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This note is based on the following important work on algorithmic fairness':

[HPS2016] Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised
learning. In Advances in neural information processing systems (pp. 3315-3323).

There is a growing popularity on the study of algorithmic fairness. While there are many ways to achieve/define
algorithmic fairness, we focus on one particular approach via post-processing a (potentially unfair) predictor
from an algorithm. In this scenario, the algorithmic fairness is an attempt to make a trained algorithm to be
fair toward some protected variables such as ethnicity and gender.

We start with a simple example on binary classification. Suppose in our training data, we observe a label
Y € {0,1}, a covariate X € R”, and a variable A € {0, 1} that we wish to protect. So our training data can
be viewed as IID random variables
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We use the training data to construct a classifier ¢ = ¢(X,A) € {0,1} that minimizes some loss function.
Such training data is often obtained from observational studies.

The problem of this the usual classification method is that the training data may be biased toward some
values of variable A. So if we consider the predicted value from the classifier W; = ¢(X;,A;), we may find
that the protected variable A turns out to be an influential variable in W. While this is good for prediction, it
may not be good if the variable A is a sensitive variable such as racial indicator and gender.

To see why this could be a problem, consider a hypothetical data from the US Customs & Border Protection.
Each observation is a traveler’s information on a particular trip. Let ¥ = 1 be an indicator of violating US
immigration law and A be a foreigner indicator (A = 1 means a foreigner) and X is other features of this
traveler. After training, our classifier ¢ may place a lot of emphasis on the variable A since in the data,
foreign traveler may have a higher chance of violating the immigration law. So we will observe a positive
correlation between A,W even after we adjust for Y. However, the fact that being a foreigner itself will
not encourage something to violate the immigration law. So such a classifier, although good for prediction,
will cause discrimination toward foreigners. In this case, the classifier is said to be unfair to the foreigner
indicator variable A.

The algorithmic fairness tries to resolve this issue. While there are may ways of defining algorithmic fair-
ness, here we consider a simple one: a classifier ¢* is said to be algorithmically fair to variable A if

ALc*(X,A)Y.

'Most contents are following [HPS2016] but I use an alternative way to describe the generating process of a fair predictor Q.
The predictor W corresponds to Y of [HPS2016]; the predictor Q corresponds to Y of [HPS2016].



Namely, given the outcome variable Y, the classifier is independent of A, the variable we wish to protect.

Since any classifier ¢ maps a feature X and the protected variable A into a binary value, we can use a binary
random variable W = ¢(X,A) € {0, 1} as the predictor of Y. In fact, any classifier has a corresponding binary
random variable that corresponds to it. So we say that a predictor W is algorithmically fair (also known as
equalized odds in [HPS2016]) to A if

A LW|Y.

From now on, we will consider the case that the predictor W is given (but not necessarily fair) so that we
do not need to use the information from X. So the training data we are using consists of IID binary triplets
(Y,A,W) € {0,1}3. This would greatly simplify the problem.

Such a predictor W is often a good one to predicting A but often is not fair toward variable A. So our goal is
to create another predictor Q such that it is fair to A, i.e.,

ALQl, D

while maintaining a good predictive power of Y.

1 Constructing a fair predictor

To ensure that Q is a predictor, we need to be able to generate Q with A and W and the information from the
training sample. Note that Q is often a random quantity. Namely, the distribution of Q should only depends
on A and W but not Y. This is because if it is truly a predictor, it has to be computable for a new case with
(XnewsAnew) O (Wnew,Anew ). Note that this construction implies that

O LY|AW. 2)

Since Q,A,W € {0, 1}, the distribution of Q is determined by the following 4 parameters:
Gaw = P(Q=1A=a,W =w),a,we {0,1}.
To ensure fairness in equation (1), we need to impose some constraint of ¢ = (qo0,q01,910,911)-

In the training sample, we observe (Y,A, W) so the joint distribution p(y,a,w) is identifiable/oblivious (i.e.,
can be computed/estimated from the training data). Thus, we will treat p(y,a,w) as a known quantity to
simplify the problem.

The fairness constraint (algorithmically fair) in equation (1) is equivalent to
PO=1A=0,Y =y) = P(Q=1]A=1,¥ =),y € {0,1}. 3)

The above equation is also known as equalized odds in [HPS2016].



