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ABSTRACT: 

Signal cycle failure (or overflow) is an interrupted traffic condition in which a number of queued 

vehicles are unable to depart due to insufficient capacity during a signal cycle. Cycle failure 

detection is essential for identifying signal control problems at intersections. However, typical 

traffic sensors do not have the capability of capturing cycle failures. In this paper, we introduce 

an algorithm for traffic signal cycle failure detection using video image processing. A cycle 

failure for a particular movement occurs when at least one vehicle must wait through more than 

one red light to complete the intended movement. The proposed cycle failure algorithm was 

implemented using Microsoft Visual C#. The system was tested with field data at different 

locations and time periods. The test results show that the algorithm works favorably: the system 

captured all the cycle failures and generated only three false alarms, which is approximately 

0.9% of the total cycles tested. 
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1 INTRODUCTION 

Performance evaluation for signal control plans at intersections is an important task for many 

transportation applications. According to the Highway Capacity Manual 2000 (HCM) (TRB, 

2000), the measures of effectiveness for this task include Level of Service (LOS, or the control 

delay per vehicle), queue length, and occurrence of cycle failure (or overflow). Queue length 

refers to the maximum number of vehicles that are queued during a signal cycle. Cycle failure 

happens when one or more queued vehicles are unable to depart due to insufficient capacity 

during a signal cycle. The HCM provides methodologies to estimate LOS and queue length using 

roadway geometry, traffic volumes, and signal timing data. Another approach to estimate these 

measures of effectiveness is through simulation models that simulate the movement of each 

vehicle.  These models require input data similar to that used by the HCM methodologies. 

Obviously, both types of methodologies depend on quality inputs to estimate the measures of 

effectiveness. If the inputs do not fully represent the actual diversity in traffic demand, the results 

from these methods may not properly reflect the performance of a signal control system. 

Furthermore, approaches other than the aforementioned ones are needed for evaluating 

the performance of modern traffic control applications, which aim to adapt signal timing plans to 

changing traffic volumes and conditions. Control technologies, such as the Adaptive Signal 

Control (ASC) and the Transit Signal Priority (TSP) systems, require evaluations under actual 

traffic conditions because they are specifically designed to respond varying traffic conditions.  

For example, because a TSP system impacts control delays for both transit vehicles and 

general purpose vehicles, several traffic parameters must be measured onsite in order to evaluate 

the benefit of the TSP system through comparisons of the before and after scenarios. The number 

of cycle failures is considered one of the most useful parameters for measuring drivers’ 

frustration toward a signal control system. Real-time cycle failure data can also be used to 
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improve dynamic signal control. The occurrence of signal cycle failure on a phase indicates that 

the flow rate exceeds the capacity of the phase. If this information is available in real time in a 

traffic controller, the traffic signal control system may be able to optimize signal timing to 

provide more green time for the over-flowed phase. Another example concerns Advance 

Traveler Information Systems (ATIS). A key evaluation question is whether an ATIS is correctly 

describing the current performance of an arterial. The performance can be measured in terms of 

LOS, queue length, and/or cycle failures. Being able to detect and broadcast the occurrence of 

cycle failures (that implies “this intersection is currently congested”) will help the pubic to 

perceive traveler information more specifically. Therefore, detection of cycle failures in real-

time is of practical significance. 

In recent years, Video Image Processors (VIPs) have been increasingly employed as 

traffic sensors for intersection signal control. Compared to loop detectors, VIPs can provide 

ground-truth video images in addition to vehicle count and presence detection. The video images 

can be used to extract further traffic information unavailable from loops and other traditional 

traffic detectors. Several studies have been conducted to collect intersection traffic data using 

video image processing. For example, Yin et al. (2004) used virtual loops to measure traffic 

parameters. The position and size of each loop can be adjusted by users for collecting volume, 

speed, occupancy, and vehicle classification data. A video image processing system, called 

SPatial Image processing Traffic flow Sensor (SPITS), was developed by Higashikubo et al. 

