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The mixture of expert is a popular approach in statistics and machine learning. It is similar but different
from the usual mixture model (and the mixture of regression). Here we give a gentle introduction about this
idea. For readers who are interested in more details, I would recommend the following book chapter:

Gormley, 1. C., & Friihwirth-Schnatter, S. (2019). Mixture of experts models. Handbook of
Mixture Analysis, 271-307.

Let Y € R be a continuous random variable that is our primary response variable and Z € {1,2,--- ,K} be
a discrete/categorical variable and X € RY be a multivariate covariate. We only observe (X,Y) and Z is
unobserved; here Z is often refers to the latent class label or the label of an expert. In mixture models or
mixture of experts, we often use a parametric form of the conditional densities. Depending on the relation
among X, Y, Z, there are 4 popular mixture-type models:

e Mixture model. In the usual mixture model, there is no covariate X so we only observe Y. The
mixture model can be written as a graphical model with a direct arrow Z — Y. Suppose we observe
both (Y,Z), then

p(,2) = p(yl2)p(2) = P07 = p(y) = Y Pk (¥) T,
k

where pi(y) is the conditional distribution of ¥ given Z = k and my = P(Z = k) is the proportion of
the k-th component. Let 6; be the parameter of py(y), then the marginal distribution is

p(y:6) =Y p(v:0u)m,
3
which is the usual mixture model. The Gaussian mixture model is that each p(y;6;) is a Gaussian,
i.e., p(v;0x) = p(y; 1, 07), where p and 67 is the mean and variance of k-th component.

e Mixture of expert. In the mixture of expert, the model can be expressed as a graphical model with
two arrows X — Z and Z — Y. Note that Z is unobserved—we only observe X, Y. In this case,

p(x,y,2) = p(y|z) p(zlx) p(x) = p:(y) 7 (x) p(x) = p(y,z]x) = p.(y)T(x)
= p(ylx) =Y pe () (x).
k

Namely, in the mixture of expert, the density of Y at each component remains the same across different
X. What changes with respect to X is the proportion T (x).

In this case, we need parameters for both pi(y) and 7 (x), which leads to

p(yx:0.m) =) p(y:00) M (x;m).
k



A popular model is place a Gaussian model over p(y;6;) and a logistic model of mx(x;m), i.e.,

_exp(Nox + M %)
L exp(Mom +M7 %)

T (x;m)

e Mixture of regression. The mixture of regression (a.k.a. regression mixture) looks very similar to
the mixture of expert from a graphical perspective. The mixture of regression has two arrows: X — Y
and Z — Y. This, the difference compared to the mixture of expert is that the arrow X — Z becomes
X — Y. In this case,

p(x,y,2) = p(y|x,2) p(2) p(x) = p:(Y|xX) 7. p(x) = p(y,2lx) = p-(yx)T;
= pOylx) =Y pe ()T
k

In particular, the conditional mean (regression function) becomes

) =B X =2) = [ X pelobomds = Eeomilo)

where my(x) = E(Y|Z = k,X = x) is the regression function of the k-th component. So the regres-
sion function is written as a mixture of several regression function. Note that the proportion T is
independent of X.

e Mixture of expert regression. The mixture of expert and the mixture of regression can be combined
into the mixture of expert regression. It corresponds to the graph with three arrows: X — Y, X — Z,
and Z — Y. In this case,

p(x,3,2) = p(y[x,2) p(z|x) p(x) = p.(y[x)7(x) p(x) = p(¥,2|x) = p-(y|x)T(x)
= p(ylx) = Xklpk(yfx)ﬁk(x)-

The conditional mean (regression function) is

) =EOX =)= [ R p0lmody = L) mt)

k

So it is the mixture of regression with the proportion T, (x) being allowed to change with respect to x.

1 Mixture of expert

In what follows, we will focus on the mixture of expert. Recall that in the mixture of expert,

p(yx;0,m) = ;P(YQ 6;) T (x:m)

and what we observe is
(X17Y1)7 ) (XVHYH)'



The goal is to estimate 8 and 1 from the observed data.

