based vehicle categories are described in 

Table 1.  

 

TABLE 1. Four Length-Based Vehicle Categories Used by the WSDOT 
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As an LT is defined as a vehicle longer than 11.89m, its volume corresponds to the summed 

volume of Bin3 and Bin4. For convenience, SV (short vehicle) is used to represent vehicles 

assigned to Bin1 or Bin2 in this paper. 

 

 

Vehicle-Length Distribution 

Since knowledge of vehicle-length distribution features is essential for choosing appropriate 

algorithms for vehicle classification, individual vehicle-length data are desired for analysis. 

Though the WSDOT dual-loop detectors measure vehicle lengths individually, the data are 

aggregated into 20-second intervals for output. This makes the individual vehicle-length 

measurements unavailable when more than one vehicle is detected per interval. Hence, to obtain 

specific vehicle length data, interval measurements with only one vehicle detected per interval 

were analyzed. This was, obviously, time-consuming work, so a computer program to extract 

such data was developed. To guarantee a large sample population, 14 days of data (from May 3 

to May 16, 1999) were employed. In this 14-day data sample, 5045 20-second intervals were 

found to contain only 1 vehicle and 4915 of them were qualified for this study (all error-flagged 

measurements were excluded).  

 

Figure 2 shows the frequency distribution of the observed vehicle lengths (measurements taken 

for intervals with only one vehicle detected). If the probability of a vehicle being uniquely 

detected by a dual-loop detector during any 20-second interval is identical across bins, the 

sample vehicle-length distribution shown in Figure 2 represents the real vehicle-length 

distribution at the study site. Obviously, there are two peaks in the figure, one at about 5.2m, and 
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the other at about 23.5m. The fact that vehicle lengths concentrate at two different levels 

indicates that vehicles can be naturally divided into two classes, corresponding to the SV class 

and the LT class, according to their lengths.  

 

FIGURE 2. Length distribution of vehicles on southbound I-5 

 

Figures 3(a) and 3(b) show length distributions for the SV class and the LT class, respectively, 

together with their associated normal distribution curves. It can be seen that the normal 

distribution curve fits the count histogram very well for both classes. Descriptive statistics of the 

SVs and LTs are given in Table 2. The standard deviation of SV lengths is 0.87 m (2.86 ft), 

about one fourth that of LT lengths. This indicates a high concentration of SV lengths, and this 

feature is to be used for LT volume estimation later. 

 

FIGURE 3. Vehicle length distributions with normal distribution curves 

 

TABLE 2. Descriptive Statistics of Dual-Loop Measured Vehicle Lengths 

 

METHODOLOTY FOR THIS STUDY 

Since traffic flow contains a mixture of SVs and LTs, single-loop measurements are typically the 

integrated results of the two types of vehicles. However, the two types of vehicles have very 

different length and weight characteristics. The length difference can serve as a theoretical basis 

for estimating the volumes of SVs and LTs based on single-loop measured volumes and 

occupancies. In this study, a two-step algorithm is developed to estimate LT volumes. The first 
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step in the proposed algorithm is to separate interval measurements with possible LTs from those 

without LTs. Then, for the measurements with possible LTs, the nearest neighbor (NN) decision 

rule is applied as the second step to extract LT volumes out from single-loop outputs. Details of 

the algorithm are described below. 

 

Vehicle Length Difference (LT vs SV) 

As shown in Table 2, the mean length of LTs is over three times longer than that of SVs. Hence 

the presence of LTs in any 20-second interval significantly increases the average vehicle-length 

for the interval. When the average vehicle-length for an interval reaches some critical level, the 

existence of LTs in the interval may be inferred. Wang and Nihan (2002) used this feature to 

exclude single-loop measurements with long vehicles from speed estimations and the calculated 

speeds were very close to those observed by dual loops.  

 

Two Fundamental Assumptions 

Though vehicle length is not directly measurable by single loops, it may be estimated by models 

that use the single-loop measurements. Wang and Nihan (2000) used a log-linear regression 

model to estimate mean effective vehicle length (EVL, defined as the average length of vehicles 

plus the single-loop length) for each interval using only single-loop outputs. They applied the 

estimated mean EVLs for speed estimation, and obtained favorable results. In this paper, it is 

also needed to represent mean EVL by single-loop measurements, but instead of using 

regression, a pattern discrimination method is employed to determine their relationship. The 

method is based on the following two fundamental assumptions: 
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(1) For each study period that contains m (m > 2) intervals, vehicle speeds can be considered 

constant; and 

(2) There are at least two intervals that have no LTs present in each period.  

