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Adjustment sets are useful concepts in causal inference. It appears when a distribution factorizes with
respect to a DAG (directed acyclic graph) G = (V,E), where V is the vertex set and E is the edge set. For
simplicity, consider a multivariate distribution with variables X ,Y,Z such that X ,Y ∈ R and Z ∈ Rd . Here
we use X as the intervention variable and Y as the outcome variable.

Let p(x,y,z) be the underlying density function. When the density/distribution function factorizes with
respect to G, the vertex set V = (X ,Y,Z). Using the edges in E, we can easily define parents of each node.
Let PAX be the parentd of node X . The graph factorization implies the following decomposition:

p(x,y,z) = p(x|PAX)p(y|PAY )∏
j

p(z j|PAZ j).

In causal inference, we are often interested in the effect on an outcome variable Y from an intervention of
X = x. Using the g-formula (a.k.a. truncation factorization), the intervention of X = x can be described as1

p(y,z|do(x)) = p(y|PAY )∏
j

p(z j|PAZ j).

Namely, we remove the term p(x|PAX) in the joint distribution.

Thus, the marginal effect on y will be

p(y|do(x)) =
∫

p(y|PAY )∏
j

p(z j|PAZ j)dz.

It is easy to see that in general
p(y|do(x)) 6= p(y|x).

However, as one may expect, some Z j in the integral
∫

p(y|PAY )∏ j p(z j|PAZ j)dz may not be used. So there
might be a subset W ⊂ Z such that

p(y|do(x)) =
∫

p(y|w,x)p(w)dw. (1)

If W satisfies the above equality, then W is called an adjustment set. In a sense, the adjustment set describes
the variables that we need to adjust for computing the causal effect from X on Y .

The adjustment set is generally not unique. There can be many adjustment sets for the same outcome
variable and the same intervention variable. So this leads to a natural question: how do we compare different
adjustment sets? will an adjustment set with less variables be better than a set with more variable?

1an introduction can be found in Section 12.2 of http://faculty.washington.edu/yenchic/19A_stat535/Lec12_

causal_missing.pdf
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1 Doubly robust estimator

To answer these questions, we consider a specific quantity of interest: the average of Y under the intervention
X = x. To simplify the problem, we assume that X is binary. In this case, the parameter of interest is

µx = E(Y |do(X = x)) =
∫

yp(y|w,x)p(w)dydw.

One can easily show the following two equivalent expressions of µx:

µx = E
(

Y I(X = x)
P(X |W )

)
= E(m(x,W )),

where P(x|w) = P(X = x|W = w) is known as the propensity score and m(x,w) = E(Y |X = x,W = w) is the
regression function. The first equality leads to the the inverse probability weighting (IPW) estimator and the
second equality is associated with the regression adjustment (a.k.a. g-computation estimator).

Given observations
(X1,Y1,Z1), · · · ,(Xn,Yn,Zn),

the IPW estimator is

µ̂x,IPW =
1
n

n

∑
i=1

YiI(Xi = x)
P(Xi|Wi)

and the the regression adjustment (RA) estimator is

µ̂x,RA =
1
n

n

∑
i=1

m(x,Wi).

In fact, there is an estimator the combines both estimators. This is known as the doubly robust (DR) estimator

µ̂x,DR =
1
n

n

∑
i=1

I(Xi = x)
P(x|Wi)

(Yi−m(x,Wi))+m(x,Wi).

Each of the above estimator has a closed-form influence function that

ψIPW (X ,Y,W )=
Y I(X = x)

P(x|W )
, ψRA(X ,Y,W )=m(x,W ), ψDR(X ,Y,W )=

I(X = x)
P(x|W )

(Y −m(x,W ))+m(x,W ).

And one can easily see that
nVar(µ̂x,DR) = Var(ψDR(X ,Y,W ))

and similarly for RA and DR estimators. Thus, the variance of each estimator is characterized by the
influence function.
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2 Comparing nested adjustment sets

Now we focus on the DR estimator. Consider a case where we have nested adjustment sets W and C such
that W = (B,C). Then

• If X ⊥ B|C, then W = (B,C) is better than C.

• If Y ⊥ B|C,X , then C is better than W = (B,C).

This result was proved in the following paper (under a slightly different setting):

Smucler, E.; Sapienza, Facundo; Rotnitzky, A. (2020). Efficient adjustment sets in causal
graphical models with hidden variables. arXiv preprint arXiv:2004.10521.

Here we give the formal descriptions of what we meant.

Proposition 1 Suppose that W = (B,C) such that

(G1) X ⊥ B|C

and C is also another adjustment set. Then

Var(ψDR(X ,Y,C))≥ Var(ψDR(X ,Y,B,C)) = Var(ψDR(X ,Y,W )).

Namely, although C is an adjustment set with less variables, its variance may be higher than the adjustment
set W = (B,C).

Here is another interesting result–sometimes, an adjustment set with less variables may indeed have a lower
variance.

Proposition 2 Suppose that W = (B,C) such that

(G2) Y ⊥ B|C,X

and C is also another adjustment set. Then

Var(ψDR(X ,Y,C))≤ Var(ψDR(X ,Y,B,C)) = Var(ψDR(X ,Y,W )).

Namely, C is a better adjustment set than W = (B,C).

Therefore, depending on the underlying assumptions, we may use different adjustment sets to obtain an
estimator with a smaller variance. Note that the proofs of the two propositions are not long so we provide
them in Section 4.
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3 Remarks

• Information adjustment interpretation. The assumption (G1) X ⊥ B|C that leads to a larger ad-
justment set was not too surprising. This is the case where B becomes irrelevant to X if we know C.
However, B could still be influencing Y . Thus, adjusting for B will stabilize the the estimate of the
causal effect from X to Y .

