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This note is to explain Proposition 11 of

[VV2011] Van Der Vaart, A., & Van Zanten, H. (2011). Information rates of nonparametric
Gaussian process methods. Journal of Machine Learning Research, 12(60), 2095-2119,

which is a simplified version of the grand theorem (Theorem 2.1) in the following paper:

[GV2000] Ghosal, S., Ghosh, J. K., & Van Der Vaart, A. W. (2000). Convergence rates of
posterior distributions. Annals of Statistics, 28(2), 500-531.

Note: I often call this theorem the fundamental theorem of Frequentist consistency of a nonparametric Bayes
estimator.

Informally speaking, the proposition we will be discussing (see below Theorem 1) provides sufficient con-
ditions on establishing the rate of how the posterior distribution concentrates around the true model that
generates the data under a fixed-design regression problem.

Consider a simple fixed-design regression problem where we observe

(X1,Y1), · · · ,(Xn,Yn)

from the model
Yi = f0(Xi)+ εi,

where ε1, · · · ,εn ∼ N(0,σ2) are IID and f0(x) = E(Y |X = x) is the true regression function. The covariates
X1, · · · ,Xn are univariate and non-random.

The goal is to make inference of f0. To simplify the notations, we denote Dn = {(X1,Y1), · · · ,(Xn,Yn)} as
the data.

Suppose we use a Bayesian approach (nonparametric Bayes) such that we place a prior distribution Π( f )
of the regression function. Similar to the regular Bayesian problem, we denote Π( f |Dn) as the posterior
distribution of f after observing the data. By the normal model of Yi given f (Xi), the posterior

dΠ( f |Dn) ∝

n

∏
i=1

φ

(
Yi− f (Xi)

σ

)
dΠ( f ),

where φ(x) is the PDF of a standard normal distribution. We also denote

φn, f (Dn) =
n

∏
i=1

φ

(
Yi− f (Xi)

σ

)
.
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Suppose we treat the nonparametric Bayes approach as a Frequentist procedure to construct an estimator.
Then a natural way to discuss the consistency of such a procedure is to study the concentration of posterior
distribution around f0, the true data-generating process. In particular, we will consider the Lq concentration:

Rq,n = E
(∫
‖ f − f0‖q

ndΠ( f |Dn)

)
,

where

‖ f − f0‖q
n =

1
n

n

∑
i=1
| f (Xi)− f0(Xi)|q.

A common choice is q = 2, leading to the L2 concentration rate.

Rq,n conveys the information on how fast the posterior distribution concentrates around the true data-
generating function f0. Note that the R2,n rate can be converted into a bound on the L2 distance between the
posterior mean and f0, i.e.,

E(‖E( f |Dn)− f0‖2
n)≤ R2,n.

We are interested in the conditions of the prior Π such that the posterior distribution concentrates at a good
rate. The Proposition 11 of [VV2011] provides a simple description on this purpose.

Let D(ε,F ,‖ · ‖n) be an ε-packing number. Namely, the maximal number of elements in F such that
pairwise distance under ‖ · ‖n norm is greater than or equal to ε.

Theorem 1 (Proposition 11 of Van Der Vaart and Van Zanten (2011)) Consider the fixed design normal
model as described in the above. Suppose the prior distribution satisfies the following two conditions:

(F) For some ε > 0,
√

nε > 1 and for every r > 1 (integer), there exists a class of functions Fr such that

D(ε,Fr,‖ · ‖n)≤ exp(nε
2r2)

Π(Fr)≥ 1− exp(−2nε
2r2).

(T) Π( f : ‖ f − f0‖n ≤ ε)≥ exp(−nε2).

Then

Rq,n = E
(∫
‖ f − f0‖q

ndΠ( f |Dn)

)
≤C0ε

q

for some universal constant C0.

The condition (F) requires that the prior has to put enough probability on a ‘nice class’ Fr. The nice here
means that Fr has a regular packing number so that it does not diverges too quickly. So in a sense, the prior
places most of the mass on a smaller subset of the entire function space. Note that we do not require f0 to
be in any of these Fr.