Please note that, in this paper, the terms “period” and “interval” are used with significant 

distinction. An interval indicates the duration of a single volume or occupancy measurement, and 

is predetermined by the loop detection system (in this study, it was 20 seconds, determined by 

the WSDOT loop detection system). A period represents multiple intervals and is determined by 

the requirements of the proposed algorithm. 

 

Relationship between Mean EVL and Occupancy 

The basic relationship between mean EVL and occupancy is shown in Equation (1). 

TsOl iii ⋅⋅=                                                                  (1) 

Where  i  = vehicle index; 

            il  = EVL of the ith vehicle; 

            is  = speed of the ith vehicle; 

            Oi = percentage of time loop is occupied by the ith vehicle in the interval; 

            T  = time length of each interval (In this study T = 20 seconds). 

 

Since vehicle speeds are assumed constant within each period, the average EVL for period j can 

be obtained as follows: 

)(
)()()(

jN
TjsjOjl ⋅⋅

=                                                            (2) 

Where  j = period index; 
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           l   = mean EVL of all the vehicles in the period; 

           s  = constant speed of the period; 

           N  = volume of the period; and 

           O = summation of measured interval-based occupancies for the period, i.e. ∑
=

=
N

i
iOO

1

. 

Since T is a known constant, and O and N can be straightforwardly calculated from single-loop 

outputs, the only problem in obtaining l  is the unknown variable s. To solve this problem, the 

following pattern discrimination algorithm is adopted to get rid of the unknown variable s in the 

calculation. 

 

Screening out Interval Measurements without LTs 

First, a suitable period length (some multiple of interval length) needs to be determined - that is, 

to choose the appropriate m value for the analysis that maximally meets the two assumptions. For 

meeting assumption one, it is better to choose m as small as possible. However, if m is too small, 

assumption two may be easily violated. To meet assumption two, m should be reasonably large. 

Thus the selection of m is a trade-off between the two assumptions and depends on traffic 

conditions of the specific site. In this study, m = 15 was selected based on preliminary 

calculation results (m = 9 and m = 12 were also tried, but the results were less favorable). That 

is, the period length of 5 min was chosen for this study and, for any time period j, 15 sets of 

interval measurements (lane occupancy and volume) were available. 

 

Given m=15, 46 out of 288 periods had a maximum speed change larger than 15% of the period 

mean speed, and 19 of the 46 periods had a maximal speed change of more than 20%. Since the 

effects of speed variation on estimation results are not obvious, further study is needed to clarify 



Y. Wang and N. Nihan 11

how much variation of speed is acceptable for the proposed algorithm. As for the chance of 

violating assumption two, it should be very low based on the observed data. Assume that LT 

arrivals follow Poisson process. Then, the probability of violating assumption two can be 

straightforwardly calculated. For the study data, the average LT arrival rate was 0.4745 vehicles 

per 20-sec interval. Then the probability that a period would violate assumption two was 0.0082. 

Based on the calculated probability, 2.36 out of 288 periods were expected to violate assumption 

two, and this was very close to the actual number of 2 periods. 

  

Sorting the interval measurements in ascending order of average occupancy per vehicle results in 

  
)(
)(

)(
)(

)(
)(

2

2

1

1

jN
jO

jN
jO

jN
jO

m

m≤≤≤ L                                                     (3) 

 

Based on assumption two, there should be at least two sets of non-zero interval measurements of 

volume and occupancy for intervals without LTs. These two smallest non-zero measurement 

sets, (Op(j), Np(j)) and (Op+1(j), Np+1(j)), where p ∈ [1, m-1],   are used to calculate the occupancy 

sum (Osv(j)) and the volume sum (Nsv(j)) of the corresponding two intervals with the smallest 

average occupancy per vehicle.  

)()()( 1 jOjOjO ppsv ++=                                                          (4) 

   )()()( 1 jNjNjN ppsv ++=                                                         (5) 

Then, based on Equation (2), Osv(j) and Nsv(j) can be used to calculate )( jl sv ,  the "ruler" for 

measuring the rest of non-zero measurements, as shown in Equation (6). The reason for using 

two non-zero interval measurements instead of one for )( jl sv  calculation was to reduce the 

possible effect of data errors. 
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)(
)()(

)(
jN

TjsjO
jl

sv

sv
sv

⋅⋅
=                                                         (6) 

Since SV lengths vary only slightly, )( jl sv  can be regarded as a known variable being equal to 

the mean EVL for all SVs. Then, Equation (7) can be used to calculate mean EVLs of the 

remaining intervals (p+2, p+3, …, m), if any, for period j. 

sv

sv

sv

k

k
k l

jO
jN

jN
jO

jl ⋅⋅=
)(
)(

)(
)(

)(                     for k = p+2,..., m       (7) 

Where k is the interval index. 