(1997) to detect traffic queue lengths. SPITS measures a queue length in meters, but cannot 

provide the number of vehicles in a queue. Fathy and Siyal (1995, 1998) also developed image 

processing systems to measure volume, speed, vehicle length, and queue length. The profiles 

used to detect queue length were divided into sub-profiles, each with approximately the same 

length per vehicle, thereby making it possible to measure the number of vehicles in the queue. 
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Gupte et al. (2002) proposed a method to track vehicles by matching regions with vehicles in the 

video stream. Vehicle parameters such as location, length, and speed can be extracted from 

images captured by a properly calibrated camera. They also proposed to use a dynamically 

updated threshold to separate vehicles from the background. In a study conducted by Saito et al. 

(2001), average stopped vehicle delays were estimated by image analysis. The total delay was 

calculated by adding all the stopped vehicle delays in a sampling time interval. The average 

stopped vehicle delay was then estimated by dividing the total delay by the total volume. Our 

review did not find studies specifically focused on cycle failure detections at signalized 

intersections, although cycle failure may be as important as other aforementioned parameters for 

intersection traffic control. From a motorist’s point of view, cycle failure can be easily sensed 

compared to average control delay or queue length. 

This paper introduces a video image processing algorithm developed by the Smart 

Transportation Applications and Research Laboratory (STAR Lab) at the University of 

Washington for cycle failure detection at signalized intersections. In this paper, cycle failure is 

defined from a drivers’ perspective, i.e., cycle failure occurs when a driver joining a specific 

movement queue during the green time interval is forced to wait through more than one red light 

to complete the intended movement via the intersection. A computer system for cycle failure 

detection was developed based on this algorithm. The system was tested with field data collected 

from VIPs deployed for signal control at two intersections in the City of Lynnwood, Washington. 

Test results will be presented and discussed in detail in this paper. 

 

2 METHODOLOGY 

A VIP deployed for signal control at an intersection is typically mounted at a fixed location 

above the intersection facing down toward an intersection approach. In the camera’s field of 
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view, everything is relatively stable except moving objects such as vehicles and pedestrians. In a 

video image, we regard moving objects as foreground and the rest as background. When no 

moving objects appear in an image, the image shows the complete background scene. 

In ordinary full-motion video streams, the frame rate is from 24 frames per second (fps) 

to 30 fps. To increase the computational efficiency, the frame rate used in the proposed 

algorithm is four frames per second. Due to the relatively low speed at intersections, this frame 

rate is sufficient to capture the continuous movements of vehicles for our analysis. 

In this study, we developed a motion detection algorithm for cycle failure detection. The 

algorithm contains four steps: (1) background extraction from prevailing traffic images; (2) 

dynamic threshold determination for segmenting foreground objects from background images; (3) 

locating the end-of-queue with motion images; and (4) determining whether a cycle failure 

occurred for each lane in each cycle. Details of the four steps are described in the following 

sections. 

 

Background Extraction 

A good quality background image is essential for our video image processing algorithm. It is 

used to identify moving objects for each video image. Since it is generally difficult to find a 

frame in a video stream without any moving objects, a background extraction method is needed 

to compose the background image for a video scene. Avery et al. (2004) presented a background 

image extraction algorithm based on the changes of pixel colors from frame to frame. If the 

absolute differences of a pixel’s R (red), G (green), and B (blue) channel values are below the 

corresponding thresholds for any two consecutive frames, the pixel is identified as a background 

pixel and the color values are recorded. The algorithm scans all the unconfirmed pixels 

repeatedly until all pixels on the scene are confirmed as background pixels. These pixels form 
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the background of a camera scene. This algorithm worked well for freeway applications under 

non-forced-flow conditions at a frame rate of four frames per second.  

Considering that vehicles may stop or move very slowly at intersections, we need a 

different method for background extraction. The method employed for this study assumes that 

each background pixel in a video scene is clearly visible (not occluded by moving objects) for at 

least 50% of the time in a given period. To apply the background extraction method, a number of 

consecutive frames need to be selected. For each pixel, the pixel’s R (red), G (green), and B 

(blue) channel values in these frames are sorted and the median values for the R, G, and B 

channels are selected to be the background values for the pixel. Figure 1 shows how the value for 

a background pixel (i, j) is determined. As the figure shows, the location (i, j) was not occupied 

by foreground (or moving objects) in most of the frames captured over a period of time. In this 

case, the majority of the frames have the same R, G, and B channel values at pixel (i, j) when it 

is not occluded by any moving objects. The median of these values for pixel (i, j) will be the 

value of the background at this position. By repeating the same process for each pixel in a video 

scene, a background image of the scene can be composed. The efficiency and accuracy of this 

background extraction method is sensitive to the number of frames applied to the process. Figure 

