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Quantile classification is a classification method using quantiles to form a classifier. It avoids the needs of
making a parametric assumption on the distribution but can still achieve a fast convergence rate to the Bayes
risk under appropriate assumptions. In this note, we will briefly describe the procedure of constructing a
quantile classifier.

Consider a simple binary classification problem, where we observe a univariate covariate X ∈ R and a class
label Y ∈ {0,1}. Let p(x,y) be the joint distribution of (X ,Y ). Let p(x|y) be the conditional PDF of X given
Y = y and let Fy(x) = F(x|Y = y) be the CDF of X under class Y = y.

Let θ ∈ [0,1] be a quantile probability and let qy(θ) = F−1
y (θ) be the quantile function of Fy(x). Namely,

qy(θ) is the θ-th quantile of X given Y = y. We define a quantile discrepancy to the y-th group as

ηy(x;θ) = (θ+(1−2θ)I(x−qy(θ)> 0))|x−qy(θ)|

=

{
θ · |x−qy(θ)|, if z > qy(θ)

(1−θ) · |x−qy(θ)|, if z≤ qy(θ)

(1)

ηy(x;θ) measures how a value x deviates from the quantile value of y-the group.

One way to think about the quantity ηy is via the quantile loss function. A θ-quantile loss function is

Lθ(a,b) =

{
θ · |a−b|, if a > b
(1−θ) · |a−b|, if a≤ b.

For a random variable Z, one can show that the minimizer q∗ = argminqE[Lθ(Z,q)] will be the θ-quantile of
Z. As a result, qy(θ) = argminqE[Lθ(X ,q)|Y = y] so one can immediately see that

ηy(x;θ) = Lθ(x,qy(θ)).

With the discrepancy ηy, we construct the θ-quantile classifier cθ as

cθ(x) =

{
1, η1(x;θ)< η0(x;θ)

0, η1(x;θ)≥ η0(x;θ)
(2)

The quantile θ here will behaves like a tuning parameter.

Consider the 0-1 loss function L(a,b) = I(a 6= b). We will then choose θ that minimizes the 0−1 loss, i.e.,

θ
∗ = argminθ E[L(cθ(X),Y )].

The final classifier will be

cθ∗(x) =

{
1, η1(x;θ∗)< η0(x;θ∗)

0, η1(x;θ∗)≥ η0(x;θ∗)
(3)
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1 Optimality of quantile classifiers

Given the underlying probability model, the Bayes classifier is

c∗(x) =

{
1, p(x,1)> p(x,0)
0, p(x,1)≤ p(x,0).

And it leads to the Bayes risk
R∗ = R(c∗) =mincR(c).

We will show that under suitable conditions, the classifier cθ∗ also achieves the Bayes risk.

Proposition 1 Suppose that there exists a unique point x∗ such that the Bayes classifier can be represented
as

c∗(x) =

{
1, x > x∗

0, x≤ x∗
or c∗(x) =

{
1, x≤ x∗

0, x > x∗

and p(x∗,1) = p(x∗,0). Then the risk of quantile classifier

R(cθ∗) = R(c∗).

Proof. In this setting, we only need to prove that the quantile classifier will result in a decision boundary x∗.

Consider a given θ. WLOG, we assume that the quantile q0(θ) < q1(θ). In this scenario, one can easily
see that whenever x ≤ q0(θ), |x− q0(θ)| < |x− q1(θ)| so η0(x) < η1(x) and cθ(x) = 0. Similarly, when
x≥ q1(θ), cθ(x) = 1 .

When q0(θ)< x < q1(θ), the loss are linearly changing but with a slope θ in η0 and a slope 1−θ in η1. One
can easily see that

x < q0(θ)+(q1(θ)−q0(θ)) · (1−θ)⇒ η0(x;θ)< η1(x;θ)

so we see that the decision boundary will be

ω(θ) = q0(θ)+(q1(θ)−q0(θ)) · (1−θ) = (1−θ)q1(θ)+θq0(θ).

Namely,

cθ(x) =

{
1, x > ω(θ)

0, x≤ ω(θ).

