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This note is based on page 220-222 of the following book:

[GN2016] Giné, E., & Nickl, R. (2016). Mathematical foundations of infinite-dimensional
statistical models (Vol. 40). Cambridge University Press.

In the kernel density estimation (KDE), we observe IID random variables X1, · · · ,Xn from some unknown
PDF f and we estimate the underlying PDF via

f̂h(x) =
1
nh

n

∑
i=1

K
(

Xi− x
h

)
.

Note: We assume the dimension of the data is 1 to simplify the problem.

Let fh(x) = E[ f̂h(x)] be its expectation and under mild conditions (e.g., 2-Hölder or bounded second deriva-
tives), we have fh(x) = f (x)+O(h2). Also, it is known in the literature that such estimator has uniform
convergence

sup
x
| f̂h(x)− fh(x)|= OP

(√
| logh|

nh

)
under some kernel VC-type condition. In this note, we will give a gentle discussion on sufficient conditions
to the kernel VC conditions.

Let

K =

{
y 7→ K

(
x− y

h

)
: h > 0,x ∈ R

}
be the collection of kernel functions indexed by x and h. For a collection of functions F and a metric of
function ρ, we denote the ε-covering number of F under ρ as

N(ε,F ,ρ).

The ε-covering number is the least number of functions f1, · · · , fN such that any function f ∈ F will satisfy
min j ρ( f , f j)≤ ε. If such collection f1, · · · , fN attain this bound, we will call them an ε-cover of F under the
metric ρ. Also, for a collection F , an envelope F0 of F is a function such that f (x)≤ F0(x) for all f ∈ F .

Let ‖ · ‖L2(Q) be the L2(Q) norm of functions, i.e.,

‖ f‖L2(Q) =
∫
| f (x)|2dQ(x).

The kernel VC-type condition is the following condition:
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(K) there exists an envelope F0 and constants A,v > 0 such that

sup
Q

N(ε‖F0‖L2(Q),K ,‖ · ‖L2(Q))≤
(

A
ε

)v

. (1)

This condition was first appear in the following seminal paper:

[GG2002] Giné, E., & Guillou, A. (2002, November). Rates of strong uniform consistency for
multivariate kernel density estimators. In Annales de l’Institut Henri Poincare (B) Probability
and Statistics (Vol. 38, No. 6, pp. 907-921).

In [GG2002], the authors pointed out that if the kernel function K(x) is of bounded p-variation, then the
condition in equation (1) holds. A function f is of bounded p-variation if

vp = sup

{
n

∑
j=1
| f (x j− x j−1)|p :−∞ < x0 < x1 < · · ·< xn < ∞,n ∈ N

}
is bounded. Most common kernel functions, such as Gaussian, Epanechnikov, cosine kernels are all of
bounded p-variation. So it is a very mild condition.

Here we will give a high level idea on why bounded p-variation is enough to condition (K). Our explanation
is based on Lemma 3.6.11 and Proposition 3.6.12 of [GN2016].

Lemma 1 (Lemma 3.6.11. of GN2016 ) Let f be a function of bounded p-variation. Then there exists a
non-decreasing functioin h such that 0≤ h(x)≤ vp( f ) and a 1/p-Hölder continuous function on the interval
[0,vp( f )] such that f = g◦h and ‖g‖∞ = ‖ f‖∞.

Note: a function f is called β-Hölder if there exists a constant L such that for any x,y, | f (x)− f (y)| ≤
L|x− y|β.

Proof (sketch).

We take h(x) to be the ‘vertical distance travelled’ of f until point x. Namely, let Iz(x) = I(x ≤ z). Then
h(x) = vp( f Ix). By construction, h is non-decreasing and for any x < y, | f (y)− f (x)|p ≤ h(y)− h(x) and
h(x) ∈ [0,vp( f )].

Let u ∈ [0,vp( f )] be any possible value of h. Then we choose the function g(u) to be the value of f that
corresponds to any point in h−1(u). So by construction, g◦h(x) = g(h(x)) = f (x).

