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This note is modified from the lecture notes of STAT 535-Statistical Machine Learning at the University
Washington. The goal of this note is to provide an introduction on missing data methodologies from a
probability perspective.

1 Probability model of the missing data

Missing data is a very common problem in every scientific research. In a survey sample, it occurs when there
are individuals who refuse to answer some questions. In a medical research, it happens when participants
drop out of the study.

To study the missing data problem, we consider a very simple scenario where we have two random variables
X ,Y ∈ R such that X is always observed but Y could be missing. The following tables describe an example
of missing data problem.

ID X Y
001 13 5
002 7 NA

003 11 3
004 21 NA

005 15 NA

006 9 12

ID X Y R
001 13 5 1
002 7 NA 0
003 11 3 1
004 21 NA 0
005 15 NA 0
006 9 12 1

Table 1: Left: A data example with missingness in Y . The notation NA represents the missingness of that
entry. Right: The same data and we include the response indicator.

Even in this simple scenario, it is not easy to write down a probability model because sometimes we observe
Y and sometimes we do not. Here are two frameworks that we can represent the data generating process.

Augmenting the support of Y . We allow Y ∈ R∪{NA} such that when Y ∈ NA, it means Y is missing. In
this case, our data can be represented as IID random elements

(X1,Y1), · · · ,(Xn,Yn) ∈ R× (R∪{NA})

from a probability measure. This is also called missingness incorporated in attributes1.

Response indicator. We introduce a binary random variable R ∈ {0,1} such that R = 1 when Y is observed
and R = 0 when Y is missing. We can then describe the data generating process as follows. We first generate

1See Twala, B. E., Jones, M. C., & Hand, D. J. (2008). Good methods for coping with missing data in decision trees. Pattern
Recognition Letters, 29(7), 950-956.
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(X ,R) ∈ R×{0,1}. If R = 0, this is what we observe. If R = 1, then we generate Y given X ,R = 1. The
data will be IID random elements generated from the above two-stage process.

While both framework provide a probability model for missing data problems, it turns out that the response
indicator framework is easier to work with because the support augmenting approach makes the underlying
probability measure of Y to be a mixture of discrete and continuous. Thus, we will use the response indicator
framework in the rest of the note.

2 Simple missing data problem

Under the response indicator framework, our data are IID random elements of either (Xi,Yi,Ri = 1) or
(Xi,Ri = 0). Now we consider a simple problem: estimating the mean of Y . Namely, the parameter of
interest is

µ = E(Y ).

A naive approach is to use the sample average of the observed Yi’s as an estimator. This method is known as
the complete-case estimator, which can be expressed as

µ̂CC =
∑

n
i=1YiRi

∑
n
j=1 R j

.

Note that ∑
n
i=1 R j is the total number of complete-cases (observations without missing values).

Is the complete-case estimator consistent? To analyze this problem, we consider its population version.
Clearly, when the sample size is large, µ̂CC is approaching

µ̄CC =
E(Y R)
E(R)

.

This quantity is generally NOT µ = E(Y ) unless R and Y are uncorrelated.

In fact, you can show that without any further assumptions, there is no consistent estimators that can estimate
µ. In other words, µ is unidentifiable from the observed data. To see this, you can easily decompose

µ = E(Y ) = E(Y |R = 1)P(R = 1)+E(Y |R = 0)P(R = 0).

The second quantity E(Y |R= 0) is unidentifiable from the data because when R= 0, we never get to observe
Y , so this conditional expectation can be anything without affecting our observed data.

To resolve the identification problem, a common assumption is

Y ⊥ R|X , (1)

which is sometimes called the missing-at-random assumption. While it is indeed a special case of the
missing-at-random (MAR) assumption, it is also a special case of the complete-case missing value (CCMV)
assumption that we will talk about later. Many nice properties of this assumption are in fact results from the
complete-case missing value assumption.
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2.1 Regression adjustment

Under assumption in equation (1), we have the following interesting property:

µ = E(Y ) = E(E(Y |X))
(1)
= E(E(Y |X ,R = 1)) = E(m1(X))≡ µ̄RA,1,

where
m1(x) = E(Y |X = x,R = 1)

is the observed-outcome regression model that can be estimated easily by fitting a regression model on the
data with observed Y . The quantity m1 is called the nuisance parameter in this case.

Thus, this motivates us to use the following estimator

µ̂RA,1 =
1
n

n

∑
i=1

m̂1(Xi), (2)

where m̂1(x) is an estimated regression model. µ̂RA,1 is often called the regression adjustment (RA) estimator
or the g-computation method (from the language in causal inference).

Essentially, µ̂RA,1 behaves as if we are ‘imputing’ every Yi by a prediction E(Yi|Xi). This give hints that we
may consider a variant of this method that we only ‘impute’ the missing Y :

µ̂RA,2 =
1
n

n

∑
i=1

YiRi + m̂1(Xi)(1−Ri). (3)

In the above expression, when Ri = 1, i.e., Yi is observed, we use the observed value and when Yi is missing
(Ri = 0), we use the predicted value from the regression model.

To see why µ̂RA,2 is a consistent estimator, we consider it population version:

µ̄RA,2 ≡ E(Y R+m1(X)(1−R))

= E(E(Y R|X)+m1(X)E(1−R|X))

= E(E(Y |X ,R = 1)E(R|X)︸ ︷︷ ︸
=π(X)

+m1(X)(1−π(X)))

= E(m1(X)) = µ,

where
π(X) = E(R|X) = P(R = 1|X)

is the probability of observing Y given X , which is a key quantity related to the propensity score.

2.2 Inverse probability weighting

Under equation (1), the observed Y implies an interesting result:

E(Y R) = E(E(Y R|X)) = E(E(Y |X)E(R|X)) = E(E(Y |X)π(X)).
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Thus, this implies that

µ̄IPW ≡ E
(

Y R
π(X)

)
= E(E(Y |X)) = E(Y )≡ µ.

The quantity π(x) is the nuisance parameter in this case.

With the above result, we can construct an inverse probability weighting (IPW) estimator via

µ̂IPW =
1
n

n

∑
i=1

YiRi

π̂(Xi)
, (4)

where π̂(x) is an estimator of π(x) = E(R|X = x).

2.3 Augmented and doubly-robust estimator

From both the regression adjustment and inverse probability approaches, we find an interesting result: sup-
pose we have a function g(X ,R,Y ) that can be evaluated with the observed data and satisfies E(g(X ,R,Y )) =
0, we can construct an estimator by using the fact that

E
(

Y R
π(X)

+g(X ,R,Y )
)
= E

(
Y R

π(X)

)
= µ.