Now we derive the constraint over g from equation (3). Note that
PQ=1A=0,Y=y)=)Y P(Q=1,W=wA=0,Y =)
w

=Y P(O=1W=wA=0Y =y)P(W=wA=0,Y =y)
w
OV PQ=1W=wA=0P(W=wA=0,Y =)
w
= q00P(W]A =0,y) +q10P(1|A=0,y).
As aresult, equation (3) is equivalent to
900P(W]A =0,y) +¢10P(W = 1]A = 0,y) = qo1 P(W|A = 1,y) +q1. P(W = 1]A = 1,y). )

The probability P(W = w|A = a,Y =) is identifiable from the training data so equation (4) is an identifiable
constraint on g. We need this constraint for both y =0and y = 1.

As long as we choose ¢ that satisfies equation (4), the resulting predictor Q is algorithmically fair to Y and
is computable (derived) with A and W.

The parameter vector ¢ € [0,1]* and there are only 2 constraints in equation (4). To choose the optimal g,
we will try to find the best parameter ¢* € [0, 1] such that

R(q) =E[L(Q.Y):0 ~ 4] )
is minimized; the function L(a, b) is the loss function of predicting b using a. Namely,

q" = argmin R(g) subject to equation (4). (6)
g€l0.1]*

Lemma 1 The risk function in equation (5) is identifiable/estimatible from the training data.

Proof. We will show that equation (5) is identifiable with any given parameter ¢ = (¢0,0,40,1,41,0,41,1)-
Let g be fixed. Then

R(q) =E[L(Q,Y);0 ~q]
=Y L(s,y)P(Q=5Y =)
5,y

= L Ls)P@=5.Y =)

= Y L(s,y)P(Q=sY=yA=aW=w)

8,Y,0,W

= Z L(S,y)P(Q:S‘Y:y,A:a,W:W)P(Y:y,A:a,W:W)
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2 Y LyPQ=sA=aW=wP¥ =yA=a,W=w)

5,,0,W

= Y L(s.))g (1= qaw) PY =y, A=a,W =w).

S,y,a,w



Because P(Y =y,A =a,W = w) is identifiable from the training sample and ¢, ,, is specified, the above risk
function is identifiable.

O

With Lemma 1, we know that the risk R(g) is identifiable for any ¢ from the training sample. So we can
easily perform a minimization to find the optimal ¢*. Also, the fairness constraint in equation (4) is a linear
constraint so this minimization problem is easy to implement.

Parameters satisfying the constraint in equation (4) have an interesting property. For any binary random
variable Z, we define the follow vector:

Yu(Z)=(P(Z=1A=a,Y =0),P(Z=1|A=a,Y =1)). )

It turns out that v,(W) and v,(Q) are implicitly associated.

Lemma 2 Consider a subset of [0,1]* as follows:
P,(W) = Convex Hull[(0,0),v,(W),Y.(1 = W), (1,1)].

Then we have

Ya(Q) € Pu(W)

for any Q that is generated with parameter q. Moreover, when P(Z=1|A=a,Y =0)#P(Z=1|A=a,Y =
1) fora=0,1, every pointm € P,(W) has a unique gy € [0, 1]* such that the corresponding random variable
On ~ g

Note: in Lemma 2, we do not require the parameter g to satisfy the fairness condition (4).
Proof.

Part 1: v,(Q) € P,(W). Let g € [0, 1]* be any arbitrary parameter vector. Recall that y,(Q) = (P(Q = 1|A =
a,Y =0),P(Q=1]A =a,Y = 1)). The first component

Ya(Q)1 = P(Q

(Q=1A=a,Y =0)

P(Q=1W=0A=aY=0)+P(Q=1,W=1A=a,Y =0)
P(Q=1|W=0,A=a)P(W=0A=a,¥ =0)+P(Q=1|W=1,A=a)P(W=1|A=a,¥ =0)
qoaP(W =0|A=a,Y =0)+q; ,P(W=1]A=a,Y =0)

q0.a" (1 —Ya(W )1) +q1aYa(W)i.

Similarly, the second component

Y2(Q)2=P(Q=1A=aY =1)
—PQ=1W=0A=a)PW=0A=aY=1)+P(Q=1W=1,A=a)PW=1A=a¥ =1)
=qo PW=0A=0aY=1)+q.,PW=1A=aY =1)
=4q0.a" (1 _Ya(W>2) +q1a 'Ya(W)2~



Thus, one can easily see that when we vary ¢g 4,414 € [0, 1], the resulting y,(Q) will belong to the convex
hull formed by the four points (0,0),v,(W),Y.(1 —W), (1, 1), which completes the first part of the assertion.