Thus, the risk function will be

R(cθ) = E[L(cθ(X),Y )] = P(Y = 1)︸ ︷︷ ︸
π1

F1(ω(θ))+P(Y = 0)︸ ︷︷ ︸
π0

(1−F0(ω(θ))).

The first-order condition (taking the first derivative and set it to be 0) leads to

∂

∂θ
R(cθ) = π1 p(ω(θ)|1)ω′(θ)−π0 p(ω(θ)|0)ω′(θ) = [π1 p(ω(θ)|1)−π0 p(ω(θ)|0)]ω′(θ) = 0.

2



One can easily see that ω′(θ) 6= 0 so the case that the first-order condition holds is ω(θ∗) = ω∗ such that

π1 p(ω∗|1) = π0 p(ω∗|0).

By assumption, the only value ω∗ that solves the above equality is ω∗ = x∗, the Bayes decision boundary.
Thus, we conclude that the choice θ∗ will satisfy ω(θ∗) = x∗ so the resulting classifier achieves the Bayes
risk.

�

2 Empirical quantile classifier

To see why the quantile classifier would be useful, consider the empirical version of it. When a random
sample

(X1,Y1), · · · ,(Xn,Yn)

is given, the quantiles can be estimated easily with the sample quantile

q̂y(θ) = F̂−1(θ|Y = y), F̂(x|y) = ∑
n
i=1 I(Xi ≤ x,Yi = y)

∑
n
j=1 I(Yi = y)

.

Thus,

η̂y(x;θ) =

{
θ · |x− q̂y(θ)|, if z > q̂y(θ)

(1−θ) · |x− q̂y(θ)|, if z≤ q̂y(θ)

With this, the θ-quantile classifier can be estimated using

ĉθ(x) =

{
1, η̂1(x;θ)< η̂0(x;θ)

0, η̂1(x;θ)≥ η̂0(x;θ)

We estimate the optimal θ via empirical risk minimization:

θ̂ = argminθ R̂(ĉθ) = argminθ

1
n

n

∑
i=1

L(ĉθ(Xi),Yi).

The final classifier is

ĉ
θ̂
(x) =

{
1, η̂1(x; θ̂)< η̂0(x; θ̂)

0, η̂1(x; θ̂)≥ η̂0(x; θ̂)

The statistical errors of ĉ
θ̂
(x) comes from two parts: the first one is estimating the quantile, i.e., |q̂y(θ)−

qy(θ)| and the second part is the empirical risk minimization, i.e., |R̂(cθ)−R(cθ)|. Both quantities can be

estimated uniformly at rate OP

(√
logn

n

)
. Thus, we conclude that

|R(ĉ
θ̂
)−R∗|= OP

(√
logn

n

)
.

Note that we did not make any any parametric assumptions of p(x,y). So this is a nonparametric classifier
but still has a nearly parametric classification rate!
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3 Remarks

A limitation of the quantile classifier is that quantiles are not well-defined in multivariate case. Namely,
when X ∈ Rp, it is unclear how do we define the quantile. One possible way to generalize this idea to
multivariate case is to consider a direction u and we use the quantile of uT X . We may search over different
possible directions to use the best one. Another possible way is to perform a componentwise quantile and
aggregate them together. See the following papers for ideas related to this:

1. Hall, P., Titterington, D. M., & Xue, J. H. (2009). Median-based classifiers for high-
dimensional data. Journal of the American Statistical Association, 104(488), 1597-1608.
2. Hennig, C., & Viroli, C. (2016). Quantile-based classifiers. Biometrika, 103(2), 435-446.

However, the conditions that guarantees consistency to the Bayes risk become very restrictive in multivariate
case. It would greatly constraint the shape of the distribution. Fortunately, if the distributions of the two
classes are differ by a locational-shift, then the quantile classification still works. See the following paper
for more details (and a generalized version that uses multiple directions):

Farcomeni, A., Geraci, M., & Viroli, C.. (2020). Directional quantile classifiers. arXiv preprint
arXiv:2009.05007.

Although the quantile classifier seems to be very powerful, it seems that the resulting classifier is always
going to be a half-space classifier, which turns out to be a parametric classifier and this is why we get a good
convergence rate. Note that quantile classifier does not assume a parametric form of the underlying quantile
or density but the resulting classifier is in fact a parametric classifier.
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