For instance,

E
(

Y R
π(X)

+R(m1(X)−Y )
)
= µ

because E[R(m1(X)−Y )] = E[π(X)(m1(X)−m1(X))] = 0. Thus,

1
n

n

∑
i=1

YiRi

π̂(Xi)
+Ri(m̂1(Xi)−Yi)

is expected to be a consistent estimator of µ when both π̂, m̂1 are consistently estimated.

This idea is called augmentation and the above estimator is an augmented IPW estimator.

This prompts to an interesting question

There are many possible way that we can augment our RA or IPW estimators. Is there a partic-
ular augmentation that is better than the others?

Of course the answer may vary depending on what do we mean by ‘better’. However, there is a particular
augmentation that is useful in practice.

Consider the following quantity

Ψ(X ,Y,R;π,m1) =
Y R

π(X)
+m1(X)

(
1− R

π(X)

)
.
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Clearly, this is an augmentation because E
(

m1(X)(1− R
π(X))

)
= 0. So we have

µDR ≡ E(Ψ(X ,Y,R;π,m1) = E
(

Y R
π(X)

+m1(X)

(
1− R

π(X)

))
= µ,

which leads to the estimator

µ̂DR =
1
n

n

∑
i=1

YiRi

π̂(Xi)
+ m̂1(Xi)

(
1− Ri

π̂(Xi)

)
=

1
n

n

∑
i=1

m̂1(Xi)+
Ri

π̂(Xi)
(Yi− m̂1(Xi)).

(5)

The estimator µ̂DR is called the doubly-robust estimator and it can be viewed as an augmented estimator
from either IPW or the RA approaches.

The doubly-robust means that we only need either one of m̂1(x) or π̂(x) to be a consistent estimator to
ensure the consistency of µ̂DR. Namely, even if m̂1(x) does not converge to the true m1(x), as long as π̂(x) is
consistent to π(x), µ̂DR can consistently estimate µ.

The doubly-robust estimator is also a semi-parametric efficient estimator. See http://faculty.washington.
edu/yenchic/short_note/note_EIF.pdf for more details on the semi-parametric efficiency theory. I
would also recommend the following book for semi-parametric theory and missing data:

Tsiatis, A. (2007). Semiparametric theory and missing data. Springer Science & Business
Media.

Doubly-robustness. To see why µ̂DR has this doubly robustness, we consider the quantity Ψ(X ,Y,R;π,m1).
We will show that as long as either π or m1 is correct, this quantity has the mean being µ. First, we consider
m̄1 6= m1.

E(Ψ(X ,Y,R;π, m̄1)) = E
(

Y R
π(X)

+ m̄1(X)

(
1− R

π(X)

))
= E

(
Y R

π(X)

)
+E

(
m̄1(X)

(
1− R

π(X)

))

= µ+E

m̄1(X)E
(

1− R
π(X)

|X
)

︸ ︷︷ ︸
=0


= µ.
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Next, we consider π̄ 6= π.

E(Ψ(X ,Y,R; π̄,m1)) = E
(

Y R
π̄(X)

+m1(X)

(
1− R

π̄(X)

))
= E

(
m1(X)+

R
π̄(X)

(Y −m1(X))

)
= µ+E

(
R

π̄(X)
(Y −m1(X))

)

= µ+E

 R
π̄(X)

E(Y −m1(X)|X ,R = 1)︸ ︷︷ ︸
=0


= µ.

As a result, we only need one of the two nuisances to be consistently estimated to guarantee the consistency
of µ̂DR.

2.4 Imputation

Imputation is a very popular approach for handling missing data. A feature of imputation is that after
imputation, we can use the imputed data for various statistical analysis. While RA approach implicitly
implies an imputation method, this imputation method only works if we are interested in estimating µ =
E(Y ). We have to use another imputation model if we change the parameter of interest.

This leads to the question:

What should be the correct imputation model that we use?

Under our probability model, we can describe the distribution of the unobserved Y as

p(y|x,R = 0) (6)

and when Ri = 0, we should be imputing Yi by sampling from

Yi ∼ p(y|Xi,Ri = 0).

The distribution p(y|x,R = 0) is called extrapolation distribution/density.

As is mentioned previously, the imputation model p(y|x,R = 0) is not identifiable from the data because we
never observe both (X ,Y ) when R = 0. However, under the assumption (1), implies that

Y ⊥ R|X =⇒ p(y|x,R = 0) = p(y|x,R = 1),

which is identifiable from the observed data!

The quantity p(y|x,R = 1) can be estimated by a conditional PDF estimator using the complete cases. Here
are two simple examples of how we may estimate the conditional PDF.
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Example: Gaussian linear model. We assume that p(y|x,R = 1) follows a Normal distribution N(α+
βx,σ2). The parameters α,β can be estimated by the least-squared method on the complete cases:

α̂, β̂ = argminα,β

n

∑
i=1

Ri(Yi−α−βXi)
2.

and we estimate σ2 using the residuals

σ̂
2 =

1
n1−2

n

∑
i=1

Ri(Yi− α̂− β̂Xi)
2,

where n1 = ∑
n
i=1 Ri is the sample size of complete cases (Ri = 1). For the observations with missing Y , i.e.,

Ri = 0, we impute Yi by
Ỹi ∼ N(α̂+ β̂Xi, σ̂

2).

Example: kernel density estimator. Alternatively, we may use a nonparametric estimator for our imputa-
tion model. Here we illustrate the idea using the KDE:

p̂(y|x,R = 1) =
p̂(x,y,R = 1)
p̂(x,R = 1)

=

1
nhxhy

∑
n
i=1 RiK

(
Yi−y

hy

)
K
(

Xi−x
hx

)
1

nhx
∑

n
j=1 R jK

(
X j−x

hx

)
=

1
hy

∑
n
i=1 RiK

(
Yi−y

hy

)
K
(

Xi−x
hx

)
∑

n
j=1 R jK

(
X j−x

hx

)
=

1
hy

n

∑
i=1

Wi(x)K
(

Yi− y
hy

)
,

where Wi(x) =
RiK

(
Xi−x

hx

)
∑

n
j=1 R jK

( Xj−x
hx

) is the weight of the i-th observation. Note that the conditional PDF estimator

from the KDE looks like a kernel regression estimator. Sampling from p̂(y|x,R = 1) can be done easily from
a two-stage procedure:

1. We sample L ∈ {1,2, · · · ,n} from P(L = i) =Wi(x).

2. Given L, we then generate Y from the PDF K
(

YL−y
hy

)
/h. If K is the Gaussian kernel, this means that

Y |L∼ N(YL,h2
y).