The only link that we need to connect our prior Π to f0 is the second condition (T). This condition essentially
requires that when we are thinking of an ε-ball around f0 (and ε is shrinking), we have a sufficient among
of mass (e−nε2

).
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1 Two useful lemmas

We will prove this theorem with a small modification from the original proof in [VV2011] to make it more
accessible. First of all, we recall two lemmas from [VV2011]. Note that we will not prove these two lemmas;
interested readers can read [VV2011] for the proof of these two lemmas.

Lemma 2 (Normal Tests; Lemma 13 of Van Der Vaart and Van Zanten (2011)) . Consider a multivari-
ate normal Z ∼ N(θ,I) ∈ Rn and θ ∈ Θ⊂ Rn. Let M(s,Θ) be the maximal number of points in Θ such that
any pairwise distance is at least s. There exists a test ψ(Z) ∈ {0,1} (ψ(Z) = 1 means rejecting H0) such
that for any s > 1 and j ∈ N, we have

(Type-1 error) E(ψ(Z);Z ∼ N(θ0,I))≤ 9M(s/2,Θ)exp
(
−s2

8

)
,

(Type-2 error) sup
θ∈Θ;‖θ−θ0‖≥ js

E(1−ψ(Z);Z ∼ N(θ,I))≤ exp
(
− j2s2

8

)
.

One can think of this lemma as constructing location tests H0 : θ = θ0 against Ha,` : θ = θ` where θ` is the
`-th center in the packing set corresponding to the packing number D(s/2,Θ). And we pull all these tests
together to form a final test. Thus, the type-1 error statement is essentially a Bonferroni correction to make
sure if the data in deed from θ0, then it is unlikely to falsely reject it. So this gives one side of ‘concentration’
around the true data-generating parameter. The second statement (type-2 error) shows that if the data is not
coming from θ0, then the worst case type-2 error is still small.

Lemma 3 (Density Ratio ; Lemma 14 of Van Der Vaart and Van Zanten (2011)) . Consider a multivari-
ate normal Z ∼ N(θ,I) ∈ Rn and θ ∈Θ⊂ Rn. For any prior distribution Q(θ) on Rn and any s > 0,

E
(∫

φn,θ(Z)
φn,θ0(Z)

dQ(θ)≥ e−s2
Q(θ : ‖θ−θ0‖< s);Z ∼ N(θ0,I)

)
≥ 1− exp

(
−s2

8

)
.

The power of this lemma is to construct a density ratio bound. This implies a lower bound on the ‘nor-
malizing constant’ in the posterior. To see this, suppose the inequality is true (with a high probability), we
have ∫

φn,θ(Z)
φn,θ0(Z)

dQ(θ) =
1

φn,θ0(Z)

∫
φn,θ(Z)dQ(θ)≥ e−s2

Q(θ : ‖θ−θ0‖< s).

Thus, we have
Ω0 =

∫
φn,θ(Z)dQ(θ)≥ e−s2

Q(θ : ‖θ−θ0‖< s)φn,θ0(Z).

The posterior
dQ(θ|Z) ∝ φn,θ(Z)dΠ(θ)

and
dQ(θ|Z) = 1

Ω0
φn,θ(Z)dΠ(θ).
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Thus, for any set B⊂ Rn, the posterior probability will be

Q(B|Z) =
∫

B φn,θ(Z)dQ(θ)∫
φn,θ(Z)dQ(θ)

≤
∫

B φn,θ(Z)dQ(θ)

e−s2Q(θ : ‖θ−θ0‖< s)φn,θ0(Z)
(1)

when the inequality of Lemma 3 holds (with a high probability). Equation (1) shows a clear way that we
can control the posterior probability using prior probability within a small ball Q(θ : ‖θ−θ0‖< s).

2 Proof of Theorem 1

The proof consists of several stages although the original proof in Van Der Vaart and Van Zanten (2011) is
very concise. I reordered parts of the proofs and added more details to make the proof more accessible to
readers who are not familiar with the process.

