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This note is based on page 220-222 of the following book:

[GN2016] Giné, E., & Nickl, R. (2016). Mathematical foundations of infinite-dimensional
statistical models (Vol. 40). Cambridge University Press.

In the kernel density estimation (KDE), we observe IID random variables Xi,--- , X, from some unknown
PDF f and we estimate the underlying PDF via
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Julx) = %ilf <Xih_x> :
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Note: We assume the dimension of the data is 1 to simplify the problem.

Let fj,(x) = E[f4(x)] be its expectation and under mild conditions (e.g., 2-Holder or bounded second deriva-
tives), we have fj,(x) = f(x) + O(h?). Also, it is known in the literature that such estimator has uniform
convergence
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under some kernel VC-type condition. In this note, we will give a gentle discussion on sufficient conditions

to the kernel VC conditions.
X = {yb—>K<xh_y> :h>0,x€]R}

be the collection of kernel functions indexed by x and A. For a collection of functions # and a metric of
function p, we denote the €-covering number of F under p as

Let

N(e, F,p).
The e-covering number is the least number of functions fi,-- -, fy such that any function f € F will satisfy
min; p(f, fj) < €. If such collection fi,-- -, fy attain this bound, we will call them an e-cover of ¥ under the

metric p. Also, for a collection F, an envelope Fy of F is a function such that f(x) < Fy(x) forall f € .

Let [ - ||z, (o) be the Ly (Q) norm of functions, i.e.,

flle = [ 170Pd00).

The kernel VC-type condition is the following condition:



(K) there exists an envelope Fy and constants A,v > 0 such that
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This condition was first appear in the following seminal paper:

[GG2002] Giné, E., & Guillou, A. (2002, November). Rates of strong uniform consistency for
multivariate kernel density estimators. In Annales de I’Institut Henri Poincare (B) Probability
and Statistics (Vol. 38, No. 6, pp. 907-921).

In [GG2002], the authors pointed out that if the kernel function K(x) is of bounded p-variation, then the
condition in equation (1) holds. A function f is of bounded p-variation if
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is bounded. Most common kernel functions, such as Gaussian, Epanechnikov, cosine kernels are all of
bounded p-variation. So it is a very mild condition.

Here we will give a high level idea on why bounded p-variation is enough to condition (K). Our explanation
is based on Lemma 3.6.11 and Proposition 3.6.12 of [GN2016].

Lemma 1 (Lemma 3.6.11. of GN2016 ) Let f be a function of bounded p-variation. Then there exists a
non-decreasing functioin h such that 0 < h(x) <v,(f) and a 1/p-Holder continuous function on the interval

[0,v,(f)] such that f = goh and ||g|e = || f||--

Note: a function f is called B-Holder if there exists a constant L such that for any x,y, |f(x) — f(y)| <
Ljx—y|P.

Proof (sketch).

We take h(x) to be the ‘vertical distance travelled’ of f until point x. Namely, let I,(x) = I(x < z). Then
h(x) = v,(fI). By construction, 4 is non-decreasing and for any x <y, |f(y) — f(x)|? < h(y) — h(x) and

h(x) € [0,v,(f)]-

Let u € [0,v,(f)] be any possible value of . Then we choose the function g(u) to be the value of f that
corresponds to any point in 4~ ! (). So by construction, g o h(x) = g(h(x)) = f(x).

Now we verify that g is 1/p—Holder continuous. Consider u,v € [0,v,(f)] such that g(u) = f(x) and
g(v) = f(y). Then we have

|8(1) — (V)| = £ (x) = F)] < [h(x) =h()|'P < Ju—v] /7.
Thus, g is 1/ p—Holder continuous.
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Proposition 2 (Proposition 3.6.12. of GN2016 (simplified)) Ler f be a continuous function of bounded p-
variation with p > 1. Consider the collection

F={x— f(tx—s):t>0,s € R}.

Then F is of VC-type, i.e., there exists an envelop Fy and positive numbers A,v such that for any probability
measure Q,

N(EIFlliyi0 F 1 L2(0)) < (A> |

€

With Proposition 2, one can easily see why bounded p-variation kernel implies the condition (K).
Proof of Proposition 2 (sketch).

By Lemma 1, we can write f = goh, where A is non-decreasing and g is 1/p-Holder. Thus, any function in
F, f(tx—s) = g(h(tx—s)). We first consider the class

H={x— h(tx—s):t>0,5s € R}.
Then ¥ is just 1/p-Holder transform from #{.

Since f is continuous, & will also be continuous. Because of the non-decreasing property of s, we can define
its generalized inverse 2! (u) for any value u € [0,v,(f)].

The subgraph of a particular element indexed by 7,s in # will be
Gis={(x,u) e Rx[0,v,(f)] :u < h(tx—s)} = {(x,u) e Rx[0,v,(f)]: h Y (u) <tx—s}
— {(xu) € R x [0,v,(F)] : ™" (u) —tx+5 < O}.

Thus, all possible subgraphs in # is the set G = {G;:¢ > 0,s € R}. So the VC dimension of A is the VC
dimension of the set G.

Because each element G,  is determined by the function 4! (1) —tx+s < 0, one can easily see that

GCcv
V={Vupc:ab,ceR}
Vabe = {(x,u) : ah™" (u) +bx+c < 0}.
Because 7/ is formed by the vector space of 3 functions ((x,u) — A~ (u), (x,u) — x, (x,u) — 1), its VC
dimension is at most 4 (see, e.g., Proposition 3.6.6. of [GN2016]). So the VC dimension of G C ¥ will

be at most 4, which implies that # is a VC-type class with VC dimension at most 4 and we can pick the
envelope function of A to be the constant v, (f).

Then by the Dudley-Pollard Theorem (see, e.g., Theorem 3.6.9 of [GN2016]), there exist positive numbers
Ao such that
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for any probability measure Q. Note that the constant 5 comes from the fact that the VC dimension of the
underlying subgraph G is at most 4.

Using the fact that g is 1/p-Holder so for any u,v with [ju—v|[,0) <7,
1/2
Jet) -0}l = ( [ (s~ e0v)Va0)

1/2
< (fw-vprrac)

S CpTl/p

for some constant c,. Thus, any €-cover of H induces an Cp- el/P_cover of F = go H so we have

1/ Ao\’
N(EYP - cp vy (£), o 12(Q)) < N(evy(f), H,12(Q)) < () ,

€
which implies

N(eFy, F,12(Q)) < <2>5p,

where Fy = ¢} - vi,(f) is a contant envelope and A = A(l)/ P,

So we have completes the proof.

Note that this is a very loose bound—it can be improved a lot by the formal proof of Proposition 3.6.12. of
[GN2016].
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