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In survival analysis, the Cox model is a powerful method for understanding the effect of covariates on the
time-to-event variable. Consider a typical right-censoring data where we observe IID

(Y1,X1,∆1), · · · ,(Yn,Xn,∆n),

where Yi = min{Ti,Ci} is the observed time and Ti ≥ 0 is the time-to-event of interest and Ci ≥ 0 is the
censoring time and ∆i = I(Yi = Ti) is the censoring indicator and Xi ∈ Rp is the covariate. We assume the
typical assumption that

T ⊥C|X .

Let P(t|x) = P(T ≤ t|X = x) be the CDF of T given X = x and S(t|x) = 1−P(t|x) is the survival time and
h(t|x) =− ∂

∂t logS(t|x) be the hazard function and H(t|x) =
∫ t

0 h(s|x)ds is the cumulative hazard.

The Cox (proportional hazard) model assumes that

h(t|x) = h0(t)exp(βT x).

And the goal is to estimate the coefficients β.

It is known that we can estimate β by solving the following profile/partial likelihood (score) equation:

β̂ : 0 =
n

∑
i=1

∆i

(
Xi−

S(1)n (Yi; β̂)

S(0)n (Yi; β̂)

)

S(1)n (t;β) =
1
n

n

∑
i=1

I(Yi ≥ t)exp(βT Xi)Xi

S(0)n (t;β) =
1
n

n

∑
i=1

I(Yi ≥ t)exp(βT Xi)

(1)

It is well-known that the estimator β̂ is consistent under regularity conditions and has asymptotic normality.
Although one may expect this result from the usual theory of estimating equations, equation (1) is not
a simple estimating equation that consists of summation of IID terms because S(1)n (t;β) and S(0)n (t; ]beta)
depend on every observation.

This fact has made the analysis a bit complicated. Here we will provide a simple way to illustrate the
asymptotic linear form (summation of IID random elements) of β̂ even if equation (1) does not consists of
IID terms. The asymptotic linear form of β̂ makes the consistency and asymptotic normality very straight
forward.

While there are many ways to derive this, the approach we will be using is based on the following paper:
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[LW1989] Lin, D. Y., & Wei, L. J. (1989). The robust inference for the Cox proportional
hazards model. Journal of the American statistical Association, 84(408), 1074-1078.

To start with, we describe the population version of equation (1):

β
∗ : 0 = E

[
∆i

(
Xi−

s(1)(Yi;β∗)

s(0)(Yi;β∗)

)]
s(1)(t;β) = E

[
I(Yi ≥ t)exp(βT Xi)Xi

]
s(0)(t;β) = E

[
I(Yi ≥ t)exp(βT Xi)

] (2)

We will show that
√

n(β̂−β
∗) =

√
n

n

∑
i=1

ξi +oP(1), (3)

where ξ1, · · · ,ξn are IID random vectors (they are the influence function evaluated at each observation).

1 Derivation of the asymptotic linear form

Step 1: Taylor expansion. Let Un(β) =
1
n ∑

n
i=1 ∆i

(
Xi− S(1)n (Yi;β)

S(0)n (Yi;β)

)
and U0(β) = E

[
∆i

(
Xi− s(1)(Yi;β)

s(0)(Yi;β)

)]
. Us-

ing equation (1) and (2), we can easily decompose

Un(β
∗) =Un(β

∗)−Un(β̂)

= (β∗− β̂)T
∇Un(β

∗)+ smaller order terms.

Ignoring the smaller order terms, we obtain

β̂−β
∗ ≈ [∇Un(β

∗)]−1Un(β
∗).

One can show that under suitable conditions, the matrix

[∇Un(β
∗)]−1 P→ [∇U(β∗)]−1

and is invertible. Thus, all we need to focus is the term Un(β
∗).

We will show that Un(β
∗) has an asymptotic linear expansion.

Step 2: linking Un to empirical process. We will derive an alternative representation of Un to make a clear
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link to the empirical process. Define Ni(t) = I(Yi ≤ t,∆i = 1). Then Un(β) can be represented as

Un(β) =
1
n

n

∑
i=1

∆i

(
Xi−

S(1)n (Yi;β)

S(0)n (Yi;β)

)

=
1
n

n

∑
i=1

∫ (
Xi−

S(1)n (t;β)

S(0)n (t;β)

)
dNi(t)

=
1
n

n

∑
i=1

∫
XidNi(t)−

1
n

n

∑
i=1

∫ S(1)n (t;β)

S(0)n (t;β)
dNi(t)︸ ︷︷ ︸

(∗)

(4)

We will now focus on the term (∗). Let Gn(t) = 1
n ∑

n
i=1 Ni(t) = 1

n ∑
n
i=1 I(Yi ≤ t,∆i = 1). This quantity

behaves like the observed event empirical distribution function but note that the denominator is n. Let
Ḡ(t) = E[Gn(t)]. We then decompose (∗) by the following

(∗) =
∫ S(1)n (t;β)

S(0)n (t;β)
dGn(t)

=
∫ s(1)(t;β)

s(0)(t;β)
d(Gn(t)− Ḡ(t))︸ ︷︷ ︸
(I)

+
∫ S(1)n (t;β)

S(0)n (t;β)
dḠ(t)︸ ︷︷ ︸

(II)

+
∫ (S(1)n (t;β)

S(0)n (t;β)
− s(1)(t;β)

s(0)(t;β)

)
d(Gn(t)− Ḡ(t))︸ ︷︷ ︸

(III)

.