Multiple imputation. In practice, if we only impute the missing values once, the Monte Carlo errors due to
random imputation may be large. Thus, we often repeat the imputation procedure multiple times, leading to
multiple imputed data and combine all data to perform downstream analysis. This is called multiple imputa-
tion. Here is an interesting connection from multiple imputation to the regression adjustment. Suppose we
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have an imputation model p̂(y|x,R = 1) and let (Xi,Ri = 0) be the data with missing Yi. After performing
imputation M times, we obtain

Ỹ (1)
i , · · · ,Ỹ (M)

i ∼ p̂(y|Xi,R = 1).

The average of these imputed values is

1
M

M

∑
m=1

Ỹ (m)
i ≈

∫
yp̂(y|Xi,R = 1)dy = m̂1(Xi).

Namely, the average of the imputed values is a Monte Carlo approximation of the implied regression function
from the conditional PDF p̂(y|x,R = 1). Thus, the multiple imputation can be viewed as a Monte Carlo
approximation of the regression adjustment.

2.5 Estimating other parameters of interest

All the above analysis can be generalized to other parameters of interest as long as it can be expressed as

µω = E[ω(X ,Y )]

for some ω. Interestingly, if we change the parameter of interest, the RA estimator has to be modified
because the outcome regression

mω,1(X) = E(ω(X ,Y )|X ,R = 1)

depends on ω. So we have estimate the nuisance parameter mω,1 again.

However, the IPW estimator remains the same. We are still using the same expression

µω = E
(

ω(X ,Y )R
π(X)

)
and the nuisance parameter π remains identical.

Similarly, the imputation model p(y|x,R = 1) is invariant to the choice of parameter of interest, so once we
have created an imputation model, we do not need to make any adjustment if we change the parameter of
interest.

In practice, people often find RA estimator numerically more stable than the IPW estimator because the
estimated probability π̂(x) can be very close to 0, making the ratio ω(Xi,Yi)Ri

π̂(Xi)
very large.

3 Missing data: general problems and missing at random

When there are more than one variable that are subject to missing, the problem gets a lot more complex.
Consider the case where each individual has d variables X1, · · · ,Xd and all of them may be missing and we
may even have many of them missing at the same time. There are two categories of the missing patterns:
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1. Monotone missingness. In this case, if Xt is missing, then Xs is also missing for any s> t. This occurs
a lot in medical research due to dropout of the individuals. For instance, let Xt denote the BMI of an
individual at year t. If this individual left the study at time point τ, then we only observe X1, · · · ,Xτ

from this individual. Any information beyond year τ is missing.

2. Non-monotone missingness. When the missing pattern is not monotone, it is called non-monotone
missingness. The non-monotone missing data is a lot more challenging than monotone missing data
because there are many possible missing pattern that can occur in the data. If there are d variables,
them monotone missing data has d different missing patterns but the non-monotone case may have up
to 2d different missing patterns!

Let R ∈ {0,1}5 be a multi-index set that denotes the observed pattern and we use the notation XR = (Xi :
Ri = 1). For instance, R = 11001 means that we observe variable X1,X2, and X5 and X11001 = (X1,X2,X5).
Table 2 provides an example of three study variables and we include the corresponding response vector R.

ID X1 X2 X3 R
001 13 0 2.2 111
002 7 NA 2.7 101
003 NA NA 2.5 001
004 2 1 1.3 111
005 8 0 NA 110
006 NA 0 NA 010
007 15 1 2.2 111
008 NA 1 1.7 011

Table 2: An example of non-monotone missing data with three study variables X1,X2,X3 and the corre-
sponding response vector R. For ID=001, XR = (13,0,2.2) whereas for ID=002, XR = (7,2.7).

Generally speaking, researchers divide the missing data assumptions into three groups:

1. MCAR: missing completely at random. This means that X ⊥ R. Namely, the missingness is totally
irrelevant to any variables of interest. Note that MCAR can be tested using the data. Using the above
notations, MCAR can be written as

P(R = r|X) = P(R = r).

2. MAR: missing at random. The MAR assumption assumes that

P(R = r|X) = P(R = r|Xr),

namely, the probability of seeing a pattern R = r only depends on the observed variable.

3. MNAR: missing not at random. When the missingness is not MAR nor MCAR, it is called MNAR–
missing not at random.

MAR is a very popular assumption although it may not be reasonable in some cases. Why is the MAR still
so popular in practice?
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There are two reasons for why MAR is so popular. The first reason is that in both monotone and non-
monotone case, MAR makes the likelihood inference a lot easier. This is due to a property called ignora-
bility. The second reason is that under monotone missing data problem, MAR provides an elegant way to
identify the entire distribution function.

3.1 Likelihood inference with MAR

The MAR has a nice property called the ignorability, which holds in both monotone and non-monotone
missingness. Consider the joint density function p(x,r) of both variable of interest X and the missing pattern
R. Recall that XR =(Xi : Ri = 1) are the observed variables under pattern R. We also denote XR̄ =(Xi : Ri = 0)
as the missing variables.

We can then factorize it into
p(x,r) = P(R = r|X = x)p(x).

Suppose we use parametric models separately for both P(R = r|X = x) and p(x), leading to

p(x,r;φ,θ) = P(R = r|X = x;φ)p(x;θ)
(MAR)
= P(R = r|Xr = xr;φ)p(x;θ),

where θ is the parameter for modeling p(x) and φ is the parameter for modeling the missing probability
P(R = r|Xr = xr) (this separability of parameter together with MAR is often called ignorability). In our
data, what we observe are (xr,r) so we should integrate over the missing variables xr̄:

p(xr,r;φ,θ) =
∫

p(x,r;φ,θ)dxr̄ = P(R = r|Xr = xr;φ)
∫

p(x;θ)dxr̄.

Thus, the log-likelihood function is

`(θ,φ|xr,r) = logP(R = r|Xr = xr;φ)+ log
∫

p(x;θ)dxr̄

= `(φ|xr,r)+ `(θ|xr),

`(φ|xr,r) = logP(R = r|Xr = xr;φ)

`(θ|xr,r) = log
∫

p(x;θ)dxr̄.

The above factorization is very powerful–it decouples the problem of estimating θ and the problem of
estimating φ!