On the other hand, the assumption (G2) Y ⊥ B|X ,C means that when we adjust for X ,C, B has no
direct effect onto Y . Therefore, including B will not improve the estimate of the effect from X on Y .

• Case of IPW and RA estimators. Interestingly, (G1) and (G2) assumptions do not change the effi-
ciency (variance) of the RA estimator so even with any of these two assumptions, we still cannot tell
if an adjustment set with more/less variables will be better (but note that if we have to estimate the
regression function, the one with less variable is preferred).

For the IPW estimator, (G2) does imply that we should be using the estimator with less variables.
This is due to the fact that (using a similar derivation as the proof of Proposition 2)

E(ψIPW (X ,Y,B,C)|X ,Y,C) = ψIPW (X ,Y,C)⇒ Var(ψIPW (X ,Y,B,C))≥ Var(ψIPW (X ,Y,C)).

(G1) does not tell us which estimator is better since under (G1), ψIPW (X ,Y,B,C) = ψIPW (X ,Y,C).

• The regression function and/or the propensity score has to be known. The above analysis assumes
that the propensity score and the regression function are both known. In practice, they are often
unknown and has to be estimated. It is known that when we include more variables, estimation is
often harder. In a parametric model setting, the rate is the same but the variance could be inflated due
to the use of more variables. In a nonparametric setting, the rate is often drastically slowed down by
the number of variables (an usual rate is O(n−

2
4+d )) so including more variables may not help at all.

4 Proofs

Proof.[Proof of Proposition 1] Using W = (B,C), we can write

ψDR(X ,Y,W ) = ψDR(X ,Y,B,C) =
I(X = x)
P(x|B,C)

(Y −m(x,B,C))+m(x,B,C)

and

ψDR(X ,Y,C) =
I(X = x)
P(x|C)

(Y −m(x,C))+m(x,C).

Assumption (G1) X ⊥ B|C implies that P(x|B,C) = P(x|C) so

ψDR(X ,Y,C) =
I(X = x)
P(x|C)

(Y −m(x,C))+m(x,C)

=
I(X = x)
P(x|B,C)

(Y −m(x,C))+m(x,C)

= ψDR(X ,Y,B,C)− (m(x,C)−m(x,B,C))

(
I(X = x)
P(x|C)

−1
)
.
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Here are two interesting facts. First, the mean of the second term is

E
(
(m(x,C)−m(x,B,C))

(
I(X = x)
P(x|C)

−1
))

= E
(

m(x,C)−m(x,B,C))E
(

I(X = x)
P(x|C)

−1|B,C
))

= E
(

m(x,C)−m(x,B,C))

(
P(x|B,C)

P(x|C)
−1|B,C

))
= 0.

Second, the product of the two terms is

E
(

ψDR(X ,Y,B,C)(m(x,C)−m(x,B,C))

(
I(X = x)
P(x|C)

−1
))

= E
(
E(ψDR(X ,Y,B,C)|X ,B,C)(m(x,C)−m(x,B,C))

(
I(X = x)
P(x|C)

−1
))

.

Note that

E(ψDR(X ,Y,B,C)|X ,B,C) =

(
I(X = x)
p(x|B,C)

(m(X ,B,C)−m(x,B,C))

)
+m(x,B,C)

= m(x,B,C).

So the product of the two terms equals

E
(

m(x,B,C)(m(x,C)−m(x,B,C))

(
I(X = x)
P(x|C)

−1
))

= E
(

m(x,B,C)(m(x,C)−m(x,B,C))E
(

I(X = x)
P(x|C)

−1|B,C
))

= E
(

m(x,B,C)(m(x,C)−m(x,B,C))

(
P(x|B,C)

P(x|C)
−1
))

= 0.

This two fact implies that the covariance

Cov

(
ψDR(X ,Y,B,C),(m(x,C)−m(x,B,C))

(
I(X = x)
P(x|C)

−1
))

= 0.

As a result, we conclude that

Var(ψDR(X ,Y,C))≥ Var(ψDR(X ,Y,B,C)) = Var(ψDR(X ,Y,W ))

�

Proof.[Proof of Proposition 2]
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Note that (G2) Y ⊥ B|C,X implies that p(b|x,y,c) = p(b|x,c). Thus, one can easily see that

E
(

1
P(X |B,C)

|X ,Y,C
)
=

∫ p(b|X ,Y,C)

p(X |b,C)
db

=
∫ p(b|X ,C)

p(X |b,C)
db

=
∫ p(b,C)

p(X ,C)
db

=
1

p(X |C)
.

Also, m(x,b,c) = m(x,c) due to (G2) so the influence function can be equivalently written as

ψRA(Y,X ,B,C) = m(x,C)

(
1− I(X = x)

p(x|B,C)

)
+

I(X = x)
p(x|B,C)

Y

As a result,

E(ψDR(X ,Y,B,C)|X ,Y,C) = m(x,C)E
(

1− I(X = x)
p(X |B,C)

|X ,Y,C
)
+YE

(
I(X = x)
p(X |B,C)

|X ,Y,C
)

= m(x,C)

(
1− I(X = x)

p(x|C)

)
+

I(X = x)
p(x|C)

Y

= ψRA(Y,X ,C).

By the law of total variance, for any random variables S,T , Var(S) = Var(E(S|T ))+E(Var(S|T )), which
implies

Var(S)≥ Var(E(S|T )).

We conclude that

Var(ψDR(X ,Y,B,C))≥ Var(E(ψDR(X ,Y,B,C)|X ,Y,C)) = Var(ψDR(X ,Y,C)).

�
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