Now we verify that g is 1/p−Hölder continuous. Consider u,v ∈ [0,vp( f )] such that g(u) = f (x) and
g(v) = f (y). Then we have

|g(u)−g(v)|= | f (x)− f (y)| ≤ |h(x)−h(y)|1/p ≤ |u− v|1/p.

Thus, g is 1/p−Hölder continuous.
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Proposition 2 (Proposition 3.6.12. of GN2016 (simplified)) Let f be a continuous function of bounded p-
variation with p≥ 1. Consider the collection

F = {x 7→ f (tx− s) : t > 0,s ∈ R}.

Then F is of VC-type, i.e., there exists an envelop F0 and positive numbers A,v such that for any probability
measure Q,

N(ε‖F‖L2(Q),F ,L2(Q))≤
(

A
ε

)v

.

With Proposition 2, one can easily see why bounded p-variation kernel implies the condition (K).

Proof of Proposition 2 (sketch).

By Lemma 1, we can write f = g◦h, where h is non-decreasing and g is 1/p-Hölder. Thus, any function in
F , f (tx− s) = g(h(tx− s)). We first consider the class

H = {x 7→ h(tx− s) : t > 0,s ∈ R}.

Then F is just 1/p-Hölder transform from H .

Since f is continuous, h will also be continuous. Because of the non-decreasing property of h, we can define
its generalized inverse h−1(u) for any value u ∈ [0,vp( f )].

The subgraph of a particular element indexed by t,s in H will be

Gt,s = {(x,u) ∈ R× [0,vp( f )] : u≤ h(tx− s)}= {(x,u) ∈ R× [0,vp( f )] : h−1(u)≤ tx− s}
= {(x,u) ∈ R× [0,vp( f )] : h−1(u)− tx+ s≤ 0}.

Thus, all possible subgraphs in H is the set G = {Gt,s : t > 0,s ∈ R}. So the VC dimension of H is the VC
dimension of the set G .

Because each element Gt,s is determined by the function h−1(u)− tx+ s≤ 0, one can easily see that

G ⊂ V
V = {Va,b,c : a,b,c ∈ R}

Va,b,c = {(x,u) : ah−1(u)+bx+ c≤ 0}.

Because V is formed by the vector space of 3 functions ((x,u) 7→ h−1(u), (x,u) 7→ x, (x,u) 7→ 1), its VC
dimension is at most 4 (see, e.g., Proposition 3.6.6. of [GN2016]). So the VC dimension of G ⊂ V will
be at most 4, which implies that H is a VC-type class with VC dimension at most 4 and we can pick the
envelope function of H to be the constant vp( f ).

Then by the Dudley-Pollard Theorem (see, e.g., Theorem 3.6.9 of [GN2016]), there exist positive numbers
A0 such that

N(εvp( f ),H ,L2(Q))≤
(

A0

ε

)5
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for any probability measure Q. Note that the constant 5 comes from the fact that the VC dimension of the
underlying subgraph G is at most 4.

Using the fact that g is 1/p-Hölder so for any u,v with ‖u− v‖L2(Q) ≤ τ,

‖g(u)−g(v)‖L2(Q) =

(∫
(g(u)−g(v))2dQ

)1/2

≤
(∫
|u− v|2/pdQ

)1/2

≤ cpτ
1/p

for some constant cp. Thus, any ε-cover of H induces an cp · ε1/p-cover of F = g◦H so we have

N(ε1/p · cp · vp( f ),F ,L2(Q))≤ N(εvp( f ),H ,L2(Q))≤
(

A0

ε

)5

,

which implies

N(εF0,F ,L2(Q))≤
(

A
ε

)5p

,

where F0 = cp
p · vp

p( f ) is a contant envelope and A = A1/p
0 .

So we have completes the proof.

Note that this is a very loose bound–it can be improved a lot by the formal proof of Proposition 3.6.12. of
[GN2016].

�

4