2 shows some examples of the background images obtained by this method. For the field data 

used in this study, image sets with 60 to 90 frames worked reasonably well. The reader may have 

noticed that the background image extracted from 30 frames does not look right, especially in the 

zone indicated by the arrow. This was due to the fact that, in the 30-frames data set, some 

background pixels were occluded by moving objects in more than 15 frames and, therefore, the 

median R, G, and B channel values selected did not represent the true values for the background 

pixels. Increasing the number of frames for analysis will reduce the probability of violating the 

method assumption, but will also reduce the method’s computational efficiency. We recommend 
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using 60 to 90 frames for the median background extraction algorithm. Comparison of the 

background images extracted from using 60 frames and 90 frames did not find major differences. 

This indicates that, when the number of frames is large enough, further increasing the number of 

frames may not result in any significant improvements to the quality of the extracted background 

image. The appropriate number of frames for background extraction can also be determined by 

users, based on considerations of both efficiency and accuracy for specific applications. It may 

also be helpful if users manually find a period of video stream that maximally satisfies the 

background pixel assumption. All the example backgrounds were extracted when vehicles were 

moving most of the time. This avoids assigning vehicle pixels to the background images. 

However, if a user chooses only the red light time for background extraction, some stopped 

vehicles may become part of the background. The background extraction does not need to be 

performed frequently. Users can choose non-peak hours to extract the background to ensure a 

good quality background image. 

The extracted background must be updated dynamically to adapt to changes of light and 

other environmental conditions in the scene. In this study, the method developed by Gupte et al. 

(2002) is applied to update the background. This method first finds the instantaneous background, 

which is defined as the background of the current frame. For pixels covered by the foreground, 

their color values are set to the same values as those in the background image. The background 

image is updated by the weighted summation of the instantaneous background and the original 

background. In our tests, the weighting factors used were 0.1 for the instantaneous background 

pixels and 0.9 for the original background pixels. 

The grayscale value of each pixel in the frames and the background image were 

calculated from the R, G, and B channel values using a standard conversion formula: grayscale = 

0.30*R + 0.59*G + 0.11*B (Steinmetz and Nahrstedt, 1995). Because the algorithms employed 
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for the following analyses worked more efficiently with grayscale values, only grayscale images 

were used. 

 

Dynamic Threshold 

The extracted background image is essential for vehicle detection. Each frame is compared with 

the background image. Non-background pixels are considered to be part of the moving objects 

such as an automobile, motor cycle, bicycle, or pedestrian. To determine whether a pixel is a 

background pixel, we need to establish a threshold. For a given pixel, if its value difference from 

the background value is larger than the threshold, it will be determined as a non-background 

pixel. Otherwise, it is confirmed as a background pixel. The threshold may be a constant value 

chosen by trial and error or by experience. However, with a dynamically updated background, a 

fixed threshold for each frame may not yield satisfying results. Therefore, a dynamic threshold 

was employed for this study. 

A dynamic threshold value is calculated for each frame using a difference image that 

represents the differences between the background image and the current image. Each pixel 

value on the difference image is the absolute difference of pixel values between the current 

frame and the background. Therefore, the foreground pixels in the difference image will have 

higher values, and the background pixels will have lower values. Figure 3 (b) shows a difference 

image generated from the current image shown in Figure 3 (a). The grayscale histogram of all 

pixels in a typical difference image is shown in Figure 3 (c). Since most of the pixels in the 

difference image are part of the background, the histogram has a higher peak on the left. The 

other peak on the right of the histogram represents the grayscale distribution for foreground 

pixels. The threshold will probably be located at the bottom of the valley between the two peaks. 

Gupte et al. (2002) assumed that the threshold should be at the first point from the left with a 



Zheng, Wang, Nihan, and Hallenbeck 10

significant pixel value difference (90% of the peak value, for example) corresponding to that of 

the left peak. However, since the histogram of the difference image is bimodally distributed, we 

prefer using Otsu’s method (Otsu, 2001) to find the threshold between the two peaks. Otsu’s 

method has been widely adopted for threshold searching in image processing studies. The 

threshold determined by Otsu’s method minimizes the intra-group variance and works well for 

many applications.  