Converting into radius integral. Using the fact that for a positive random variable T ,

E(T q) =
∫

∞

0
q · sq−1P(T > s)ds,

we can rewrite ∫
‖ f − f0‖q

ndΠ( f |Dn) =
∫

∞

0
q · sq−1

Π( f : ‖ f − f0‖n > s|Dn)ds

= (4ε)q
∫

∞

0
q · rq−1

Π( f : ‖ f − f0‖n > 4εr|Dn)dr.

Thus, the moment bound

Rq,n = E
(
(4ε)q

∫
∞

0
q · rq−1

Π( f : ‖ f − f0‖n > 4εr|Dn)dr
)

= E
(
(4ε)q

∫ 2

0
q · rq−1

Π( f : ‖ f − f0‖n > 4εr|Dn)dr+(4ε)q
∫

∞

2
q · rq−1

Π( f : ‖ f − f0‖n > 4εr|Dn)dr
)

≤ (8ε)q +(4ε)qE
(∫

∞

2
q · rq−1

Π( f : ‖ f − f0‖n > 4εr|Dn)dr
)
.

The first term is already at the correct rate, so we only need to make sure that the second term is also in the
same order. Accordingly, what we need is

E
(∫

∞

2
q · rq−1

Π( f : ‖ f − f0‖n > 4εr|Dn)dr
)
< ∞ (2)

An interesting note is that by the Fubini’s theorem, we can move the expectation into the integral, leading
to the requirement ∫

∞

2
q · rq−1E(Π( f : ‖ f − f0‖n > 4εr|Dn))dr < ∞. (3)

Here is an interesting note: in Lemma 2 and 3, all these probability bounds we have is an exponential (in
fact, Gaussian) concentration (in terms of r). So if we plug them into the integral in equation (3), the integral
will be finite. This is a key reason for the above construction.
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Our strategy is to bound the posterior E(Π( f : ‖ f − f0‖n > 4εr|Dn)) by 4 terms:

Π( f : ‖ f − f0‖n > 4εr|Dn)≤ ψ(Dn)+ I(Dn ∈ Ac)+ I(Dn ∈ A)Π( f /∈ Fr)

+Π( f ∈ Fr : ‖ f − f0‖n > 4εr|Dn)(1−ψ(Dn))I(Dn ∈ A),

where ψ = ψ(Dn) ∈ {0,1} is any test and A is the event

A =

{
Dn :

∫
φn, f (Dn)

φn, f0(Dn)
dΠ(θ)≥ e−nε2r2

Π( f : ‖ f − f0‖n <
√

nεr)
}

(4)

in Lemma 3 with s =
√

nεr.

With this, we can bound the expectation using

E(Π( f : ‖ f − f0‖n > 4εr|Dn))≤ A(r)+B(r)+C(r)+D(r)

A(r) = E(ψ(Dn))

B(r) = P(Dn ∈ Ac)

C(r) = E(I(Dn ∈ A) ·Π( f /∈ Fr|Dn))

D(r) = E(Π( f ∈ Fr : ‖ f − f0‖n > 4εr|Dn)(1−ψ(Dn))I(Dn ∈ A)).

Note that the expectation is taken for the randomness of data Dn under the true model f0. In what follows,
we will bound each term.

Bounding A(r): type-1 error bound. Since we can chose any test ψ, we will choose the test to be the one
that satisfies Lemma 2.

Note that we may not be able to do so if the packing number is too large. When we restrict ourselves to Fr,
condition (F) implies that the ε-packing number is

D(ε,Fr,‖ · ‖n)≤ enε2r2
.

Consider the parameter space Θ is formed by θ = ( f (X1), · · · , f (Xn)) with f ∈ Fn. For any f1, f2 ∈ Fr,

‖θ1−θ2‖2 =
n

∑
i=1
| f1(Xi)− f2(Xi)|2 = n‖ f1− f2‖2

n.