 

As shown in Figures 3(a) and 3(b), length distributions for SV and LT are very close to their 

corresponding normal distributions. The Kolmogrov-Smirnov Z statistics for SV and LT lengths 

were 11.415 and 2.211, respectively, indicating that both SV and LT lengths were normally 

distributed at 0.01 significance levels according to our sample data. Hence SV lengths are 

assumed to follow the ),( 2
svsvN σµ  distribution, and LT lengths to follow the ),( 2

ltltN σµ  

distribution, where µsv and 2
svσ  are the mean and variance of SV lengths, and µlt and 2

ltσ  are the 

mean and variance of LT lengths.  If there are nksv(j) SVs detected for interval k of period j, then 

the mean SV length follows the N(µsv, )(/2 jnksvsvσ ) distribution. Since there are normally several 

SVs per interval, the mean vehicle length for the interval should be very close to µsv if no LT is 

present. However, if an LT appears in an interval, the mean vehicle length can increase 

significantly. Thus, a critical value of mean EVL, )( jl kc , for interval k, is required to identify 

whether the interval contains possible LTs. Based on trial and error, Equation (8) was employed 

to calculate the critical values of mean EVLs for separating intervals with only SVs from 

intervals with possible LTs. 
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loop
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ltltsvk
kc l

jN
jN

jl +
−+⋅−

=
)(

)1)((
)(

σµµ
                                      (8) 

Where lloop is loop length and lloop = 1.83 meters (6 feet) for WSDOT's loop detectors. Using the 

values shown in Table 2, )( jl kc  can be calculated in real time for interval k. 

 

The mean EVL for each interval, )( jl k , calculated by Equation (7) will be compared with the 

chosen critical value, )( jl kc , calculated by Equation (8).  If )()( jljl kck > , interval k will be 

identified as one which may contain LTs, and the measurements will be processed further to 

calculate the LT volume. Otherwise, the interval measurements will be used to update Osv(j) and 

Nsv(j) by Equations (9) and (10) in order to reduce the effects of random errors on the calculation. 

)()()( jOjOjO ksvsv +=                                                          (9) 

   )()()( jNjNjN ksvsv +=                                                       (10) 

 

When Equations (9) and (10) have been used for all qualified intervals, Osv(j) and Nsv(j) will be 

the occupancy and volume for intervals with only SVs for period j.  

 

LT Volume Estimation 

For the intervals identified as intervals that may contain LTs, the nearest neighbor (NN) decision 

rule is applied to determine the number of LTs within each interval. The NN theory is typically 

employed to assign an unclassified sample to the nearest classification category. To find the 

nearest neighbor, the distance or similarity between the current sample and each of the existing 

categories needs to be calculated. There are many different ways, such as the fuzzy K-nearest 

neighbor algorithm (Keller et al., 1985), conditional Bayes risk (Cover and Hart, 1967), and the 
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distance-weighted k-NN rule (Dudani, 1976), to determine the appropriate category to which the 

sample belongs.   

 

In this study, the unclassified sample interval is assigned to a vehicle composition category based 

on its single-loop measurements (interval lane-occupancy and volume). The predefined 

categories are possible compositions of SVs and LTs, and the number of predefined categories 

depends on total volume of the interval and possible maximal LT volume. According to previous 

observations, the maximal LT volume per interval is 7. Then for any interval k of period j, there 

should be no more than 8 possible vehicle compositions, corresponding to LT numbers from 0 to 

7 respectively. If Nk(j) < 7, there are Nk(j) + 1 categories identified by LT numbers from 0 to 

Nk(j). For example, if only 3 vehicles are detected in the interval (i.e. Nk(j) = 3), the following 

four predefined categories are available to assign to, (3 SVs, 0 LT), (2 SVs, 1 LT), (1 SVs, 2 

LTs) and (0 SVs, 3 LTs). 

 

Since LT length and SV length were assumed to follow the ),( 2
ltltN σµ  and the ),( 2

svsvN σµ  

distributions, respectively, and the LT number and SV number are independent variables, the 

mean vehicle-length distribution for a category with x LTs should follow the ))(),(( 2 jjN kxkx σµ , 

where 

)(
))((

)(
jN

xxjN
j

k

ltsvk
kx

µµ
µ

+−
=                                              (11) 

)(
))((

)( 2

22
2

jN
xxjN

j
k

ltsvk
kx

σσ
σ

+−
=                                             (12) 
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Then the distance between the sample interval and the category with x LTs can be calculated by 

Equation (13). 

