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The mixture of expert is a popular approach in statistics and machine learning. It is similar but different
from the usual mixture model (and the mixture of regression). Here we give a gentle introduction about this
idea. For readers who are interested in more details, I would recommend the following book chapter:

Gormley, I. C., & Frühwirth-Schnatter, S. (2019). Mixture of experts models. Handbook of
Mixture Analysis, 271-307.

Let Y ∈ R be a continuous random variable that is our primary response variable and Z ∈ {1,2, · · · ,K} be
a discrete/categorical variable and X ∈ Rd be a multivariate covariate. We only observe (X ,Y ) and Z is
unobserved; here Z is often refers to the latent class label or the label of an expert. In mixture models or
mixture of experts, we often use a parametric form of the conditional densities. Depending on the relation
among X ,Y,Z, there are 4 popular mixture-type models:

• Mixture model. In the usual mixture model, there is no covariate X so we only observe Y . The
mixture model can be written as a graphical model with a direct arrow Z→ Y . Suppose we observe
both (Y,Z), then

p(y,z) = p(y|z)p(z) = pz(y)πz⇒ p(y) = ∑
k

pk(y)πk,

where pk(y) is the conditional distribution of Y given Z = k and πk = P(Z = k) is the proportion of
the k-th component. Let θk be the parameter of pk(y), then the marginal distribution is

p(y;θ) = ∑
k

p(y;θk)πk,

which is the usual mixture model. The Gaussian mixture model is that each p(y;θk) is a Gaussian,
i.e., p(y;θk) = p(y;µk,σ

2
k), where µk and σ2

k is the mean and variance of k-th component.

• Mixture of expert. In the mixture of expert, the model can be expressed as a graphical model with
two arrows X → Z and Z→ Y . Note that Z is unobserved–we only observe X ,Y . In this case,

p(x,y,z) = p(y|z)p(z|x)p(x) = pz(y)πz(x)p(x)⇒ p(y,z|x) = pz(y)πz(x)

⇒ p(y|x) = ∑
k

pk(y)πk(x).

Namely, in the mixture of expert, the density of Y at each component remains the same across different
X . What changes with respect to X is the proportion πk(x).

In this case, we need parameters for both pk(y) and πk(x), which leads to

p(y|x;θ,η) = ∑
k

p(y;θk)πk(x;η).
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A popular model is place a Gaussian model over p(y;θk) and a logistic model of πk(x;η), i.e.,

πk(x;η) =
exp(η0,k +ηT

1,kx)

∑m exp(η0,m +ηT
1,mx)

.

• Mixture of regression. The mixture of regression (a.k.a. regression mixture) looks very similar to
the mixture of expert from a graphical perspective. The mixture of regression has two arrows: X →Y
and Z→ Y . This, the difference compared to the mixture of expert is that the arrow X → Z becomes
X → Y . In this case,

p(x,y,z) = p(y|x,z)p(z)p(x) = pz(y|x)πz p(x)⇒ p(y,z|x) = pz(y|x)πz

⇒ p(y|x) = ∑
k

pk(y|x)πk.

In particular, the conditional mean (regression function) becomes

m(x) = E(Y |X = x) =
∫

∑
k

pk(y|x)πkdy = ∑
k

πk ·mk(x),

where mk(x) = E(Y |Z = k,X = x) is the regression function of the k-th component. So the regres-
sion function is written as a mixture of several regression function. Note that the proportion πk is
independent of X .

• Mixture of expert regression. The mixture of expert and the mixture of regression can be combined
into the mixture of expert regression. It corresponds to the graph with three arrows: X → Y , X → Z,
and Z→ Y . In this case,

p(x,y,z) = p(y|x,z)p(z|x)p(x) = pz(y|x)πz(x)p(x)⇒ p(y,z|x) = pz(y|x)πz(x)

⇒ p(y|x) = ∑
k

pk(y|x)πk(x).

The conditional mean (regression function) is

m(x) = E(Y |X = x) =
∫

∑
k

pk(y|x)πk(x)dy = ∑
k

πk(x) ·mk(x).

So it is the mixture of regression with the proportion πk(x) being allowed to change with respect to x.

1 Mixture of expert

In what follows, we will focus on the mixture of expert. Recall that in the mixture of expert,

p(y|x;θ,η) = ∑
k

p(y;θk)πk(x;η)

and what we observe is
(X1,Y1), · · · ,(Xn,Yn).
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The goal is to estimate θ and η from the observed data.

A simple way to estimate these parameters is based on the maximum likelihood (ML) approach. For a single
observation Xi,Yi, the likelihood function is

L(θ,η|Xi,Yi) = ∑
k

p(Yi;θk)πk(Xi;η)

and the log-likelihood is

`(θ,η|Xi,Yi) = log

(
∑
k

p(Yi;θk)πk(Xi;η)

)
The MLE (maximum likelihood estimator) is

θ̂, η̂ = argmaxθ,η
1
n

n

∑
i=1

`(θ,η|Xi,Yi).