With a specifically identified threshold, the difference image can be transferred into a 

binary image, where the pixel value “0” means background and “1” means foreground. The 

following analysis is based on this binary image. Figure 3 (d) shows the binary image generated 

from the current image shown in Figure 3 (a). 

 

The End-of-Queue 

In order to detect cycle failure, one must keep tracking the end of queue when the traffic signal 

turns green. If the vehicle at the end of a queue clears the intersection, there is no cycle failure; 

otherwise, a cycle failure is recorded. In this program, the user needs to interactively input the 

position of the stop line and the longitudinal line of each lane. To determine the end of a queue, 

motion images were used. A motion image is the absolute difference of two contiguous frames in 

a video stream and shows only the moving objects between the two frames. A fully stopped 

vehicle in a queue cannot be reflected in the motion image, but can be shown in the difference 

image. By comparing a motion image with the corresponding difference image, a stopped 

vehicle can be confirmed. Figure 4 shows the flow chart for identifying stopped vehicles and 

finding the queue end for a lane. Since there is noise in both the motion image and difference 

image, the determined queue end sometimes changes noticeably, although not because of an 

approaching vehicle. To make the result more stable, a median filter was used for the position of 
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the queue end in the time domain. The positions of the queue end in the last several frames were 

recorded and their median was used as the queue end of the current frame. In this study, we 

chose to use seven frames for calculating the median. This number of frames produced a smooth 

performance of queue-end detection and a quick reaction to the change of queue length. Figure 5 

shows a snapshot of the user interface with the identified end-of-queues. In this picture, the 

image box on the right shows the motion image. The reader can see that all stopped vehicles in 

the two left lanes are not shown in the motion image, but vehicles moving under the left-turn 

green signal in the third lane from the left are visible. The short horizontal bars at the end of the 

longitudinal lines were automatically drawn by the software to mark the detected positions of the 

end-of-queues. 

Signal data at an intersection can be obtained from the signal controller when the system 

runs online. At the current offline development and test stage, however, signal controller data are 

unavailable. The status of signal lights is estimated from the movements of vehicles in the video 

stream. To detect vehicle movements, a virtual loop is created near the stop line for each lane as 

shown in Figure 5. We call these motion loops. Once the stopped vehicle closest to the stop line 

is detected as in-motion, it is assumed that the signal light for the lane has just turned green. 

Similarly, if the vehicle is detected stopping, the corresponding signal light is considered turning 

red.  

When a long and tall vehicle such as a bus runs through the intersection from the cross 

streets, it may be projected to the virtual motion loops and trigger false alarms. To avoid this 

problem, we placed another virtual loop, also shown in Figure 5, in the core area of the 

intersection to detect long vehicles from cross streets. We call this a conflict detection loop.  If 

this loop is occupied, all the motion loops are disabled because signals at conflict approaches 
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cannot be green simultaneously. Compared with the signal data directly from the signal 

controller, the signal timing estimated by this algorithm is less accurate.  

 

Determine the Cycle Failure 

Once the signal light is determined to be changing from red to green, the current position of the 

queue end for a lane is stored. The queue length is expected to decrease under the green signal 

and the end-of-queue for each lane is tracked along the longitudinal line and updated from frame 

to frame. Figure 6 shows the flow chart for cycle failure detection for one lane in one frame of 

the video stream. The end-of-queue position is updated in the current frame and stored for usage 

in the next frame. If the end-of-queue reaches the stop line before the signal turns back to red, all 

vehicles accumulated in the queue during the previous cycle have been fully discharged and no 

cycle failure will occur during this signal cycle. If, when the signal light turns back to red, the 

queue end is still behind the stop line, the accumulated queue have not been fully cleared during 

the green interval and a cycle failure is detected for the lane during this signal cycle. During the 

red signal time, a queue length grows and the system sets the end of queue to the last vehicle in 

the queue and updates its position with new arrivals. At the end of each signal cycle, detection 

results are preserved in a data file. 