)(
)()(

)(
j

jljl
jd

kx

kxloopk
kx σ

µ−−
=        for x = 0, 1, ..., min (Nk(j), 7)        (13) 

Equation (13) actually transforms variable loopk ljl −)(  (mean vehicle length) into a standardized 

variable (variable that follows the N(0, 1) distribution) )( jdkx , which represents the distance to 

the origin. The smaller the )( jdkx , the greater the probability that the current interval's vehicle 

composition belongs to category x. If  

)()( jdjd kxkn ≤            for x = 0, 1, ..., min(Nk(j), 7)               (14) 

then this unclassified sample interval is allocated to category n, and the LT volume is 

automatically determined correspondingly. 

 

ESTIMATION RESULTS AND DISCUSSION 

Based on the methodology presented, a computer program was developed to implement the 

entire procedure from loading data to printing out the estimated LT volumes. All the information 

required to set up the parameters for the program is loop length, mean and variance of SV 

lengths, and mean and variance of LT lengths. For the current study, data from the third GP lane 

of Station ES-163R on southbound I-5 was used. Statistics on dual-loop measured SV lengths 

and LT lengths are given in Table 2. 

 

The period length was chosen to be 5 minutes, and there were 15 20-second intervals per period. 

The program, therefore, processed 15 sets of interval measurements each time, estimated LT 

volumes for each time interval, and output aggregated LT volumes for each period. Input data 
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were 24-hour single-loop measurements, dated Thursday, May 13, 1999. Figure 4 shows the 

comparison between the LT volumes observed by the dual loop and those estimated by the 

proposed algorithm using single-loop measurements for each time period. In general, the two 

curves fit well, especially during nighttime and early morning stretches. The correlation 

coefficient between the two time series is 0.83, showing that they are well synchronized. 

Comparisons of the two LT volumes are summarized in Table 3. 

 

FIGURE 4. Comparison of dual-loop observed LT volumes and those estimated by the proposed 

algorithm. 

 

TABLE 3. Comparisons between the Observed LT Volumes and Estimated LT Volumes 

 

As the dual-loop observed 24-hour volume of 28,060 is smaller than the single-loop observed 

volume of 28,302, the difference in sums in Table 3 may be exaggerated. In fact, the two single 

loops that form the dual loop, ES-163R: MMS___3 and ES-163R: MMS__S3, observed almost 

the same volume − 28,302 and 28,325, respectively. Thus, the dual loop probably discarded 

some vehicles from its volume count. This happens when the dual loop flags an error in the 

length or speed calculation and drops the detected vehicle from calculation. LTs are judged to be 

the most likely vehicles to activate such flags. If LTs have a higher probability of causing dual-

loop malfunctions, and hence are discarded, the difference between the estimated LT volume and 

ground truth data should be even smaller than that shown in Table 3. However, further study is 

needed to verify this. Video ground truth data could aid such verification and provide closer 

evaluation results.  
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FIGURE 5. LT volume estimation error and total vehicle volume curves.  

 

Figure 5 shows the estimation error (denoted by ε defined as the estimated LT volume minus the 

dual-loop observed LT volume) and single-loop-observed total vehicle volume for each time 

period. Statistics for estimation errors are summarized in Table 4. Due to the fluctuation of 

traffic volumes and the tiny difference in segmentation time between single-loop and dual-loop 

detectors, the variation of the error curve within a small range should be normal. In Figure 5, 

however, while estimation errors are very close to 0 under low volume (less than 100veh/5min, 

or 1200vph) conditions, the proposed algorithm overestimates LT volumes when traffic volume 

is heavy (over 150veh/5min or 1800vph). This is probably due to the fact that when traffic 

volume is heavy, speed is very unstable, and the uniform speed assumption is seriously violated. 

The lengthened occupancies caused by slower speeds were attributed to longer vehicle lengths 

and, therefore, LT volumes were overestimated. On the other hand, there were two periods, one 

at 9:45am and the other at 2:30pm, with LT volumes significantly underestimated by the 

algorithm. By checking the dual-loop measurements of the periods, the underestimations were 

found caused by violations of the second assumption, i.e., there was no interval or only one 

interval was LT-free for each of the two periods. Under such cases, the algorithm will mistakenly 

regard occupancy for intervals with LTs as SV occupancy, and hence real vehicle lengths will be 

shortened correspondingly in the calculation. However, the probability of such violations can be 

very rare if period length is properly chosen.  