Part 2: uniqueness of g,. To see the uniqueness, note that y,(W) is identified from the training sample.
So it can be viewed as a fixed quantity. Suppose Y, (Q) is given, then the expression of the two components
become

Ya(Q)l =q0,a" (1 _Ya(W)l) + 41, 'Ya(W)17
Ya(Q)2 = qo.a (1 =Ya(W)2) + 1.0 Ya(W)2.

For each a, we have two parameters ¢ 4,1, and two equations, which leads to a unique solution as long as
YeW)1 #%(W) (& P(Z=1/A=a,Y =0) # P(Z=1|A = a,Y = 1)), which completes the proof.

O

1.1 A summary of the generating process of a fair predictor Q
Here is a summary of how we generate Q with a given A, W and the training data.

1. Use the training sample to identify p(y,a,w) =P(Y =y,A=a,W =w).
2. For any parameter g € [0, 1]*, derive the constraint in equation (4).

3. Minimize R(q) = ¥ 0w L(5,3)q5 (1 — Gaw)' *P(Y = y,A = a,W = w) with the constraint (4) to
obtain ¢*.

4. Generate Q|A,W ~ ¢*(A, W) for each observation in the training sample or for a new observation with
Anew: Wnew .

The quantity Q generated from the above procedure satisfies the following properties:

e (O can be generated with only A, W (i.e., Q is a predictor).
e Q satisfies the condition Q L A|Y (i.e., Q is algorithmically fair to A).

e (O minimizes the predictive risk with the above constraints.

1.2 An alternative optimization formulation

Thee procedure described in Section 1.1 is a direct generating procedure. In some literature such as
[HPS2016], the procedure is often written in the following optimization form:

innIE[L(Q,Y)] 3)
s.t. v.(Q) € P,(W), )
%(Q) =11(0Q). (10)



The minimization refers to finding the random variable Q that minimizes the risk (and subject to the two
constraints). The second constraint is associated with Lemma 2 and the third constraint is equivalent to the
fairness constraint in equation (4).

2 Applying to other fairness principles

As mentioned at the beginning, there are multiple ways to define fairness. We are just using a simple one.
A nice feature of the above procedure is that with a gentle modification, it can be applied to other fairness
principles.

For instance, the equal opportunity principle requires a predictor Q to satisfy
PO=1A=1Y=1)=P(Q=1/A=0,Y =1). an
Namely, we only require that Q | A|Y = 1 and does not constraint on the case of ¥ = 0.

Generating Q with constraint (11) is simple. We just replace equation (4) in step 2 and 3 of Section 1.1 with
equation (11) and work out the implied constraints on the parameter g. Then the generated Q will satisfy the
constraint of (11).

If we are using the procedure in Section 1.2, then we only need to replace equation (10) with ¥o(Q)2 =71(Q)2
since this would correspond to the constraint in equation (11).

2.1 Example: test fairness

To illustrate how this idea can be applied to other fairness principles, consider the test fairness in the follow-
ing paper

[C2017] Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in
recidivism prediction instruments. Big data, 5(2), 153-163.

In our case, a predictor Q has test fairness if
PY=10=5,A=0)=P(Y=1/0=s5,A=1) 12)

for any s =0, 1.



To see how equation (12) constraint the parameter vector g, we expand the first term and consider s = 1:

PY=10=1A=0)
P(Q=1/A=0)
L, PY=1,0=1,W=wlA=0)
T L P@=1W=w[A=0)
@ L P(Q=1|W=w,A=0P(W=wY =1A=0)
T L= 1W =W A=0PW = wA=0)
_ Lu@woP(W =wY =1]A=0)
B Ly QW/,OP(W = W’|A = 0)

PY=1/0=1,A=0)=

The two probabilities P(W = w,Y = 1]A = 0) and P(W = w'|A = 0) are identifiable from the data. A similar
calculation shows that
PW=wY=1A=1
P(Y:1|Q:1,A:1):ZW‘M1 W =w, : A=1)
L gw 1 PW =w']A=1)

So the test fairness constraint in equation (12) requires

YudwoPW=wY =1A=0) Y, ,q 1 P(W=wY=1A=1)

= (13)
Zwl qw/70P(W = W/‘A = 0) Zw’ qw’,lP(W = W”A = 1)
Also, for the case of s = 0, the above constraint becomes

Lw(l=qwo)PW=w|A=0) — Lu(1-quw)P(W=w|A=1)

Thus, to generate Q that satisfies the test fairness, we need to choose the parameter vector g that satisfies
equation (13) and (14). Namely, we use these two constraints to replace equation (4) in step 2 and 3 of
Section 1.1.