Namely, if we are only interested in the distribution of X , we do not even need to deal with φ. We just need
to maximize `(θ|xr). So finding the MLE of θ can be done without estimating the parameter φ, leading to a
relatively simple problem.

However, computing the MLE may still be a non-trivial problem in practice. To resolve this problem, we
often use the following result under MAR:

(MAR) =⇒ p(xr̄|xr,r) = p(xr̄|xr).

Namely, under the (MAR), the correct imputation model is the marginal model p(xr̄|xr;θ), this makes it
particularly easy to impute the data when we have an pilot estimate p(xr̄|xr;θ(t)). This insight leads to the
following EM algorithm. Notably, the above imputation model property is used in the E-step.
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EM algorithm. Estimating θ via maximizing `(θ|xr) is often done via the EM algorithm. The EM algorithm
is an iterative algorithm that finds a stationary point. It consists of two steps, an expectation step (E-step)
and a maximization step (M). Given an initial guess of the parameter θ(0), the EM algorithm iterates the
following two steps until convergence (t = 0,1,2,3, · · · ):

1. E-steps. Compute

Q(θ;θ
(t)|Xr) = E(`(θ|X);Xr,θ

(t−1)) =
∫

`(θ|,xr̄,Xr)p(xr̄|Xr;θ
(t))dxr̄.

2. M-steps. Update
θ
(t+1) = argmaxθQ(θ;θ

(t)|Xr).

Note that in practice, we have n observations so the Q function will be

Qn(θ;θ
(t)) =

1
n

n

∑
i=1

Q(θ;θ
(t)|Xi,Ri)

and the M-step will be
θ
(t+1) = argmaxθQn(θ;θ

(t)).

Clearly, the above EM algorithm does not involve φ, the parameter of P(R = r|Xr). So we can totally ignore
the model of missingness.

Under good conditions, the EM algorithm has the ascending property, i.e.,

`(θ(t+1)|Xr)≥ `(θ(t)|Xr),

and will converge to a stationary point. However, the problem is that the stationary point is not guarantee to
be the global maximum (MLE). It could be a local mode or even a saddle point.

A good introduction on the EM algorithm and missing data is Section 8 of the following textbook:

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). John
Wiley & Sons.

3.2 MAR under monotone case

Under the monotone missing problem, let T = ∑
d
j=1 R j denotes the index of the last observed variable. This

is often referred to as the dropout time (the last time point before individual drops out of the study). Namely,
the individual dropouts after time point T . We use the notation X≤t = (X1, · · · ,Xt). Table 3 provides an
example of monotone missing data.

Then the MAR can be written as
P(T = t|X) = P(T = t|X≤t).

The above equation gives us a very powerful result–we can estimate the missing probability P(T = t|X) for
every t = 1, · · · ,d!
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ID X1 X2 X3 R T
001 13 0 2.2 111 3
002 7 NA NA 100 1
003 5 NA NA 100 1
004 2 1 1.3 111 3
005 8 0 NA 110 2
006 21 0 NA 001 2
007 15 1 2.2 111 3
008 13 1 1.7 111 3

Table 3: An example of monotone missing data of three study variables X1,X2,X3. We include both the
response indicator R and the corresponding dropout time T . For ID=001, X≤T = (X1,X2,X3) = (13,0,2.2)
and for ID=002, X≤T = X1 = 7 and for ID=005, X≤T = (X1,X2) = (8,0).

To see this, consider the case t = 1 so MAR implies

P(T = 1|X) = P(T = 1|X1).

Note that P(T > 1|X) = 1−P(T = 1|X) = P(T 6= 1|X1) = P(T > 1|X1). Thus, we can estimate P(T = 1|X1)
by comparing pattern T = 1 against T > 1 given the variable X1, which is always observed. Thus, P(T =
1|X) is estimatible. For t = 2, the MAR implies

P(T = 2|X) = P(T = 2|X1,X2).

Thus,

P(T > 2|X) = 1−P(T = 2|X)−P(T = 1|X) = 1−P(T = 2|X1,X2)−P(T = 1|X1) = P(T > 2|X1,X2).

Again, we can compare the pattern T = 2 against T > 2 and estimate the probability P(T = 2|X). We can
keep doing this procedure, and eventually all missing probability P(T = t|X) can be estimated.

For instance, if we are interested in estimating the parameter of interest ρ = E(ω(X1, · · · ,Xd)), we can then
use the inverse probability weighting (IPW) estimator2:

ρ̂ =
1

nP̂(T = d|X)

n

∑
i=1

ω(Xi,1, · · · ,Xi,p)I(Ti = d),

where P̂(T = d|X) is an estimate of P(T = d|X). P(T = t|X) is called the propensity score.

4 Missing not at random: monotone cases

In MNAR, the missing data problem becomes a lot more complicated. There are two common strategies for
handling MNAR–the selection models and the pattern mixture models approaches.

2See https://en.wikipedia.org/wiki/Inverse_probability_weighting for more details.
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To simplify the problem, we consider monotone missing data problem. Even in this scenario, we will see
several identifiability issues so we have to be very careful about our choice of model.

Recall that X denotes the study variable and T is the dropout time. We are interesting in the full-data density
p(x, t); note that p(x, t) implies the joint PDF of the study variable p(x).

A useful reference: https://content.sph.harvard.edu/fitzmaur/lda/C6587_C018.pdf.

4.1 Selection models

Selection models decompose the full-data density using

p(x, t) = P(T = t|x)p(x),

where P(T = t|x) is called the missing probability or missing data mechanism.

A common strategy in selection model is to identify P(T = d|x), where d is the end time of the study. There
are two reasons for identifying P(T = d|x). First, identifying this quantity is enough for constructing a
consistent inverse probability weighting (IPW) estimator, similar to the one we saw in the causal inference.
The other reason is that we can easily estimate the PDF p(x,T = d) by using the observations without
missing entries. If P(T = d|x) is known, then we can identify p(x) using p(x) = p(x,T=d)

P(T=d|x) .

The MAR and MCAR conditions are often expressed in a selection model framework. Formally, the MCAR
is

P(T = t|X) = P(T = t).

Namely, the probability of any dropout time is totally independent of the study variable X . The MAR is

P(T = t|X) = P(T = t|X≤t).

In other words, the conditional probability of the dropout time only depend on the observed variables.

As we have mentioned, the selection model allows a simple way to construct a consistent estimator of a
parameter of interest via the IPW procedure. Here is a simple example. Suppose that the parameter of
interest is a linear statistical functional θ = θ(F) =

∫
ω(x)dF(x), then it can be further written as

θ =
∫

ω(x)p(x)dx =
∫

ω(x)
p(x,T = d)
P(T = d|x)

dx =
∫

ω(x)
dF(dx,T = d)

P(T = d|x)
.

