
A short introduction on normalizing flow
Yen-Chi Chen

University of Washington
July 26, 2024

This note is a simplification of the following papers:

1. Kobyzev, I., Prince, S. J., & Brubaker, M. A. (2020). Normalizing flows: An introduction
and review of current methods. IEEE transactions on pattern analysis and machine intelligence,
43(11), 3964-3979.

2. Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B.
(2021). Normalizing flows for probabilistic modeling and inference. Journal of Machine Learn-
ing Research, 22(57), 1-64.

1 Multivariate inverse CDF

The normalizing flow is based on the inverse CDF formula of a continuous random variable. To start with,
we first discuss an interesting property of the inverse CDF. Suppose Z ∈ R is a continuous random variable
with a CDF FZ that has a well-defined inverse F−1

Z . Then it is well-known that you can generate Z by
sampling from a uniform random variable U ∼ Uni[0,1] and then use the following property

Z d
= F−1

Z (U).

In other words, FZ(Z)
d
=U .

This phenomenon also occurs in multivariate case but with a small modifications.

1.1 Multivariate case

Suppose Z ∈ Rd is a multivariate continuous random variable with a CDF FZ and PDF pZ . For any vector
z ∈ Rd , we denote

z< j = (z1, · · · ,z j−1), z≤ j = (z1, · · · ,z j).

We cannot directly apply the inverse CDF in the multivariate case because the inverse F−1
Z will be a set, not

a point (d−1 dimensional manifold under suitable conditions).

Now we consider the partial CDF:

G j(z) = Fj(z j|z< j) = P(Z j ≤ z j|Z< j = z< j). (1)

Namely, G j(z) only depends on the variables z1, · · · ,z j and is the conditional CDF of z j given the ‘past’
z1, · · · ,z j−1. Clearly, the distributions Fj and G j are well defined.

1

Given a vector z ∈ Rd and the functions G1, · · · ,Gd , we then define

w j = Fj(z j|z< j). (2)

Since Fj is a CDF, we have the following iterative relation

z j = F−1
j (w j|z< j). (3)

By iteratively applying equation (2), we are able to construct w = (w1, · · · ,wd)
T .

Here is an interesting question:

Suppose we apply equation (2) to the random vector Z and let the resulting vector be W , what
is the distribution of W?

Using equations (1) and (2), W = (G1(Z), · · · ,Gd(Z))T so we can apply the Jacobian method to investigate
the PDF of W . Note that each function G j has the following interesting differential:

∂G j(z)
∂z j

=
∂P(Z j ≤ z j|Z< j = z< j)

∂z j
= p(z j|z< j),

∂G j(z)
∂zi

= 0 for i > j.

As a result, the Jacobian matrix

JG(z) =
{

∂G j(z)
∂z j

}
is a lower-triangular matrix with diagonal being p(z j|z< j). Thus, the determinant

det[JG(z)] =
d

∏
j=1

p(z j|z< j) = pZ(z).

Because W = (G1(Z), · · · ,Gd(Z))T , the change of variable formula shows that the PDF of w is

pW (w) = pZ(G−1(w))(det[JG(G−1(w))])−1 = 1

for w ∈ [0,1]d . Therefore,

W d
= Uni[0,1]d

is a uniform random variable in the unit cube.

1.2 The flow

With the above result, given any continuous random variable Z ∈Rd , we can create a mapping G : Rd→Rd

such that G(Z) follows a uniform distribution. Moreover, we can apply this procedure inversely that maps a
uniform distribution over [0,1]d to any continuous random variable by iteratively applying equation (3):

Z1 = F−1
1 (U1) = Q1(U),Z2 = F−1

2 (U2|Z1) = Q2(U), · · · ,Zd = F−1
d (Ud |Z<d) = Qd(U) (4)

2

and U1, · · · ,Ud are IID Uni[0,1]. Namely, any random vector can be generated by

Z = Q(U), (5)

where U ∼ Uni[0,1]d and Q = (Q1, · · · ,Qd)
T .

Moreover, we can morph one continuous random variable to another. Suppose Y has a CDF FY and we
define GY to be the function created by the conditional CDF of Y in equation (1). Let QZ be the function Q
in equation (5) constructed from a CDF FZ . Then the function

φY→Z = QZ ◦GY

will morph the random variable Y into the random variable Z, i.e.,

Z d
= φY→Z(Y) = QZ(GY (Y)).

2 Normalizing flow: one-layer

The normalizing flow is based on the idea in the previous section–it starts with a well-known distribution
such as uniform or multivariate Gaussian and then follow a sequence of parametric transformations in the
above form to eventually match the data’s distribution. For simplicity, we start with a uniform random
variable U ∈ Rd and construction a sequence of mappings

φ1(u;θ1), · · · ,φK(u;θK)

such that φi(·;θi) : Rd → Rd and

X = φ1(·θ1)◦φ2(·;θ2)◦ · · ·φK(·;θK)(U) = φ1(φ2(· · ·φK(U ;θK);θ2)θ1) (6)

matches the distribution of the observed data. Note that θ1, · · · ,θK are the parameters for each transforma-
tion.