Thus, the number M(s,Θ) can be bounded by the packing number via

M(
√

ns,Θ)≤ D(s,Fr,‖ · ‖n).

Using the fact that M(s1,Θ)≤M(s2,Θ) if s1 > s2 and the choice s = 4
√

nεr in Lemma 2 and r > 1, we can
find a test ψ such that

A(r) = E(ψ(Dn))≤M(2
√

nεr,Θ)e−2nε2r2

≤M(
√

nε,Θ)e−2nε2r2

≤ D(ε,Fr,‖ · ‖n)e−2nε2r2

≤ e−nε2r2
.

(5)
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We will choose ψ to be the test with the above property. Note that the second property in Lemma 2 will be
used later in bounding D(r).

Bounding B(r): outside the good event. This result is straight forward from Lemma 3 due to the definition
of A in equation (4). Thus, we immediately obtain

B(r)≤ e−nε2r2/8. (6)

Note that under the choice s =
√

nεr in the event A , the posterior in equation (1) will be modified into

Π(B|Dn)≤
∫

B φn, f (Dn)dΠ( f )
e−nε2r2

Π( f : ‖ f − f0‖<
√

nεr)φn, f0(Dn)

≤ enε2(r2+1)
∫

B

φn, f (Dn)

φn, f0(Dn)
dΠ( f ),

(7)

where the last inequality uses condition (T): Π( f : ‖ f − f0‖<
√

nεr)≥ e−nε2
.

Bounding C(r): outside the good set Fr. To bound this, here is an interesting note:

E
(

φn, f (Dn)

φn, f0(Dn)

)
= 1

since the data Dn is generated from φn, f0 . Thus, by the Fubini theorem and equation (7) and the fact that
I(Dn ∈ A)≤ 1,

C(r) = E(I(Dn ∈ A)Π(F c
r |Dn))

≤ E
(

enε2(r2+1)
∫

F c
r

φn, f (Dn)

φn, f0(Dn)
dΠ( f )

)
≤ enε2(r2+1)

∫
F c

r

E
(

φn, f (Dn)

φn, f0(Dn)

)
dΠ( f )

≤ enε2(r2+1)
Π(F c

r )

≤ e−nε2(r2−1),

(8)

where the last inequality uses condition (F): Π(F c
r ) ≤ e−2nε2r2

. C(r) is still shrinking since we are in the
regime where r ≥ 2.

Bounding D(r): the nice regime and type-2 error. First, we will invoke equation(7) again to upper bound
the posterior probability:

D(r) = E(Π( f ∈ Fr : ‖ f − f0‖n > 4εr|Dn)(1−ψ(Dn))I(Dn ∈ A))

≤ E
(

enε2(r2+1)
∫

Fr∩{ f :‖ f− f0‖≥4εr}

φn, f (Dn)

φn, f0(Dn)
dΠ( f )(1−ψ(Dn))

)
= enε2(r2+1)

∫
Fr∩{ f :‖ f− f0‖≥4εr}

E
(

φn, f (Dn)

φn, f0(Dn)
(1−ψ(Dn))

)
dΠ( f ),

where the second equality is due to the Fubini’s theorem.
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A powerful result of the density ratio is that

E
(

φn, f (Dn)

φn, f0(Dn)
(1−ψ(Dn))

)
= E(1−ψ(Dn) : Dn ∼ φn, f ).

Namely, the ‘data’ is now drawn from f , not the true parameter f0. This key result allows us to connect back
to the second bounds in Lemma 2. Thus, we obtain a refine bound on D(r):

D(r)≤ enε2(r2+1)
∫

Fr∩{ f :‖ f− f0‖≥4εr}
E(1−ψ(Dn) : Dn ∼ φn, f )dΠ( f )

Using the second bound in Lemma 2 with the fact that ‖ f − f0‖n ≥ 4εr implies ‖θ− θ0‖ ≥ 4
√

nεr, j in
Lemma 2 can be chosen as j = 4 (implying js = 4

√
nεr since s =

√
nεr is chosen in event A) and we obtain

a bound
sup

f∈Fr:‖ f− f0‖≥4εr
E(1−ψ(Dn) : Dn ∼ φn, f )≤ e−2nε2r2

.