3 Continuous predictor

Here we describe the case where instead of having a predictor W € {0,1}, we have a continuous predictor
R € [0, 1] but we still have Y,A € {0, 1}. This is a special case that [HPS2016] studied. A common scenario
that this would occur is the case of a generative classifier; the quantity R may refer to as the estimated
probability of ¥ =1 given the covariates X and A. But it can be more general that R is just some score that
we use for our final decision.

For a continuous predictor R, it equalizes the odds (algorithmically fair) if

R LAJY.

However, since R is a quantity that is obtained from the training sample, it generally does not equalizes the
odds.



Since R is not binary, often our final decision is based on placing a threshold on R such that as O, =I(R > t).
Then this maps the problem into the problem we have faced before. Note that P(Q; = 1|A =a,Y =y) =
P(R>t[A=aY =y).

One possible way to achieve algorithmic fairness, i.e., Q; 1 A|Y, is to search for #* such that P(Q,» = 1|A =
0,Y =y)=P(Q; = 1|A=1,Y =y), namely,

P(R>t"1A=0,Y=y)=P(R>t'|A=0,Y =y).
If we can find such #*, then Q- is a fair predictor of Y.
Consider the ROC (receiver operating characteristic) curve:
C.(t) = (PR>t|A=a,y=0),P(R>t|A=a,y=1)) €[0,1]?

and
C.={C,(t):t €[0,1]} C[0,1]%.

One can easily see that such #* is the point where the two curves Cy and C; intersects.

Although this is an attractive idea, it has two drawbacks. First, such t* may not exist except for the two
trivial cases: t* = 0, 1. Second, even if t* exists, the resulting fair predictor may not have a good prediction
power (in terms of loss function) since it is often a single point (excluding t* = 0, 1).

In [HPS2016], the authors proposed a very clever idea using the convex combination of any two points on
an ROC curve. To see this idea, suppose we use a random threshold T, such that

T T41, With a probability of ,
“" | %2, with a probability of 1 -,

where 7, depends on the parameters T = (To,1,%0,2,71,1,T1,2) and § = (Lo, ;). Let Q¢ = I(R > Ty). Then
one can easily see that

PW:=1A=aY=y)=PR>TJA=aY =y)
=0 PR>11|[A=0aY=y)+(1—-0,) -P(R>Ts2|A=0a,Y =),

which is a convex combination of C,(7,,1) and C,(T,2). Thus, by varying t and {, we can change the vector
Va(1,0) = (P(Qrg = 1A =a,Y = 0),P(Qy = 1[A=a,Y = 1)) € [0,1]
to be anywhere within D, = Convex Hull(C,). Namely, V,(7,{) € D,.
Recall that the fairness constraint of O ¢ is
P(Qc=1]A=0,Y =y) = P(Q,c = 1A= 1Y =y), y=0,1,

which require that the two vectors Vy(t,8) = V;(7,C). Since Vy(t,8) € Dy and Vi(1,{) € Dy, the feasible
region that the two vector agree is D* = Dy D;. Note that for a fixed point vy € D*, there might be multiple
(t,€) such that Vy(t,8) = Vi(1,{) = vo, i.e., the choice of (1, ) is not unique.



A nice property of such procedure is that any point in D* is a feasible solution. So we can optimize the
prediction power (minimizing the loss) within the region D*. Formally, when a loss function L is given, we
search for (t*,{*) that solves the following minimization problem:

mian[L(Qr,ng)]

S.t. V()(’C, C) =WV (’C, C)
The resulting predictor will have the following three properties:

e (O ¢~ is a predictor, i.e., it can be generated with the training sample and R,A.
e Q. ¢ equalizes the odds, i.e., Q- - L AlY.

e (O ¢~ minimizes the predictive risk with the above constraints.
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