 

3 SYSTEM TEST AND DISCUSSION 

A video image processing-based cycle failure detection system implementing the proposed 

algorithm was developed using Microsoft Visual C#. Video data recorded by Trafficon VIPs 

were used to test the system. The VIPs are currently used as traffic detectors for signal control at 

two intersections in Lynnwood, Washington. At the intersection of SR-99 and 196th Street SW, 
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the cameras are mounted approximately 8.5 meters above the ground and aligned approximately 

30 degrees below horizontal. The VIPs were configured for general-purpose detection rather than 

cycle failure detection. Based on the researchers’ visual count, the maximum queue length 

visible in the VIPs’ field of view was 18 vehicles under this configuration. Since the maximal 

number of queued vehicles visible in a camera’s field of view is determined by the camera’s lens, 

height, and posture, a VIP may be reconfigured to accommodate longer vehicle queues when 

there is a need to do so. At the intersection of 164th Street SW and 36th Ave W, the cameras’ 

installation height and pointing angle are slightly different. The sample images captured from 

cameras at these two intersections are shown in Figure 7.  

For the intersection of SR-99 and 196th Street SW, the test video data sets were recorded 

during the afternoon peak period on June 23, 2004 (Wednesday). The eastbound approach and 

the southbound approach at this intersection were selected for the test. Each approach has three 

lanes including one left-turn lane. Approximately 50 minutes of video data for each approach 

were tested. Since SR-99 is one of the most important and busiest highways in the Greater 

Seattle area and 196th Street SW is also a busy local arterial, the selected intersection is 

oversaturated during peak hours, especially for the left-turn movements. It was obvious that 

cycle failures occurred frequently at left-turn lanes during the test period. For the intersection of 

164th Street SW and 36th Ave W, test video data sets were recorded during morning peak hours 

on April 2, 2005 (Wednesday). The eastbound approach and the westbound approach were 

selected for this test. The eastbound approach has two through lanes, one left-turn lane, and one 

right-turn lane (the traffic on the right-turn lane is not closely related to this research and was not 

studied). The westbound approach has two through lanes and one left-turn lane. Approximately 

50 minutes of video data for each approach were tested in this study.  
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A total of approximately 200 minutes of video data were tested and the test results are 

encouraging. Of the 106 signal control cycles tested, 318 lane-based test results were recorded. 

All the test results were manually checked. These test results are summarized in Table 1.  

For the intersection of SR-99 and 196th Street SW, there were 12 cycle failures occurred 

on the southbound approach during the test period. All of these cycle failures were on the left-

turn lane. The left-turn signal had a 24.5-second protected green interval and a 3.5-second yellow 

interval. Through-lane traffic had a combined time of approximately 60 seconds for green and 

yellow intervals. The cycle failure detection system worked favorably for the southbound 

approach: it captured all 12 cycle failures and made no false dismissal (a false dismissal means a 

“yes” event is overlooked) or false alarm (a false alarm refers to the mistake of recording a “no” 

event as “yes”) mistakes. The eastbound approach experienced eight cycle failures during the 

same period: seven on the left-turn lane and one on the through lane. The left-turn movement at 

this approach was protected by a 16.5-second green interval and a 3.5-second yellow interval. 

The combined green and yellow time for through-lane traffic was approximately 40 seconds. All 

eight cycle failures at this approach were successfully detected, including the only one on a 

through lane. However, the system generated two false alarms, one on the left lane and the other 

on a through lane.  

For the intersection of 164th Street SW and 36th Ave W, the traffic volume was lower and 

fewer cycle failures occurred. At the eastbound approach, the green interval was 90 seconds and 

the yellow interval was 3.5 seconds. No cycle failure occurred on this approach during the test 

period. However, the system generated a false alarm on a through lane. At the westbound 

approach, the green and yellow interval lengths are exactly the same to the eastbound approach. 

One cycle failure occurred on the through lane during the test period. The system successfully 
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detected this cycle failure and did not generate any false alarms or false dismissals for this 

approach. 

The three false alarms were further examined. Two false alarms were caused by the 

failure of the conflict detection loop. Since the conflict detection loop did not capture the long 

vehicle that triggered the motion loops, the red signal light was considered to be green and 

consequently resulted in a false alarm. Such a mistake can be eliminated when the system is 

operated online and signal control data are obtained from controllers rather than through 

estimation. The other false alarm occurred when the volume was very close to the critical volume 

for a cycle failure. Actually the last vehicle in the queue had just passed the intersection when the 

signal turned red, but the system mistakenly captured the vehicle behind it as the last vehicle in 

the queue. If there had been one more vehicle in the queue, this could have been a correct 

detection. The chances of such false alarms occurring can be lowered by using higher frame rates 

and real-time signal control information in that vehicle-queue status can be evaluated in a more 

accurate and timely manner.  