In theory, we only need one transformation that is the inverse CDF. However, it is infeasible to estimate the
inverse CDF when the dimension d is large, so the normalizing flow attempts to approximate the inverse
CDF via a sequence of parametric transformations.

Examples of flows. Here are some common flows:

1. Linear flow. φ(y;θ) = Ay+b, where A ∈ Rd×d ,b ∈ Rd are the parameters.

2. Planar flow. φ(y;θ) = y+η · h(ωT y+ b), where η,ω ∈ Rd and b ∈ R are the parameters and h is a
given function.

We will discuss more examples in Section 4.

For simplicity, we first consider the scenario that our flow only has one layer, i.e., K = 1.

3

2.1 Forward modeling

Let X1, · · · ,Xn be the observed data. Under equation (6), we model the distribution of Xi as

X ∼ φ1(U ;θ1).

This is called forward modeling since we are moving from U toward X like moving forward.

Suppose U has a PDF pU . The resulting PDF of X is

pX(x;θ1) = pU(φ
−1
1 (x;θ1)) ·

∣∣∣det[J
φ
−1
1 (;θ1)

(x)]
∣∣∣= L1(θ1|x), (7)

where [
J

φ
−1
1 (;θ1)

(z)
]

i j
=

∂φ
−1
1, j(z;θ1)

∂zi
, i, j = 1, · · · ,d

is the Jacobian matrix. Note that the mapping φ
−1
1, j(·;θ1) is the j-th component of the mapping φ

−1
1 (·;θ1) :

Rd → Rd .

Equation (7) describes the likelihood function L(θ1|x). With this, we then estimate θ1 by

θ̂1 = argmaxθ1

1
n

n

∑
i=1

`1(θ1|Xi), `1(θ1|Xi) = logL1(θ1|Xi).

Note that when we choose U to be from uniform distribution, pU(u) = 1 so the log-likelihood reduces to

`1(θ1|x) = log
∣∣∣det[J

φ
−1
1 (;θ1)

(x)]
∣∣∣ .

Forward trick. Using property of inverse Jacobian, we can rewrite

det[J
φ
−1
1 (;θ1)

(x)] =
{
det[Jφ1(;θ1)(u)]

}−1
, u = φ

−1
1 (x;θ1). (8)

In the construction of forward model, φ1(u;θ1) generally has a simple form so we often have a closed-form
for its derivative. Thus, computing the Jacobian{

det[Jφ1(;θ)(Wi)]
}−1

, Wi = φ
−1
1 (Xi;θ1)

can be done easily.

Forward trick: linear flow. As an example, consider a linear flow φ1(u;θ) = Au+b, where θ = (A,b). The
Jacobian Jφ1(;θ)(u) = A, so {

det[Jφ1(;θ1)(u)]
}−1

= det(A)−1.

Forward trick: planar flow. Suppose we use the planar flow

φ1(u;θ) = u+ρ ·h(ωT u+b),θ = (ρ,ω,b)

4

and h isa given function. Then the Jacobian matrix

[Jφ1(·;θ)(u)]i j = 1+ρi ·h′(ωT u+b)ω j

or equivalently,
Jφ1(·;θ)(u) = Id +h′(ωT u+b) ·ρω

T .

Thus,
det[Jφ1(·;θ)(u)] = 1+h′(ωT u+b) ·ρT

ω.

2.2 Backward modeling

In equation (7), we see that the key to evaluate the likelihood function is the Jacobian, which involves the
inverse of the model φ

−1
1 . To simplify this, one may consider putting a parametric model directly on the

inverse, i.e.,
φ
−1
1 (·;θ) = Ψ1(·;λ1).

In this case, we finding the model
Ψ1(X ;λ1)

d
=U

that maps the data’s distribution back to the generating random variable U . Since this goes backward from
observed data to the generating distribution, it is called the backward modeling.

Under the backward modeling, the Jacobian

J
φ
−1
1 (;θ1)

(x) = JΨ1(;λ1)(x)

is generally easy to compute.

The only downside of this idea is that the backward model Ψ : Rd → [0,1]d , so the choice of models is
restricted.

An interesting fact is that if the PDF of X follows from a parametric model p(x;ρ) and and we construct our
backward modeling via the corresponding conditional PDF

p j(x j|x< j;ρ), Fj(x j|x< j;ρ) =
∫ x j

−∞

p j(t|x< j;ρ)dt, Ψ1, j(x;ρ) = Fj(x j|x< j;ρ).

