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All nonparametric regression suffers from the curse of dimensionality; namely, when the number of covari-
ates d is large, the convergence rate could be extremely slow. For instance, in the kernel regression, the
optimal rate under a standard smoothness (2-Hölder) condition is OP

(
n−

4
4+d

)
. When d is greater than 6,

this rate is very slow.

To deal with this problem, a common solution is the additive model. Namely, we assume that the regression
model

E(Y |X = x)≡ m(x) = µ0 +µ1(x1)+ · · ·+µd(xd) (1)

with the condition that

E(m j(X j)) =
∫

m j(x j)p j(x j)dx j = 0, j = 1,2, · · · ,d (2)

to avoid identification problem. Note that p j(x j) is the marginal PDF of X j. This is called the additive
model.

Here we will introduce three common methods for estimating the additive model.

1 Direct approach

From equations (1) and (2), we immediately have the following result:

E(m(x1,X2, · · · ,Xd)) = m0 +µ1(x1)+
d

∑
j=2

E(µ j(X j)) = m0 +µ1(x1).

The same result holds for any µ j(x j). Note that m0 = E(Y ) can be estimated by the simple sample mean Ȳn.
Thus, all we need is a multivariate regression estimator m̂(x) and then construct the estimator

µ̂1(x1) =−Ȳn +
1
n

n

∑
i=1

m̂(x1,Xi,2, · · · ,Xi,d).

A similar idea can be applied to other m̂ j(x j).

However, this idea may not give an estimator with a fast convergence rate because we are still estimating
the full-dimensional regression model m̂. To obtain a fast rate, we consider a ‘partial’ local polynomial
regression. Let

(
α̂1(x), β̂1(x)

)
= argminα,β

n

∑
i=1

(Yi−α−β(Xi1− x1))
2K
(

Xi1− x1

h

) d

∏
j 6=1

K
(

Xi j− x j

b

)
,
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where h,b are smoothing bandwidth that may not necessarily be the same. Note that the above local linear
model is linear only in x1 but the kernel (localization) is on all variables. The constant term α̂1(x) is an
estimator of the regression model. To obtain the estimator µ̂1(x1), we average out other variables:

µ̂1(x1) =
1
n

n

∑
i=1

α̂1(x1,Xi2, · · · ,Xid). (3)

We can apply the same idea to other coordinates. It can be shown that estimator in equation (3) has a

convergence rate O(h2)+OP

(√
1
nh

)
, which can recover the convergence rate to n−4/5; see the following

paper1:

[FHM1998] Fan, J., Härdle, W., & Mammen, E. (1998). Direct estimation of low-dimensional
components in additive models. The Annals of Statistics, 26(3), 943-971.

We provide a high-level derivation on the convergence rate in Section 4.

2 Least square approach

A second approach to the additive model is the least square method. The high-level idea is that we want to
construct estimators µ̂1, · · · , µ̂d from the minimizing the following criterion

n

∑
i=1

(
Yi−

d

∑
j=1

µ j(Xi j)

)2

.

While this minimization could be challenge, we may restrict our model to a particular form such as the
orthonormal basis or spline (with penalization on the smoothness) to make it easier.

Suppose that each X j ∈ [0,1]. Let {φ`(z) : `= 1, · · · ,} be an orthonormal basis (e.g., cosine basis). We then
consider M basis functions φ1(z), · · · ,φM(z) and approximate each function

µ j(x j)≈
M

∑
`=1

θ j`φ`(x j).

All we need is to estimate the coefficients θ ∈ Rd×M. Under the least-square criterion, we may estimate the
coefficients by

θ̂ = argminθ

n

∑
i=1

(
Yi−

d

∑
j=1

M

∑
`=1

θ j` ·φ`(Xi j)

)2

.

The estimator

µ̂ j(x j) =
M

∑
`=1

θ̂ j` ·φ`(x j).