(5)

Step 3: controlling (III). First, we want to note that by the usual empirical process theory,
√

n(Gn(t)−Ḡ(t))
converges to to a Gaussian process uniformly. Also, one can easily see that

S(1)n (t;β) =
1
n

n

∑
i=1

I(Yi ≥ t)exp(βT Xi)Xi

is essentially an average of IID random element and E[S(1)n (t;β)] = s(1)(t;β). Assuming that both T and C
are bounded from the above and the parameter β is restricted to a compact set B , one can easily show that
the function

{ηt,β(y,x) = I(y≤ t)exp(βT x) : t ∈ [0, T̄ ],β ∈ B}

forms a GC class so supt,β |S
(1)
n (t;β)− s(1)(t;β)|= oP(1) and similarly supt,β |S

(0)
n (t;β)− s(0)(t;β)|= oP(1).

As a result, one can see that (III) = oP(1/
√

n).

Step 4: controlling (I) and (II). Now we control the second term (II). We denote

ε j = S( j)
n (t;β)− s( j)(t;β)
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for j = 0,1. Due to the uniform convergence property, ε j is approaching 0. So we can rewrite the ratio using
the Taylor’s theorem as

S(1)n (t;β)

S(0)n (t;β)
=

S(1)n (t;β)

s(0)(t;β)+ ε0

=
S(1)n (t;β)

s(0)(t;β)(1+ ε0
s(0)(t;β))

≈ S(1)n (t;β)

s(0)(t;β)

(
1− ε0

s(0)(t;β)

)
≈ 1

s(0)(t;β)

(
S(1)n (t;β)− s(1)(t;β)

s(0)(t;β)
ε0

)

=
1

s(0)(t;β)

(
S(1)n (t;β)− s(1)(t;β)

s(0)(t;β)
S(0)n (t;β)+ s(1)(t;β)

)
.

Thus,

(II)≈
∫ (S(1)n (t;β∗)

s(0)(t;β∗)
− s(1)(t;β∗)

s(0)(t;β∗)

S(0)n (t;β∗)

s(0)(t;β∗)
+

s(1)(t;β∗)

s(0)(t;β∗)

)
dḠ(t).

Notice that the third term of (II) also appears in (I). So

(I)+(II)+(III) =
∫ s(1)(t;β∗)

s(0)(t;β∗)
dGn(t)+

∫ (S(1)n (t;β∗)

s(0)(t;β∗)
− s(1)(t;β∗)

s(0)(t;β∗)

S(0)n (t;β∗)

s(0)(t;β∗)

)
dḠ(t)+oP(1/

√
n).

Step 5: Final expression. Using the fact that Gn(t),S
( j)
n (t;β∗) are both summation of IID terms, we can

rewrite (*) as

(∗) = 1
n

n

∑
i=1

Wi +oP(1/
√

n),

Wi =
∫ s(1)(t;β∗)

s(0)(t;β∗)
dNi(t)+

∫ I(Yi ≥ t)exp(β∗T Xi)

s(0)(t;β∗)

(
Xi−

s(1)(t;β∗)

s(0)(t;β∗)

)
dḠ(t).

(6)

Note that W1, · · · ,Wn are IID random variables. Putting this into equation (4), we conclude that

Un(β
∗) =

1
n

n

∑
i=1

Γi +oP(1/
√

n),

Γi =
∫

XidNi(t)+Wi = Xi∆i +Wi

(7)

and W1, · · · ,Wn are IID random elements. As a result, the estimator β̂ can be written as

√
n(β̂−β

∗) = [∇U(β∗)]−1 1√
n

n

∑
i=1

(Xi∆i +Wi)+oP(1),

which provides an asymptotic linear form of the estimator in equation (3) with ξi = [∇U(β∗)]−1(Xi∆i +Wi).
The asymptotic normality can be derived easily under this form (note: it is not hard to see that E[Xi∆i+Wi] =
0).
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2 Remarks

• In [LW1989], they derive the asymptotic linear form in terms of time-varying covariates. In this case,
the covariate Xi = Xi(t) and we observe the covariate {Xt(t) : t ∈ [0,Yi]} until the observed time point
Yi. The score equation remains very similar; here is the score equation (c.f. equation (1)):

β̂ : 0 =
n

∑
i=1

∆i

(
Xi(Yi)−

S(1)n (Yi; β̂)

S(0)n (Yi; β̂)

)

S(1)n (t;β) =
1
n

n

∑
i=1

I(Yi ≥ t)exp(βT Xi(t))Xi(t)

S(0)n (t;β) =
1
n

n

∑
i=1

I(Yi ≥ t)exp(βT Xi(t))

(8)

and one can modify the population version in equation (2) accordingly. The asymptotic linear form
remains very similar and we only need to modify

Γi =
∫

Xi(t)dNi(t)+Wi

Wi =
∫ s(1)(t;β∗)

s(0)(t;β∗)
dNi(t)+

∫ I(Yi ≥ t)exp(β∗T Xi(t))
s(0)(t;β∗)

(
Xi(t)−

s(1)(t;β∗)

s(0)(t;β∗)

)
dḠ(t)

and s( j)(t;β∗) is the modified version of the population quantity.

• This idea can be combined with IPW estimators under complex design. In particular, the following
paper discussed the idea of generalizing it into a survey sample problem:

Lin, D. Y. (2000). On fitting Cox’s proportional hazards models to survey data. Biometrika,
87(1), 37-47.

And the following paper considered the problem of missing covariates:

Lin, D. Y., & Ying, Z. (1993). Cox regression with incomplete covariate measurements.
Journal of the American Statistical Association, 88(424), 1341-1349.

Note that both of the above papers are working on time-varying covariates as well.
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