2 EM algorithm

Although the MLE is well-defined, it is often hard to compute due to the fact that it does not have a closed-
form in general. So we often need to use the EM-algorithm to numerically find the MLE. An introduction
on the procedure of the EM is given in: http://faculty.washington.edu/yenchic/19A_stat535/

Lec13_EM_SGD.pdf. Starting with an initial guess (θ(0),η(0)), the EM algorithm creates a sequence of
parameters

(θ(0),η(0)),(θ(1),η(1)), · · · ,(θ(t),η(t)),(θ(t+1),η(t+1)), · · ·
such that the likelihood function

n

∑
i=1

`(θ(t+1),η(t+1)|Xi,Yi)≥
n

∑
i=1

`(θ(t),η(t)|Xi,Yi).

A key quantity in the EM algorithm is the complete-data likelihood–the likelihood function when the latent
variable Z is also observed:

Lcomp(θ,η|X ,Y,Z) = ∏
k
[p(Y ;θk)πk(X ;η)]I(Z=k)

and `comp(θ,η|X ,Y,Z)= logLcomp(θ,η|X ,Y,Z). Given a complete-data likelihood and a previous parameter
(θ(t),η(t)), we define the Q function in the EM algorithm:

Q(θ,η;θ
(t),η(t)|X ,Y ) = E(`comp(θ,η|X ,Y,Z)|X ,Y ;θ

(t),η(t))

= E

(
∑
k

I(Z = k) log[p(Y ;θk)πk(X ;η)]

∣∣∣∣∣X ,Y ;θ
(t),η(t)

)
= ∑

k
ωk(X ,Y ;θ

(t),η(t)) log[p(Y ;θk)πk(X ;η)],

ωk(X ,Y ;θ
(t),η(t)) = P(Z = k|X ,Y ;θ

(t),η(t))

=
p(Y ;θ

(t)
k )πk(X ;η(t))

∑m p(Y ;θ
(t)
m )πm(X ;η(t))

.
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With this, we can write down the E-step and the M-step in the algorithm:

• E-step. Compute

ωk(Xi,Yi;θ
(t),η(t)) =

p(Yi;θ
(t)
k )πk(Xi;η(t))

∑m p(Yi;θ
(t)
m )πm(Xi;η(t))

and

Qn(θ,η;θ
(t),η(t)) =

1
n

n

∑
i=1

Q(θ,η;θ
(t),η(t)|Xi,Yi)

Q(θ,η;θ
(t),η(t)|Xi,Yi) = ∑

k
ωk(Xi,Yi;θ

(t),η(t))(log p(Yi;θk)+ logπk(Xi;η)) .

• M-step. We update θ,η using

θ
(t+1),η(t+1) = argmaxθ,ηQn(θ,η;θ

(t),η(t)).

A nice property of this maximization is that θ and η can be maximized separately and each compo-
nentwise parameter θk can also be maximized individually:

θ
(t+1)
k = argmaxθk

Qk,n(θk;θ
(t),η(t))

Qk,n(θk;θ
(t),η(t)) =

1
n

n

∑
i=1

ωk(Xi,Yi;θ
(t),η(t)) log p(Yi;θk)

and

η
(t+1) = argmaxηQn(η;θ

(t),η(t))

Qn(η;θ
(t),η(t)) =

1
n

n

∑
i=1

∑
k

ωk(Xi,Yi;θ
(t),η(t)) logπk(Yi;η).

Note that the EM algorithm suffers from the same problem of being stuck in a local maximum. Thus,
multiple random initializations are often needed to increase the chance of getting the MLE.

3 Remarks

Here are some remarks about the mixture of expert method.

• Common choice of the parametric model. A popular choice is p(y;θk)= φ(y;µk,σ
2
k), where φ(y;µ,σ2)

is the normal density with mean µ and variance σ2 and πk(x;η) = exp(x̃T ηk)

∑m exp(x̃T ηm)
, where x̃ = (1,x)∈Rd+1

is the augmented covariate with the interception term. Note that although here we assume a univariate
response Y ∈ R, the whole model can be easily generalized to multivariate response Y ∈ Rp.
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• Identifiability. Model identifiability is often a problem in the mixture model and so is the mixture
of experts. The label switching would occur if we do not place constraint over parameters θ1, · · · ,θk.
Consider a simple mixture of experts model with two experts:

p(y|x;θ,η) = p(y;θ1)π1(x;η)+ p(y;θ2)π2(x;η) = p(y;θ
′
1)π1(x;η)+ p(y;θ

′
2)π2(x;η)

if we choose θ′1 = θ2 and θ′2 = θ1. Thus, (θ′,η) 6= (θ,η) but the probability model is the same. This
also implies that the MLE will not be unique (since we can permute the parameters). A common
approach to resolve this is to enforce some ordering among parameters.

• Asymptotic theory. The asymptotic theory follows from the regular MLE theory and we can con-
struct confidence intervals using either a sandwich estimator of the underlying variance or a bootstrap
approach.

• Choice of number of experts K. In general, the choice of number of experts is similar to the problem
of choosing the number of mixture components in a mixture model. Common approaches such as
AIC, BIC are often used. Note that if the problem is written as a prediction problem (given X , we use
mixture of expert to predict Y ), we may also use the cross-validation approach.

• Bayesian approach and variational inference. It is possible to use a Bayesian approach in the
mixture of experts. The following paper discussed this idea along with variational inference:

Bishop, C. M., & Svenskn, M. (2002, August). Bayesian hierarchical mixtures of experts.
In Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence (pp.
57-64).

5


	Mixture of expert
	EM algorithm
	Remarks