1 A caveat is that we still need nhbd−1→ ∞ and b/h→ 0. To obtain the optimal rate h� n−1/5, we need d < 5, so there is still
a restriction on the dimension.
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Under the regular smoothness (2-Soblev), the bias will be O(M−2) and the variance is O(Md/n), so the
optimal rate will be O(d · n−4/5) with M � n1/5, which does not suffer too much from the curse of dimen-
sionality.

The above method has a limitation that the asymptotic distribution is difficult to characterize. To resolve this
problem, people recommend to perform an additional step that for each j, we compute a pseudo-outcome

Ŷi j = Yi− Ȳn−∑
k 6= j

µ̂k(Xik)

by leaving out the j-th coordinate. Then we use a marginal model of regressing Ŷi j against Xi j such as a
kernel regression:

µ̃ j(x j) =
∑

n
i=1 K

(
Xi j−x j

h

)
Ŷi j

∑
n
i=1 K

(
Xi j−x j

h

) .

The estimator µ̃ j(x j) has a nice asymptotic distribution (asymptotically normal).

See the following papers for the use of this idea

1. Wang, L., & Yang, L. (2007). Spline-backfitted kernel smoothing of nonlinear additive
autoregression model.
2. Horowitz, J. L., & Mammen, E. (2004). Nonparametric estimation of an additive model with
a link function.

3 Backfitting approach

The backfitting is perhaps the most popular method for the additive model. Note that the additive model in
equation (1) can be written as

Y = µ0 +µ1(X1)+ · · ·+µd(Xd)+ ε.

Now we take conditional expectation E(·|X j = x j) in both sides, leading to

E(Y |X j = x j) = µ0 +µ j(x j)+ ∑
k 6= j

E(µk(Xk)|X j = x j).

By rearrangements and using the fact that µ0 = E(Y ),

µ j(x j) = E(Y |X j = x j)−E(Y )−∑
k 6= j

E(µk(Xk)|X j = x j)

= E(Y |X j = x j)−E(Y )−∑
k 6= j

∫
µk(xk)p(xk|x j)dxk.

(4)

Equation (4) is the famous backfitting equation.

The function E(Y |X j = x j) can be easily estimated by any marginal nonparametric regression model and
E(Y ) can be estimated by the simple sample mean Ȳn. Thus, a good estimator m̂u j(x j) should satisfies the
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following empirical equation

µ̂ j(x j) = m̂ j(x j)− Ȳn−∑
k 6= j

∫
µ̂k(xk)p̂(xk|x j)dxk, (5)

where m̂ j(x j) is an estimator of the marginal model E(Y |X j = x j) and p̂(xk|x j) is the conditional PDF
estimator. Our goal is to find estimators solving equation (5).

Numerically, the backfitting method is the following iterative procedure:

1. Start with initial estimates
µ̂(0)j (x j), j = 1, · · · ,d.

2. For t = 1, · · · , do the following until a stopping criterion is met:

(a) For j = 1, · · · ,d, do:

µ̂(t)j (x j) = m̂ j(x j)− Ȳn−∑
k< j

∫
µ̂(t)k (xk)p̂(xk|x j)dxk + ∑

k> j
µ̂(t−1)

k (xk)p̂(xk|x j)dxk.

Namely, we sequentially update the estimator µ̂ j according to equation (5).

Theoretical properties of the backfitting method can be found in the following paper:

Mammen, E., Linton, O., & Nielsen, J. (1999). The existence and asymptotic properties of a
backfitting projection algorithm under weak conditions. The Annals of Statistics, 27(5), 1443-
1490.

A very common conditional PDF estimator is the KDE:

p̂(xk|x j) =
∑

n
i=1 K

(Xik−xk
h

)
K
(

Xi j−x j
h

)
h ·∑n

i=1 K
(

Xi j−x j
h

) .

Note that we may use a kernel CDF approach to replace the PDF estimator in equation (5) in the sense that
p̂(xk|x j)dxk can be replaced by dP̂(xk|x j), where

P̂(xk|x j) =
∑

n
i=1 I(Xik ≤ xk)K

(
Xi j−x j

h

)
∑

n
i=1 K

(
Xi j−x j

h

) .