With an estimator of the selection probability P̂(T = d|x) (and we only need to estimate the probability of
fully-observed case), a simple IPW estimator of θ is

θ̂0 =
∫

ω(x)
dF̂(dx,T = d)

P̂(T = d|x)
=

1
n

n

∑
i=1

ω(Xi)I(Ti = d)

P̂(T = d|Xi)
. (7)

You can show that θ̂0 is a consistent estimator (and it has asymptotical normality as well due to the Slutsky
theorem). Moreover, the influence function (recall from the bootstrap lecture note) of θ̂0 can be easily
derived so the variance of θ̂0 can be estimated via a plug-in estimate.
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Although θ̂0 is elegant, it may not be the best estimator in the sense that after estimating the propensity score
P(T = t|x), we only rely on the completely observed data (the ones with Ti = d) to form the final estimator.
Other observations are discarded entirely. Intuitively, this leads to an inefficient estimator.

To construct an efficient estimator, consider augmenting θ̂0 with an additional term

θ̂1 = θ̂0 +
1
n

n

∑
i=1

(I(Ti = τ)− P̂(Ti = τ|Xi,≤τ))gτ(Xi,≤τ)I(Ti = τ),

where τ < d is any time point and gτ is a function of variable x≤τ. The augmented term has an asymptotic
mean 0 so θ̂1 is still a consistent estimator. The insight here is that the function gτ is something we can
choose– namely, we can choose it to minimize the variance of θ̂1 and this may leads to a reduction in the total
variance compared to the estimator θ̂0. The same idea can be applied to every time point τ = 1, · · · ,d− 1,
leading to an augmented inverse probability weighting (AIPW) estimator

θ̂AIPW = θ̂0 +
1
n

n

∑
i=1

d−1

∑
τ=1

(I(Ti = τ)− P̂(Ti = τ|Xi,≤τ))gτ(Xi,≤τ)I(Ti = τ).

With a proper choice of gτ : τ = 1, · · · ,d−1, we can construct an estimator with the least variance. This
leads to an efficient estimator. How to construct the functions gτ : τ = 1, · · · ,d−1 is a central topic of
semi-parametric inference.

Note that sometimes the AIPW (and IPW) estimators are constructed from solving an estimating equation.
This occurs when the parameter of interest θ0 = θ(F) is defined through solving the equation

0 = E(S(X ;θ0)) =
∫

S(x;θ0)dF(x) =
∫

S(x;θ)
dF(dx,T = d)

P(T = d|x)
.

In this case, the IPW estimator will be the solution to

0 =
∫

S(x; θ̂0)
dF̂(dx,T = d)

P̂(T = d|x)
=

1
n

n

∑
i=1

S(Xi; θ̂0)I(Ti = d)

P̂(T = d|Xi)

and we can augment it with a set of mean 0 terms to improve the efficiency.

If you are interested in the construction of AIPW, I would recommend the following textbook:

Tsiatis, A. (2007). Semiparametric theory and missing data. Springer Science & Business
Media.

Note: although we introduce AIPW estimators in the MNAR framework, they are often used in the MAR
scenario because the identification of propensity score/selection probability P(T = t|X) is challenging in
MNAR. The MAR is a simple case where we can identify the propensity score entirely so AIPW estimators
can be constructed easily. Essentially, as long as you can identify the selection probability, you can construct
an IPW estimator and attempt to augment it to obtain AIPW estimator to improve the efficiency. So the
direction of research is often on how to identify the selection probability.
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4.2 Pattern mixture models

Pattern-mixture models (PMMs) use another factorization of the full-data density:

p(x, t) = p(x>t |x≤t , t)p(x≤t |t)P(T = t),

where the first term p(x>t |x≤t , t) is called the extrapolation density and the later two terms p(x≤t |t)P(T = t)
are called observed-data density. The extrapolation density is unobservable and unidentifiable–it describes
the distribution of the missing entries. The observed-data density is identifiable since at each dropout time
T = t, we do observe variables x1, · · · ,xt .

Here is a nice review on PMMs for MNAR:

Linero, A. R., & Daniels, M. J. (2018). Bayesian approaches for missing not at random outcome
data: The role of identifying restrictions. Statistical Science, 33(2), 198-213.

The PMMs provide a clean separation about what is identifiable and what is not identifiable. So the strategy
for identifying p(x, t) is to make the extrapolation density be identifiable.

In monotone missing problems, the extrapolation density has the following product form:

p(x>t | x≤t , t) =
d

∏
s=t+1

p(xs | x<s,T = t).

Thus, it suffices to identify each term in the product form to identify the extrapolation density. Several iden-
tifying restrictions have been proposed in the literature to identify the extrapolation density. The complete
case missing value (CCMV) restriction equates that

p(xs | x<s,T = t) CC
= p(xs | x<s,T = d),

and the available case missing value (ACMV) restriction assumes that

p(xs | x<s,T = t) AC
= p(xs | x<s,T ≥ s),

and the nearest case missing value (NCMV) restriction requires that

p(xs | x<s,T = t) NC
= p(xs | x<s,T = s)

for s = t +1, · · · ,d. In general, one can specify any subset of patterns Ats ⊂ {s,s+1, · · · ,d} and construct a
corresponding identifying restriction

p(xs | x<s,T = t) Ats= p(xs | x<s,T ∈ Ats);

this is called the donor-baed identifying restriction in the following paper:

Chen, Y. C., & Sadinle, M. (2019). Nonparametric Pattern-Mixture Models for Inference with
Missing Data. arXiv preprint arXiv:1904.11085.
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If you make any of these assumptions, the extrapolation density (left-hand-side) equals to a quantity that is
identifiable from the data (everything in the right-hand-side can be identified from the data), so you can then
estimate the full-data density p(x, t).

Example: ACMV with a simple Gaussian. We now demonstrate how we can use ACMV to create a
simple estimator of the extrapolation density. Under ACMV, we have p(xs | x<s,T = t) = p(xs | x<s,T > s)
for s = t +1, · · · ,d. We model the right-hand sided as

N(βT
t,sx<s,σ

2
t,s),

where βt,s,σ
2
t,s can be estimated by

β̂t,s = argminβ

n

∑
i=1

(Xi,s−β
T Xi,<s)

2I(Ti ≥ s), σ̂
2
t,s =

1
ns

n

∑
i=1

(Xi,s− β̂
T
t,sXi,<s)

2I(Ti ≥ s),

where ns = ∑
n
i=1 I(Ti ≥ s). Note that for any Ti ≥ s, the vector X1, · · · ,Xs is observed, so the above estimator

can be computed with the observed data. Thus, p̂(xs | x<s,T = t) is N(β̂T
t,sx<s, σ̂

2
t,s).

