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Motivation

Sequential Decision Problems

• M discrete alternatives

• Unknow truth µx

• Each time n, the learner chooses an alternative xn, receives reward W n
xn .

•
offline objective maxEπ[µxN ]

online objective maxEπ
∑N−1

n=0 [µxn ]

Overview

• Numerous Communities
• Multi-armed bandits
• Ranking and selection
• Stochastic search
• Control theory
• ......

• Various Applications
• Recommendations: ads, news
• Packet routing
• Revenue management
• Laboratory experiments guidance:
• ......
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Applications with binary outputs

Applications with binary outputs

• Revenue management: whether or not a customer books a room.

• Health analytics: success (patient does not need to return for more
treatment) or failure (patient does need followup care).

• Production of single or double-walled nanotubes:
controllable parameters: catalyst, laser power, Hydrogen, pressure,
temperature, Ar/CO2, ethylene etc.
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Sequential Decision Problems with Binary Outputs Model

Model

• A finite set of alternatives x ∈ X = {x1, . . . , xM}.
• Binary outcome y ∈ {−1,+1} with unknown probability p(y = +1|x).

• Goal: given a limited budget N, choose the measurement policy
(x0, . . . , xN−1) and the implementation decision that maximizes
p(y = +1|x).

• Generalized linear model for modeling probability

p(y = +1|x ,w) = σ(wTx),

where σ(a) = 1
1+exp(−a) or σ(a) = Φ(a) =

∫ a

−∞N (s|0, 12)ds.
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Sequential Decision Problems with Binary Outputs Bayesian linear classification and Laplace approximation

Logistic and probit regression

• Training set D = {(xi , yi )}ni=1

• Likelihood p(D|w) =
∏n

i=1 σ(yi ·wTxi ).
• ŵ = arg minw

∑n
i=1− log(σ(yi ·wTxi )).

Bayesian logistic and probit regression

• p(w |D) = 1
Z p(D|w)p(w) ∝ p(w)

∏n
i=1 σ(yi ·wTxi ).

• Extend to leverage for sequential model updates:

p(w |D0)
x0,y1

−−−→ p(w |D1)
x1,y2

−−−→ p(w |D2) · · ·
• Exact Bayesian inference for linear classifier is intractable.

• Monte Carlo sampling or analytic approximations to the posterior:
Laplace approximation.
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Sequential Decision Problems with Binary Outputs Bayesian linear classification and Laplace approximation

Laplace approximation

• Ψ(w) = log p(D|w) + log p(w).

• Second-order Taylor expansion to Ψ around its MAP (maximum a
posteriori) solution ŵ = arg maxw Ψ(w):

Ψ(w) ≈ Ψ(ŵ)− 1

2
(w − ŵ)TH(w − ŵ), H = −∇2Ψ(w)|w=ŵ .

• Laplace approximation to the posterior p(w |D) ≈ N (w |ŵ ,H−1).
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Sequential Decision Problems with Binary Outputs Bayesian linear classification and Laplace approximation

Online Bayesian linear classification based on Laplace approximation

• Extend to leverage for sequential model updates:
Laplace approximated posterior serves as prior for the next available data.

• p(wj) = N
(
wj |m0

j , (q
0
j )−1

)
• (mn

j , q
n
j )
{xn,yn+1}−−−−−−→ (mn+1

j , qn+1
j )

• t̂ :=
∂2 log σ(yiwT

i x)
∂f 2 |f =ŵT x

mn+1 = arg max
w
−1

2

d∑
i=1

qni (wi −mn
i )2 + log(σ(ywTx))

qn+1
j = qnj − t̂x2

j
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Sequential Decision Problems with Binary Outputs Bayesian linear classification and Laplace approximation

Online Bayesian linear classification based on Laplace approximation

arg max
w
−1

2

d∑
i=1

qi (wi −mi )
2 + log(σ(ywTx)).

• 1-dimensional bisection method:
Set ∂Ψ/∂wi = 0. Define p as p := σ′(ywT x)

σ(ywT x)
. Then we have wi = mi + yp xi

qi
.

p =
σ′(p

∑d
i=1 x

2
i /qi + ymT x)

σ(p
∑d

i=1 x
2
i /qi + ymT x)

.

The equation has a unique solution in interval [0, σ′(ymT x)/σ(ymT x)].
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The Knowledge Gradient Policy

Model

Characteristics of our problems

• Expensive experiments.

• Small samples.

• Requiring that we learn from our decisions as quickly as possible.
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The Knowledge Gradient Policy Knowledge Gradient Policy for Lookup Table Model

Model

Knowledge gradient policy for lookup table model [3]

• M discrete alternatives, unknow truth µx , Wx = µx + ε

• µx |Fn ∼ N (θnx , σ
n
x )

• Knowledge state Sn = (θn,σn), V (s) = maxx θx

νKGx (Sn) = E[V
(
Sn+1(x)

)
− V (Sn)] = E[max

x′
θn+1
x′ (x)−max

x′
θnx′ |Sn].

• The Knowledge Gradient (KG) policy XKG (Sn) = arg maxx ν
KG
x (Sn).

Change in 
estimate of value 
of alternative 5 

due to 
measurement. 

Change which produces 
a change in the decision.
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The Knowledge Gradient Policy Knowledge Gradient Policy for Linear Bayesian Classification

Model

Knowledge gradient policy for linear Bayesian classification belief model

• yx |w ∼ Bernoulli(σ(wTx))

• wj |Fn ∼ N (mn
j , (q

n
j )−1)

• Knowledge state Sn = (mn,qn)

• V
(
s
)

= maxx p(yx = +1|x , s)

νKGx (Sn) = E
[
V
(
Sn+1(x , y)

)
− V (Sn)|Sn]

= E
[
max

x′
p
(
yx′ = +1|x ′, Sn+1(x , y)

)
−max

x′
p(yx′ = +1|x ′, Sn)|Sn]

• The Knowledge Gradient (KG) policy XKG (Sn) = argmaxx ν
KG
x (Sn).

• The knowledge gradient policy can work with any choice of link function σ(·) and
approximation procedures by adjusting the transition function Sn+1(x , ·)
accordingly.

• Online learning [7]: XOLKG (Sn) = argmaxx p(y = +1|x ,Sn) + (N − n)νKGx (Sn).
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Experimental Results Behavior of the KG policy

Sampling behavior of the KG policy
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Experimental Results Behavior of the KG policy

Absolute class distribution error
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Figure: Absolute distribution error.
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Experimental Results Comparison with other Policies

Competing policies

• random sampling (Random)

• a myopic method that selects the most uncertain instance each step
(MostUncertain)

• discriminative batch-mode active learning (Disc) [4] with batch size set to 1

• expected improvement (EI) [8] with an initial fit of 5 examples

• Thompson sampling (TS) [2]

• UCB on the latent function wTx (UCB) [6]

Metric

Opportunity Cost (OC)

OC := max
x∈X

p(y = +1|x ,w∗)− p(y = +1|xN+1,w∗).
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Experimental Results Comparison with other Policies

Comparison with other Policies
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Figure: Opportunity cost on UCI.
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Experimental Results Comparison with other Policies

Thank you! Questions?
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