In summary, all 21 cycle failures from the 318 test cycles were successfully captured by 

the system. No false dismissals occurred, but there were three false alarms, which is 

approximately 0.9% of the total cycles tested. The overall detection accuracy was 99.1%. 

However, all test data were collected in daytime under sunny conditions. Like most video 

detection algorithms, the performance of this algorithm is expected to degrade when applied to 

bad weather or lighting conditions, such as rain, fog, snow, nighttime, etc. Further research will 

be conducted to address the impacts from these unfavorable conditions.  
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4 CONCLUSIONS 

In this study, an algorithm was proposed to detect cycle failures at signalized intersections using 

video data from traffic surveillance cameras. The algorithm includes four steps: (1) extracting 

background images from the prevailing traffic images by median algorithm; (2) determining 

dynamic threshold for segmenting foreground objects from background images; (3) locating the 

end-of-queue with the motion image; and (4) determining whether a cycle failure occurred in 

each lane in each cycle. This algorithm was implemented in the cycle failure detection system 

using Microsoft Visual C#. This system was tested with four sets of video data captured at two 

intersections. 

The test results showed that the proposed algorithm for cycle failure detection is 

encouraging. During the nearly 200 minutes of test periods, the cycle failure detection system 

captured all 21 cycle failures, and detection accuracy was approximately 99.1%; the system 

generated only three false alarms, which is approximately 0.9% of the total cycles tested. This 

accuracy will probably be sufficient for most practical applications. Two of the three false alarms 

came from mistakes made by the system in estimating the status of signal lights. If the program 

can take signal status data directly from the signal controller, the accuracy level can be further 

improved. The algorithm, which extracts stopped vehicles from the video stream, tracks the end-

of-queue, and determines if a cycle failure is occurring, has proven to be effective for the test 

locations over the test periods. The cycle failure detection system has the potential to provide 

reliable real-time cycle failure information to many traffic management and operation 

applications.   

In the next phase of this research, we will focus on testing the algorithm under a variety 

of weather and lighting conditions to improve its robustness for future deployment. The future 



Zheng, Wang, Nihan, and Hallenbeck 17

cycle failure detection system will be operated online for real-time detection rather than 

processing archived video images. 
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FIGURE 2   Examples of extracted background 
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FIGURE 3   Dynamic threshold  
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FIGURE 4   Flow chart of the determination of the queue end 
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FIGURE 5   A snapshot of the user interface 
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FIGURE 6   Flow chart of the determination of cycle failure 
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FIGURE 7   Sample images captured at test intersections 
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TABLE 1   Test Results 
 

Test Location 
Number 
of Test 
Cycles 

Cycle 
Failures 
Occurred 

Number 
of Correct 
Detections

Cycle 
Failures 
Detected 

False 
Dismissals 
/ Alarms 

Lane 1 
(through) 21 1 21 1 0 / 0 

Lane 2 
(through) 21 0 20 1 0 / 1 

SR-99 and 
196th ST, 

Eastbound 
Lane 3  

(left turn) 21 7 20 8 0 / 1 

Lane 1 
(through) 20 0 20 0 0 / 0 

Lane 2 
(through) 20 0 20 0 0 / 0 

SR-99 and 
196th ST, 

Southbound Lane 3  
(left turn) 20 12 20 12 0 / 0 

Lane 1 
(through) 33 0 33 0 0 / 0 

Lane 2 
(through) 33 0 32 1 0 / 1 

164th ST and 
36th Ave, 

Eastbound 
Lane 3  

(left turn) 33 0 33 0 0 / 0 

Lane 1 
(through) 32 1 32 1 0 / 0 

Lane 2 
(through) 32 0 32 0 0 / 0 

164th ST and 
36th Ave, 

Westbound 
Lane 3  

(left turn) 32 0 32 0 0 / 0 

Summation 318 21 315 24 0 / 3 

 
 
 
 