Remark: equivalence between MAR and ACMV under monotone missing data. MAR under monotone
missingness is equivalent to the ACMV assumption. The equivalence between MAR and ACMV is shown
in

Molenberghs, G., Michiels, B., Kenward, M. G., & Diggle, P. J. (1998). Monotone missing data
and pattern-mixture models. Statistica Neerlandica, 52(2), 153-161.

4.3 Imputation and pattern mixture models

In the previous section, we introduce the idea of imputation when there is only one variable missing. But
it can be applied to cases where there are multiple missing entries. Suppose that we have an imputation
procedure such that if we observe X≤T = (X1, · · · ,XT ) and the dropout time T , the procedure generates
random numbers X>T = (XT+1, · · · ,Xd) from a distribution Q.

You can always view this imputation procedure as a PMM such that the PDF corresponds to the imputation
distribution Q is the underlying model on the extrapolation density. So any imputation method can be viewed
as implicitly handling the problem with a PMM.

Example: ACMV with a simple Gaussian revisited. We now return to our previous example with ACMV
and the simple Gaussian model. Recall that our estimated PMM is

p̂(xs | x<s,T = t)∼ N(β̂T
t,sx<s, σ̂

2
t,s)

for each t and s = t +1, · · · ,d. For an observation Ti = t with Xi,≤t observed, here is how we will impute the
missing entries Xi,>t :

1. Set X̃i,≤t = Xi,≤t .

2. For s = t +1, t +2, · · · ,d do the following:
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(a) Draw X̃i,s from N(β̂T
t,sX̃i,<s, σ̂

2
t,s).

3. Return the imputed vector X̃i = (X̃1, · · · , X̃d).

In the monotone case, the PMM model leads to a sequential imputation procedure: we impute the missing
entry one by one according to the time T = t.

4.4 Nonparametric Saturation

In MNAR, we need to make identifying restrictions so that the full-data distribution F(x, t) (or p(x, t)) is
identifiable. However, there is one property that an identifying restriction should have: the implied joint
distribution should be compatible/consistent with what we observe. This property is called nonparametric
saturation/nonparametric identification/just identification.

The idea is simple: because we can identify F(x, t), we can pretend the implied joint distribution is the true
generating distribution and generates a new missing data from it. The generated missing data should be
similar to the original data we have.

MAR and any pattern mixture models satisfies this property (when we attempt to estimate the joint distri-
bution via a nonparametric estimator). However, some identifying restrictions, such as the MCAR, does not
satisfy this. Whenever you proposed a new MNAR restriction, you should always think about if the implied
full-data distribution satisfies this property or not.

4.5 Sensitivity analysis

Sensitivity analysis is a common procedure in handling the missing data problem. In short, sensitivity
analysis is to perturb the missing data assumption a bit and see how the conclusion changes. This is often
required in handling missing data because as we have shown previously, there is no way to check if a missing
data assumption is correct (unless we have additional information) so our conclusion relies heavily on our
assumption of missingness. By perturbing the assumption on missingness, we are able to examine if our
conclusion is robust to the missing data assumption.

In MAR, one common approach for sensitivity analysis is to introduce the model (called the exponential
tilting strategy)

log
P(T = t|X)

P(T = t|X≤t)
= γ

T X ,

where γ ∈ Rd is a sensitivity parameter such that if γ = 0, we have P(T=t|X)
P(T=t|X≤t)

= 1, which is the MAR
condition. We vary γ and examine how the estimator changes as a function of γ and use this as a way to how
sensitivity the estimator depends on the MAR assumption.

17



5 Missing not at random: non-monotone cases

Now we discuss general strategies to deal with nonmonotone missing data. The ideas of selection models
and pattern mixture models still work in this case and they lead to different factorization of the problem.
Recall that in this case, we use the binary vector R ∈ {0,1}d to denote the response pattern. To simplify the
problem, we consider estimating the marginal mean

θ = E(ω(X)).

5.1 Selection model and IPW

Let π(x) = P(R = 1d |X = x). This quantity behaves like the propensity score in the single missing data
problem. To see this, we have the following equality

E
(

ω(X)I(R = 1d)

π(X)

)
=

∫
ω(x)
π(x)

p(x,1d)dx

=
∫

ω(x)
p(1d |x)

p(x,1d)dx

=
∫

ω(x)p(x)dx

= E(ω(X)) = θ.

Therefore, if we know π(x), we can construct an IPW estimator

θ̂IPW,0 =
1
n

n

∑
i=1

ω(Xi)I(Ri = 1d)

π(Xi)
.

While this idea is universally true, it requires the knowledge of π(x), which is generally unavailable (except
for survey sample that we may know this). What’s worst, the quantity π(x) is generally non-identifiable so
we cannot estimate it without missing data assumptions.

Therefore, a common strategy is make missing data assumption so that π(x) becomes identifiable and we
then place a model to estimate it.

Example: CCMV. A simple assumption is the CCMV (complete-case missing value) assumption, which
requires the following assumption

(CCMV-S)
P(R = r|X)

P(R = 1d |X)
=

P(R = r|Xr)

P(R = 1d |Xr)
. (8)

The left-hand-side of equation (8) is an identifiable quantity and we denote

Or(xr) =
P(R = r|Xr = xr)

P(R = 1d |Xr = xr)
.

This quantity is called observable odds in
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Chen, Y. C. (2022). Pattern graphs: a graphical approach to nonmonotone missing data. The
Annals of Statistics, 50(1), 129-146.

and it can be estimated by a binary classification model with two classes R = 1d versus R = r with variables
Xr.

One can easily verify that under equation (8), the propensity score

π(x) =
1

∑r Or(xr)
.

Note that if model
logOr(xr;βr) = β

T
r xr,

this is essentially applying a logistic regression on R = r versus R = 1d problem. Suppose that we have
estimators Ôr(xr) for each r. The IPW estimator will be

θ̂IPW =
1
n

n

∑
i=1

ω(Xi)I(Ri = 1d)

∑r Ôr(Xi,r)
.