 

TABLE 4. Statistics of Estimation Errors 
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In general, the proposed algorithm works better under un-congested conditions as shown by the 

statistics in Table 4. When traffic volume is heavy, estimation errors may be enlarged. For the 

studied data, relative estimation errors shown in the bottom row of Table 4 were within 8% even 

for conditions with high traffic volume. This indicates that the proposed algorithm works 

reasonably well under low, moderate, and reasonably high, yet still stable, traffic conditions. 

However, if traffic is under stop-and-go conditions, the algorithm will not be applicable due to 

the serious violations of its fundamental assumptions. 

 

CONCLUSION 

 

LT volume data are important for many purposes in transportation planning and engineering. As 

LT travel patterns are season-dependent, data obtained by surveys conducted for a short period 

of time every one to three years may not be sufficient for adequate safety planning, traffic 

management and infrastructure maintenance. Though dual-loop detectors provide comparatively 

reliable real-time measurements of volume for each classification, they are still not as commonly 

available as single-loop detectors. Therefore, making single loops capable of providing LT 

volume data is a very significant goal for practice as well as for research and development of 

ATMS systems. 

 

In this paper, an algorithm to estimate LT volume using only single-loop outputs was presented. 

A computer program that implements the algorithm was developed in this study. To run the 

program, a few parameters, i.e., single-loop length, mean and variance of SV length, and mean 
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and variance of LT length, need to be identified. The program takes in single-loop measurements 

and outputs LT volume for each time interval. Pattern discrimination was used to separate 

intervals with possible LTs from those without LTs. For the intervals with possible LTs, the NN 

decision rule was applied to the interval's characteristics (as measured by single-loop data), to 

assign it to one of the predefined vehicle composition categories. Once the nearest category is 

identified, LT volume is automatically estimated. 

 

The LT volumes estimated by the proposed algorithm were compared to those observed by dual-

loop detectors. The two LT volume series fit very well, especially when traffic volume was low. 

If single-loop data are input in real time, the program will give real-time LT volumes. This will 

be very valuable for dynamic traffic control and management. 

 

Possible estimation errors in using the algorithm were also discussed. To avoid overestimation 

and underestimation of the LT volumes, two fundamental assumptions, i.e., uniform speed 

within each period, and at least two intervals per period have no LTs present, must be met. Under 

the current status, the program is not capable of checking the satisfaction of the two fundamental 

assumptions automatically. Also, quantitative effects of the violations of the two fundamental 

assumptions on the estimation results are unclear. Future research will specifically address these 

problems and widely check the transferability of the algorithm to other sites in order to make the 

proposed method more complete and robust.  
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Table1 
 
 
 
TABLE 1. Four Length-Based Vehicle Categories Used by the WSDOT 
 
Classes Range of length (meter) Vehicle types 
Bin1 Less than 7.92 Cars, pickups, and short single-unit trucks 
Bin2 From 7.93 to 11.89 Cars and trucks pulling trailers, long single-unit trucks 
Bin3 From 11.90 to 19.81 Combination trucks 
Bin4 Longer than 19,82 Multi-trailer trucks 
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Table 2 
 
 
 
 
 
TABLE 2. Descriptive Statistics of Dual-Loop Measured Vehicle Lengths 
 
Class Number of Cases Mean Std Deviation Minimum Maximum 
SV (Bin1 + Bin2) 4443 5.48m 0.87m 1.83m 11.89m 
LT (Bin3 + Bin4) 472 22.50m 3.59m 12.19m 30.17m 
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Table 3 
 
 
 
 
 
 
TABLE 3. Comparisons between the Observed LT Volumes and Estimated LT Volumes 
 

 Minimum Maximum Mean Median Std Dev. Sum 
Observed 5-min LT Volume 0 25 7.12 6 5.24 2050 
Estimated 5-min LT Volume 0 26 7.49 7 4.77 2156 
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Table 4 
 
 
 
 
 
TABLE 4. Statistics of Estimation Errors 

Period volume conditions (veh/5min)  
Less than 50 Between 50 and 100 More than 100 All conditions

Case No. 122 55 166 288
E(ε) *   (veh/5min) -0.098 -0.146 0.711 0.368
σ(ε) **  (veh/5min) 0.827 1.026 3.742 2.915
E(LTs) (veh/5min) 2.373 4.636 9.855 7.118
E(ε) / E(LTs) -0.041 -0.031 0.072 0.052

* E(⋅) indicates the expectation of the variable in the parentheses. 
** σ (⋅) indicates the standard deviation of the variable in the parentheses. 
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