With this, ∫
µ̂k(xk)dP̂(xk|x j) =

n

∑
i=1

Wji(x j) · µ̂k(Xik),

where Wji(x j)≥ 0,∑n
i=1Wji(x j) = 1, and

Wji(x j) =
K
(

Xi j−x j
h

)
∑

n
i=1 K

(
Xi j−x j

h

)
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which is the kernel weight of j-th coordinate for each observation. Thus, backfitting equation can be reex-
pressed as

µ̂ j(x j) = m̂ j(x j)− Ȳn−∑
k 6= j

n

∑
i=1

Wi j(x j) · µ̂k(Xik).

4 A high-level idea of the rate in the direct approach

Here we illustrate the high-level idea on how the direct approach in Section 1 in the additive model can
improve the convergence rate. The original work in [FHM1998] is on local polynomial regression and the
derivation is a lot more involved. To simplify the problem, we use the kernel regression as an example.

Suppose X ∈ R2 and let

m̂(x) =
∑

n
i=1YiK

(
Xi1−x1

h1

)
K
(

Xi2−x2
h2

)
∑

n
i=1 K

(
Xi1−x1

h1

)
K
(

Xi2−x2
h2

)
be the kernel regression estimator. When using the direct approach, the estimator of the first component
µ1(x1) will be

µ̂1(x1) =−Ȳn +
1
n

n

∑
i=1

m̂(x1,Xi,2) =−Ȳn +
∫

m̂(x1,x2)dP̂(x2),

where P̂(x2) =
1
n ∑

n
i=1 I(Xi2 ≤ x2) is the empirical distribution.

Clearly, the convergence rate of µ̂1(x1) is dominated by the rate in the second term 1
n ∑

n
i=1 m̂(x1,Xi,2). So we

focus on deriving its rate.

Using the fact that the denominator of m̂(x) is the 2-D KDE, we have the following approximation of the
kernel regression:

m̂(x) =
∑

n
i=1YiK

(
Xi1−x1

h1

)
K
(

Xi2−x2
h2

)
∑

n
i=1 K

(
Xi1−x1

h1

)
K
(

Xi2−x2
h2

)
=

1
nh1h2

∑
n
i=1YiK

(
Xi1−x1

h1

)
K
(

Xi2−x2
h2

)
1

nh1h2
∑

n
i=1 K

(
Xi1−x1

h1

)
K
(

Xi2−x2
h2

)
=

Rn(x1,x2)

p̂h1,h2(x1,x2)

≈ Rn(x1,x2)

p(x1,x2)
− R̄(x1,x2)

p(x1,x2)

p̂h1,h2(x1,x2)− p(x1,x2)

p(x1,x2)
,

where Rn(x1,x2) =
1

nh1h2
∑

n
i=1YiK

(
Xi1−x1

h1

)
K
(

Xi2−x2
h2

)
and R̄(x1,x2) =

∫
yp(y,x1,x2)dy is the asymptotic

limit of Rn and p(x1,x2) is the joint PDF and ph1,h2(x1,x2) is the 2-D KDE.
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Applying this into µ̂1(x1), we obtain

µ̂1(x1) =
∫

m̂(x1,x2)dP̂(x2)

≈
∫ Rn(x1,x2)

p(x1,x2)
dP̂(x2)︸ ︷︷ ︸

(I)

−
∫ R̄(x1,x2)

p(x1,x2)

p̂h1,h2(x1,x2)− p(x1,x2)

p(x1,x2)
dP̂(x2)︸ ︷︷ ︸

(II)

.

Clearly, the bias in both (I) and (II) will be O(h2
1+h2

2). So we now focus on the variance/stochastic variation
in both terms.