Thus,
D(r)≤ enε2(r2+1)e−2nε2r2

Π( f ∈ Fr : ‖ f − f0‖n ≥ 4εr)≤ e−nε2(r2−1). (9)

Note that we use the fact that Π( f ∈ Fr : ‖ f − f0‖n ≥ 4εr)≤ 1 in the last inequality.

Thus putting equations (5), (6), (8), and (9) altogether, we conclude

E(Π( f : ‖ f − f0‖n > 4εr|Dn))≤ e−nε2r2
+ e−nε2r2/8 +2e−nε2(r2−1).

All of them are Gaussian concentrations with respect to r so clearly, we have equation (3)∫
∞

2
q · rq−1E(Π( f : ‖ f − f0‖n > 4εr|Dn))dr < ∞,

and thus,

Rq,n ≤ (8ε)q +(4ε)q
∫

∞

2
q · rq−1E(Π( f : ‖ f − f0‖n > 4εr|Dn))dr

≤ (8ε)q +(4ε)qC1

for some constant C1. So the result follows.

3 Remarks

• The good event A is to ensure that we can upper bound the posterior probability by the density ratio
and a prior probability. The density ratio lemma (Lemma 3) shows that the good event holds with a
overwhelming probability.

• The function space Fr is used in three quantities: A(r),C(r), and D(r). It appears in A(r) to upper
bound the packing number in the normal model M(s,Θ), which is where the first condition of (F) was
used and the type-1 error rate in Lemma 2. In C(r), it controls the probability that is not in this good
set (condition (T)). Finally, we use it in D(r) in the type-2 error rate controls. Under the good event
A , the density ratio property (Lemma 3) converts the expectation under f0 into the expectation under
f so E(1−ψ) becomes a type-2 error rate problem and the result of Lemma 2 applies.
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• Here is the grand theorem (Theorem 2.1) of Ghosh and Van Der Vaart (2000) [GV2000]. One will see
the similarity between it and Theorem 1:

Theorem 4 (Theorem 2.1 of Ghosh and Van Der Vaart (2000); simplified) Let d be a metric of dis-
tribution function space P and consider data Z generated from a PDF p0 ∈ P and denote P0 the CDF
corresponding to p0. Suppose that the prior distribution Π on P satisfies the following conditions

(F’) for a sequence εn with εn→ 0 and nε2
n→ ∞, there is a constant C > 0 and sets Pn ⊂ P with

D(εn,Pn,d)≤ exp(nε
2
n)

Π(P\Pn)≤ exp(−nε
2
n(C+4)).

(T’) Π

(
P :−E

(
log p(Z)

p0(Z)

)
≤ ε2

n,E
((

log p(Z)
p0(Z)

)2
))
≥ exp(−nε2

nC), where p is the PDF corresponds

to any distribution P.

Then for sufficiently large M, we have

Π(p : d(P,P0)≥Mεn|Z1, · · · ,Zn)→ 0

in probability.

– Note that Theorem 2.1. of [GV2000] even allow the prior to be Πn but here I take it to be fixed
for simplicity.

– The proof of the above theorem follows a similar strategy as the proof of Theorem 1. In partic-
ular, Theorem 7.1. of [GV2000] is essentially Lemma 2 and Lemma 8.1 of [GV2000] plays the
role of Lemma 3.

– Many papers prove the convergence rate of a nonparametric Bayes procedure by verifying the
conditions (F’) and (T’) that a prior distribution has.

• Finally, I would like to note that this result (Theorem 1 or 4) is essentially treating a Bayesian proce-
dure as a Frequentist method. We are assuming that there is a true model f0 or p0 that generates our
data and we want to show that the posterior concentrates around it. This convergence property is a
Frequentist property although the estimator is constructed from a Bayesian procedure.
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