Then the backward model Ψ1 leads to a Jacobian

JΨ1(;λ1)(x) =
d

∏
j=1

p j(x j|x< j;ρ) = p(x;ρ),

which is the usual likelihood model. Thus, the usual MLE approach can be viewed as a backward modeling
normalizing flow.

5

3 Normalizing flow: K-layers

When we have K-layers, the normalizing flow in equation (6) can be expressed as an iterative sampling
procedure:

1. Y0 =U ∼ pU .

2. For k = 1, · · · ,K, compute Yk = φk(Yk−1;θk)

3. X = YK .

The above sampling procedure also allows us to generate X if we have learned/estimated the parameters
φ1, · · · ,φK .

In this case, we have a set of parameters θ = (θ1, · · · ,θK). To estimate the parameters, we use the likelihood
approach. However, the usual likelihood function in equation (7) will be very complicated and not easy to
work with, so people often use the forward the forward trick in equation (8) so that we obtain the following
elegant form

`(θ|X) = log pU(Y0)−
K

∑
k=1

log
∣∣det[Jφk(·;θk)(Yk−1)

]∣∣
= logΩ0(θ|X)−

K

∑
k=1

logΩk(θk:K |X),

Yk = φ
−1
k (·;θk)◦φ

−1
k+1(·;θk+1)◦φ

−1
K (X ;θK).

(9)

The first term Ω0 can be eliminated if we pick pU to be the uniform distribution so it is generally not a
big problem. Each Ωk(θk:K |X) is the k-th Jacobian evaluated at Yk−1 so it only depends on the parameters
‘forward’ θk:K = (θk,θk+1, · · · ,θK).

Maximizing θ(θ|X) can be done by numerical methods. Note that in our forward modeling the Jacobian

Jφk(·;θk)(yk−1) =
∂φk(yk−1;θk)

∂yk−1

often has a closed-form (see, e.g., linear and planar flows in Section 2.1). So the computational cost is
mostly in the evaluation of Yk−1 since it involves all the forward models φk, · · · ,φK .

4 Autoregressive flows

The design of flow φ(·;θ) : Rd → R plays a key role in Normalizing Flows. While we want to choose a
family of flows that is rich, we also have to be cautious about the computational costs on its derivative. In
particular, the determinant of Jacobian

det[Jφ(;θ)(u)], [Jφ(;θ)(u)]i j =
∂φ j(u;θ)

∂ui

6

is crucial in the inference.

The autoregressive flows refer to the family where φ`(u;θ), the `-th component of the function φ(u;θ), only
depends on u1, · · · ,u`. Namely,

φ`(u;θ) = κ`(u≤`;θ) = κ`(u1, · · · ,u`;θ) (10)

for some function κ`.

The power of autoregressive flow is the fact that for any i > j,

∂φ j(u;θ)

∂ui
= 0.

Thus, the Jacobian Jφ(;θ)(u) is upper-triangular, making the determinant a product form:

det[Jφ(;θ)(u)] =
d

∏
j=1

∂φ j(u;θ)

∂u j
.

The log-likelihood function involves the logarithm of the determinant, which further leads to an elegant
expression:

logdet[Jφ(;θ)(u)] =
d

∑
j=1

log
(

∂φ j(u;θ)

∂u j

)
.

4.1 Transformer flow

The transformer flow is a special class of autoregressive flow. In the autoregressive flow, we have

φ`(u;θ) = κ`(u1, · · · ,u`;θ).

The transformer flow further require κ` to be

κ`(u1, · · · ,u`;θ) = ζ(u`;ξ`), ξ` = ξ`(u1, · · · ,u`−1;θ),

where ζ is a given function called transformer and ξ` is also a given function called the conditioner. Note
that in the transformer function ζ, the output from the conditioner ξ` behaves like the parameter of ζ.

A feature of the transformer is that the function ζ is a univariate function and we may construct it by an
integral

ζ(t;ξ) =
∫ t

−∞

g(s;ξ)ds,

where g is a non-negtive function. In this choice,

∂φ j(u;θ)

∂u j
=

∂ζ(u j;ξ j)

∂u j
=

∂
∫ u j
−∞ g(s;ξ j)ds,

∂u j
= g(u j;ξ j) = g(u j;ξ j(u1, · · · ,u j−1;θ)).

Thus, the log-determinant is

logdet[Jφ(;θ)(u)] =
d

∑
j=1

log
(

∂φ j(u;θ j)

∂u j

)
=

d

∑
j=1

g(u j;ξ j(u1, · · · ,u j−1;θ j)),

a very elegant form.

7

	Multivariate inverse CDF
	Multivariate case
	The flow

	Normalizing flow: one-layer
	Forward modeling
	Backward modeling

	Normalizing flow: K-layers
	Autoregressive flows
	Transformer flow