A simple way to estimate these parameters is based on the maximum likelihood (ML) approach. For a single
observation X;, Y;, the likelihood function is

L(8,M[X;, Y;) = Y p(¥i;00) M (XisM)
k
and the log-likelihood is
£(6,n|X;,Y;) = log (ZP(Yi;ek)Wk(Xi;n)>
k

The MLE (maximum likelihood estimator) is

~ 1 &
o,m = argmaxg y ZE(G,T]|X,-,Y,~).
i=1

2 EM algorithm

Although the MLE is well-defined, it is often hard to compute due to the fact that it does not have a closed-
form in general. So we often need to use the EM-algorithm to numerically find the MLE. An introduction
on the procedure of the EM is given in: http://faculty.washington.edu/yenchic/19A_stat535/
Lec13_EM_SGD.pdf. Starting with an initial guess (9(0),1](0)), the EM algorithm creates a sequence of
parameters

0 0@y, (01 M), ... (8D n®), B+ y+Dy ...
such that the likelihood function

Y o0 e ix, v > Y 8 n X, v;).
i=1 i=1

A key quantity in the EM algorithm is the complete-data likelihood—the likelihood function when the latent
variable Z is also observed:

Leomp(8,M1X,Y,Z) = [J[p(Y:8)me(X:m)] <=
k

and leomp(0,M|X,Y,Z) =10g Lcomp(0,M|X, Y, Z). Given a complete-data likelihood and a previous parameter
(81, M), we define the Q function in the EM algorithm:

Q(em’e(t)?n(t)‘xj) = E(gcomp(evmx7yaz) ’Xﬂy’e(t)7n(t))
=F (Z[(z = k) log[p(Y:6,) (X :M)] X,Y;e@,n(f))
k

=Y o (X,¥;09 0" log[p(Y;65)me(X:m)],
k

o (X,7;0" ") = P(Z = kX, ¥;60,n")
_p(r:9)m(xin®)
¥ p(Y;60)) (X )



http://faculty.washington.edu/yenchic/19A_stat535/Lec13_EM_SGD.pdf
http://faculty.washington.edu/yenchic/19A_stat535/Lec13_EM_SGD.pdf

With this, we can write down the E-step and the M-step in the algorithm:

e E-step. Compute

o (X;,Y;; 00 ) = P(H;e,(f))nk(xim(t))
Zmp(Yl,el(qu))nm(Xl,n(Z))
and

0(6,m;0") n|X; ;)

| —
™=

0,(0,m:01) n) =

3
0

1

0(0,m:0" nV1x;,,v)) = Y an(X;, Y::00 n®) (log p(¥;: 6;) +log M (Xism)) -

~t1

e M-step. We update 0,7 using
e(tJrl)’,n(tJrl) — argmaxe’nQn(e’n;e(t)’n(t))‘

A nice property of this maximization is that 6 and 1 can be maximized separately and each compo-
nentwise parameter 0, can also be maximized individually:

G,EIH) = argmaxeka,n(Gk;9(’),11(’))

1 n
Ok n(6:00) )y = - Y o (X;, Y0 ,m0) log p(¥;: 6%
i=1

and

n(tJrl) = argmaann(n; e(t),n(t))

1
0,(m:0") ") =~} 3 (X;, Y67, logmi(Yism).
i=1 k

Note that the EM algorithm suffers from the same problem of being stuck in a local maximum. Thus,
multiple random initializations are often needed to increase the chance of getting the MLE.

3 Remarks

Here are some remarks about the mixture of expert method.

e Common choice of the parametric model. A popular choice is p(y; 6x) = 0(y; ux, 07 ), where ¢ (y; i, 6%)

U s
is the normal density with mean u and variance 6> and 7 (x;1) = %, where X = (1,x) € R4*!

is the augmented covariate with the interception term. Note that although here we assume a univariate
response Y € R, the whole model can be easily generalized to multivariate response Y € R”.



e Identifiability. Model identifiability is often a problem in the mixture model and so is the mixture
of experts. The label switching would occur if we do not place constraint over parameters 01, - - - , 6.
Consider a simple mixture of experts model with two experts:

p(¥1x:0,m) = p(y:01)m1 (x:M) + p(¥:02) M2 (x:M) = p(¥;07)71 (x;M) + p(y;03)T2 (x5M)

if we choose 6] = 6, and 8, = 6;. Thus, (6’,1) # (6,7) but the probability model is the same. This
also implies that the MLE will not be unique (since we can permute the parameters). A common
approach to resolve this is to enforce some ordering among parameters.

o Asymptotic theory. The asymptotic theory follows from the regular MLE theory and we can con-
struct confidence intervals using either a sandwich estimator of the underlying variance or a bootstrap
approach.

e Choice of number of experts K. In general, the choice of number of experts is similar to the problem
of choosing the number of mixture components in a mixture model. Common approaches such as
AIC, BIC are often used. Note that if the problem is written as a prediction problem (given X, we use
mixture of expert to predict Y), we may also use the cross-validation approach.

e Bayesian approach and variational inference. It is possible to use a Bayesian approach in the
mixture of experts. The following paper discussed this idea along with variational inference:

Bishop, C. M., & Svenskn, M. (2002, August). Bayesian hierarchical mixtures of experts.
In Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence (pp.
57-64).
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