See

Tchetgen, E. J. T., Wang, L., & Sun, B. (2018). Discrete choice models for nonmonotone
nonignorable missing data: Identification and inference. Statistica Sinica, 28(4), 2069-2088.

for more discussions on this method and the CCMV assumption.

5.2 Pattern mixture model, regression adjustment, and Imputation

Alternatively, we may use the PMM to deal with non-monotone missing data problem. Recall that the PMM
uses the following decomposition

p(x,r) = p(xr̄|xr,r)p(xr,r).

Then we have the following decomposition:

θ = E(ω(X))

= ∑
r

∫
ω(x)p(x,r)

= ∑
r

∫
ω(x)p(xr̄|xr,r)p(xr,r)

= ∑
r
E(E(ω(X)|Xr,R = r)︸ ︷︷ ︸

mr(Xr)

I(R = r))

= ∑
r
E(mr(Xr)I(R = r)).
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Note that mr(Xr)I(R = r) is identifiable. As a result, when mr(xr) is known, we can construct an estimator

θ̂RA,0 =
1
n

n

∑
i=1

∑
r

mr(Xi,r)I(Ri = r)

=
1
n

n

∑
i=1

mRi(Xi,Ri).

This is like the regression adjustment method introduced at the beginning.

However, in general mr(xr) is unknown and not identifiable. So we have to make a missing data assumption
(and possibly also a model assumption) to identify mr(xr).

From the PMM formulation, we know that the major issue comes from the extrapolation density

p(xr̄|xr,r)

is not identifiable. So a common strategy is to equate this to something that is identifiable.

Connection to imputation. Here is an interesting fact. Suppose that we have a model of the extrapolation
density, say

p(xr̄|xr,r) = q(xr̄|xr,r)

for some function q. Although we want to use

mr(xr) =
∫

ω(x)q(xr̄|xr,r)dxr̄,

this integral may not have a closed form, making it hard to use the regression adjustment method. However,
suppose that we can sample from the distribution q. Then we can perform a Monte Carlo approximation to
mr(xr). Specifically, for observation Xi,Ri ,Ri with Ri = r, we approximate

mr(xr)≈ m̃r(xr) =
1
N

N

∑
`=1

ω(X∗(`)i,r̄ ,Xi,r),

where
X∗(1)i,r̄ , · · · ,X∗(N)

i,r̄ ∼ q(xr̄|Xi,r,r)

are generated from q. By applying this to every observation, you will find that the resulting estimator of θ is
essentially the multiple imputation estimator!

Therefore, any multiple imputation estimator can be viewed as a PMM with an implicit model on the ex-
trapolation density. The extrapolation density is equivalent to the imputation distribution.

Example: CCMV. A formal statistical approach to use the PMM is via making a statistical assumption to
identify the extrapolation density p(xr̄|xr,r). Here we consider the CCMV assumption. In the PMM, the
CCMV means

(CCMV-P) p(xr̄|xr,r) = p(xr̄|xr,1d). (9)

Namely, the extrapolation density is the same conditional density based on the complete case. You can prove
that equation (9) is equivalent to (8). In this case, we can easily estimate p(xr̄|xr,1d) using the complete
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data. For instance, we may assume that X |R = 1d ∼ N(µ,Σ) and estimate µ,Σ by the complete data. Then
the estimator

p̂(xr̄|xr,r) = p̂(xr̄|xr,1d)∼ N
(

µ̂r(xr), Σ̂r(xr)
)

is just the implied conditional normal distribution. With an estimator p̂(xr̄|xr,r), we obtain an estimator
m̂r(xr), which then leads to the final estimate

θ̂RA =
1
n

n

∑
i=1

m̂Ri(Xi,Ri).

5.3 Multiply-robust estimator

You may be wondering if we could construct an estimator similar to the doubly-robust estimator as the
simple case. It turns out that it is possible to do so but it depends on the missing data assumption we are
making.

In the case of CCMV, you can show that the following equality

θ = E
(

∑
r
[ω(X)−mr(Xr)]

I(R = r)
Or(Xr)

+mr(Xr)I(R = r)
)

= E
(

∑
r

ω(X)
I(R = r)
Or(Xr)

+mr(Xr)

[
I(R = r)− 1

Or(Xr)
I(R = 1d)

])
,

which implies a multiply-robust estimator (i.e., for every pair (mr,Or), we need one of the two models to be
correct). See the following paper for more discussion:

Tchetgen, E. J. T., Wang, L., & Sun, B. (2018). Discrete choice models for nonmonotone
nonignorable missing data: Identification and inference. Statistica Sinica, 28(4), 2069-2088.

While the name multiply-robustness sounds very powerful, it is actually a weaker result than the doubly-
robustness because we need every pair of models to have at least one model being correct.

5.4 Pattern graphs

Pattern graphs is a special graph-like object introduced in the following paper:

Chen, Y. C. (2022). Pattern graphs: a graphical approach to nonmonotone missing data. The
Annals of Statistics, 50(1), 129-146.

Patten graphs are directed graphs of response vectors. Namely, it is a graph of binary vectors r ∈ {0,1}d .

A pattern graph G is called regular if it satisfies the following two conditions:
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10 01

00
Figure 1: An example of a pattern graph of two variables.

• (PG1) If we see an arrow s→ r, then s > r, i.e., s j ≥ r j for all j = 1, · · · ,d and at least one strict
inequality holds.

• (PG2) The only source (vertex without parents) is the pattern 1d = (1,1,1, · · · ,1).

Clearly, pattern graphs are NOT conventional graphical models.

Pattern graph can be viewed as a generalization of the CCMV in the sense that we change equation (8) into

(PG-S)
P(R = r|X)

P(R ∈ PA(r)|X)
=

P(R = r|Xr)

P(R ∈ PA(r)|Xr)
, (10)

where PA(r) is the parents of r. Similar to the CCMV, we can estimate the odds in the right-hand-side by a
binary classification method. You can derive an IPW estimator based on equation (10).

For the pattern mixture model, the pattern graph revise the equation (9) as

(PG-P) p(xr̄|xr,r) = p(xr̄|xr,PA(r)). (11)

Namely, the pattern graph require the imputation model of pattern r is the same set of variables using its
parents. Equation (11) implies a regression adjustment method as well as an imputation model for every
pattern r.

Note that you can show that equations (10) and (11) are equivalent under a very mild condition.