Variance in (I). A direct calculation shows that

(I) =
∫ Rn(x1,x2)

p(x1,x2)
dP̂(x2)

=
1

nh1h2

n

∑
i=1

YiK
(

Xi1− x1

h1

)∫
K
(

Xi2− x2

h2

)
/p(x1,x2)dP̂(x2)

=
1

nh1

n

∑
i=1

YiK
(

Xi1− x1

h1

)
1

nh2

n

∑
j=1

K
(

Xi2−X j2

h2

)
/p(x1,X j2).

The quantity 1
nh2

∑
n
j=1 K

(
Xi2−X j2

h2

)
/p(x1,X j2) is essentially a 1D weighted KDE centered at Xi2 with a weight

1
p(x1,X j2)

and asymptotically,

1
nh2

n

∑
j=1

K
(

Xi2−X j2

h2

)
/p(x1,X j2) =

p(Xi2)

p(x1,Xi2)
+O(h2

2)+OP

(√
1

nh2

)
≈ 1

p(x1|Xi2)
.

Thus,

(I)≈ 1
nh1

n

∑
i=1

Yi

p(x1|Xi2)
K
(

Xi1− x1

h1

)
.

Clearly, the variance of (I) will be of the order of O( 1
nh1

), which is the desired result.

Variance in (II). The variance of the second term can be derived from essentially the same approach. We
now focus only on p̂h1,h2(x1,x2) since the other quantity is non-random.

(II′) =
∫ R̄(x1,x2)

p(x1,x2)

p̂h1,h2(x1,x2)

p(x1,x2)
dP̂(x2)

=
1

nh1h2

n

∑
i=1

K
(

Xi1− x1

h1

)∫ R̄(x1,x2)

p2(x1,x2)
K
(

Xi2− x2

h2

)
dP̂(x2)

=
1

nh1

n

∑
i=1

K
(

Xi1− x1

h1

)
1

nh2

n

∑
j=1

R̄(x1,X j2)

p2(x1,X j2)
K
(

Xi2−X j2

h2

)
≈ 1

nh1

n

∑
i=1

K
(

Xi1− x1

h1

)
· R̄(x1,Xi2)p(Xi2)

p2(x1,Xi2)
.

This term clearly has an asymptotic variance of the order of O( 1
nh1

).
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Finally, using the fact that Var(X +Y )≤ 2Var(X)+2Var(Y ), we conclude that the variance of µ̂1(x1) is of
the order of O( 1

nh1
).

Formally, the rate should be written as

µ̂1(x1)−µ1(x1) = O(h2
1)+O(h2

2)+OP

(√
1

nh1

)

when h1→ 0,h2→ 0,nh1h2→∞. We still need nh1h2→∞ to ensure the 2-D KDE can approximate p(x1,x2)
well. In some paper, we add an additional condition h2

h1
→ 0, so that we can drop O(h2

2) in the rate, making

it O(h2
1)+OP

(√
1

nh1

)
, the usual 1-D rate.

Remark.

1. The key to improve the rate is the integral
∫

m̂(x1,x2)dP̂(x2) that removes the effect of the second
variable. This integral converts the kernel into a weight at each observation. Without this integral, we
will still be in the usual 2D rate.

2. While we only consider d = 2, the whole derivation remains the same when we have more variables.
Suppose we have d variables, then we still have

µ̂1(x1)−µ1(x1) = O

(
d

∑
`=1

h2
`

)
+OP

(√
1

nh1

)

under the condition that nh1h2 · · ·hd → ∞.

3. In fact, this derivation holds if we are considering the additive model in the form of

m(x) = µ1(x1)+η(x2, · · · ,xd).

We will still obtain the same convergence rate using the estimator µ̂1(x1)! In [FHM1998], they even
consider a more general setup that

m(x) = µ1(x1)+µ2(x2)

with x1 ∈Rp and x2 ∈Rd . Let h be the smoothing bandwidth for x1 and b be the smoothing bandwidth
for x2. The convergence rate will be

µ̂1(x1)−µ1(x1) = O
(
h2 +b2)+OP

(√
1

nhp

)
,

under the constraint nhpbd → ∞.
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