Example. Suppose we have a pattern graph in Figure 1. By equation (11), this pattern graph implies the
following imputation models:

p(x1|x2,R = 01) = p(x1|x2,R = 11)

p(x2|x1,R = 10) = p(x2|x1,R = 10)

p(x1,x2|R = 00) = p(x1,x2|R ∈ {11,10}) = p(x1,x2,R = 11)+ p(x1,x2,R = 10)
P(R ∈ {11,10})

= p(x1,x2|R = 00)
P(R = 11)

P(R ∈ {11,10})︸ ︷︷ ︸
=ρ

+p(x2|x1,R = 11)p(x1|R = 10)
P(R = 10)

P(R ∈ {11,10})︸ ︷︷ ︸
=1−ρ

.
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Namely, for R = 01, we impute X1 by sampling from p(x1|x2,R = 11), a model based on the complete-case.
For R = 10, we impute X2 by sampling from p(x2|x1,R = 10). The case of R = 00 is more interesting.
With a probability ρ, we sample both (X1,X2) from the complete-case distribution p(x1,x2|R = 11). With
a probability 1−ρ, we first sample X1 from p(x1|R = 10), the marginal distribution of X1 when only X1 is
observed, and then sample X2 given on the previously imputed X1 and the distribution p(x2|x1,R = 11).

If we use the selection model in equation (10), we have a total of three observable odds:

O10(x1) =
P(R = 10|x1)

P(R = 11|x1)
≡ P(R = 10|x1,x2)

P(R = 11|x1,x2)
,

O01(x2) =
P(R = 01|x2)

P(R = 11|x2)
≡ P(R = 01|x1,x2)

P(R = 11|x1,x2)
,

O00 =
P(R = 00)

P(R ∈ {10,11})
≡ P(R = 00|x1,x2)

P(R ∈ {10,11}|x1,x2)
.

Recall that the goal is to identify the propensity score P(R = 11|x1,x2) = π(x1,x2) so that we can implement
the IPW estimator. Thus,

P(R = 10|x1,x2) = O10(x1)π(x1,x2),

P(R = 01|x1,x2) = O01(x2)π(x1,x2),

P(R = 00|x1,x2) = O00 · (π(x1,x2)+P(R = 10|x1,x2)) = O00 · (1+O10(x1))π(x1,x2).

Using the fact that ∑r P(R = r|x1,x2) = 1, we obtain the following equation

1 = [1+O10(x1)+O01(x2)+O00(1+O01(x2))]π(x1,x2),

π(x1,x2) =
1

1+O10(x1)+O01(x2)+O00 +O00 ·O10(x1)
.

Note that each term in the above quantity can be interpreted as a path-specified probability in the pattern
graph (Figure 1):

11→ 10 : O10(x1)

11→ 01 : O01(x2)

11→ 00 : O00

11→ 10→ 00 : O00 ·O10(x1)

5.5 Graphical model approach

An alternative approach to handling the non-monotone missing data is based on graphical model. In particu-
lar, the graphical model for the random vector (X ,R)∈Rd×{0,1}d is a directed acyclic graph (DAG) of the
random vector where the arrows indicate the decomposition of the joint distribution and may be interpreted
as a causal relation. Because of the DAG, the graphical model approach can be interpreted easily (via causal
interpretation).

In the graphical model approach, we often need to make the following assumption:
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• (NSC) For each variable j, no arrow between X j and R j.

The assumption (NSC) is called no self-censoring assumption in

1. Nabi, R., Bhattacharya, R., & Shpitser, I. (2020, November). Full law identification in
graphical models of missing data: Completeness results. In International conference on ma-
chine learning (pp. 7153-7163). PMLR.
2. Malinsky, D., Shpitser, I., & Tchetgen Tchetgen, E. J. (2022). Semiparametric inference for
nonmonotone missing-not-at-random data: the no self-censoring model. Journal of the Ameri-
can Statistical Association, 117(539), 1415-1423.

The (NSC) is equivalent to the follow condition

(ICIN) X j ⊥ R j|X− j,R− j,

which is known as ICIN (itemwise conditionally independent nonresponse) in

Sadinle, M., & Reiter, J. P. (2017). Itemwise conditionally independent nonresponse modelling
for incomplete multivariate data. Biometrika, 104(1), 207-220.

Under either (NSC) or (ICIN), we can identify the full data distribution p(x,r).

5.6 MICE: multiple imputation by chained equations

The MICE (multiple imputation by chained equations) is a popular approach that practitioners love to use.
However, it has some problems (we will discuss them soon), you have to use it with caution.

The idea of MICE is very simple. We specify a leave-one-out conditional model every variable:

p(x j|x− j;λ j) (12)

for every j = 1, · · · ,d, where x− j is all variables except for x j and λ j is the underlying parameter.

Equation (12) indicates an imputation model for variable X j given all other variables. Starting with an initial
guess for every missing values and the model’s parameters, the MICE algorithm then update each imputed
value sequentially by equation (12). After updating all missing values, we then update the parameters λ (can
be either via MLE or a Bayesian approach) and repeat the whole process again. The above procedure forms
a Markov chain. After running the above procedure many times, we can take the last M batches of data and
use them as our multiple imputation data.

The model in equation (12) is called the fully conditional specification–we fully specify every conditional
model. These models are often easy to specify since they are density of a single variable and can be easily in-
terpreted (how other variables contribute to a single variable). Because of these features an a well-developed
algorithm, the MICE algorithm is very popular.
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THE MICE ALGORITHM.

1. Input: (Xi,Ri ,Ri) for i = 1, · · · ,n.

2. Initialize: X (0)
i,R̄i

and λ̂(0).

3. For each iteration t = 1,2, · · · , do the following:

(a) (Imputation) For i = 1, · · · ,n do the following:

i. Let X (t−1)
i = (Xi,Ri ,X

(t−1)
i,R̄i

) be the imputed value from previous iteration.
ii. For j = 1, · · · , p, do the following:

A. If Ri j = 0, sample X (t)
i, j from p(x j|X

(t−1)
i,− j ; λ̂

(t−1)
j ).

B. If Ri j = 1, skip.

(b) (Parameter update) Update λ̂(t) by either using the MLE of the imputed data
X (t)

1 , · · · ,X (t)
n or sample from p(λ|X (t)

1 , · · · ,X (t)
n ) (if using a Bayesian approach).

However, the MICE algorithm has a severe problem–incompatibility. The conditional distributions in equa-
tion (12) may not be compatible with each other. To see this, we consider d = 3. The MICE will specify
models

p(x1|x2,x3;λ1), p(x2|x1,x3;λ2), p(x3|x1,x2;λ3).

There may be no joint distribution p(x1,x2,x3) whose conditional distributions agree with all three of them!
This problem gets even more severe when the number of variables is large.
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