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The coarsening at random (CAR) is a more general concept than the usual missing at random (MAR). Here
is a short note about it.

Let X ∈ Rk be the variable of interest and C ∈ C be a coarsening variable. C may or may not be observed.
Our observation is the random vector

Y = Φ(X ,C) ∈ Rq,

where φ(X ,C) is a many to one mapping. Let

X (y) = {x : Φ(x,c) = y,c ∈ C}

be the collection of X such that under some coarsening case, we observe the same Y = y.

The CAR assumes that

P(Y = y | X = x) = P(Y = y | X = x′) for all x,x′ ∈ X (y). (1)

Namely, the conditional probability of Y given X will not change as long as X ∈ X (y). Equation (1) further
implies

P(Y = y | X = x) = P(Y = y | X ∈ X (y)) = h(y) (2)

for some function h.

It is possible to generalize the above notations to probability densities of Y . The generalization allow equa-
tions (1) an d (2) to be re-written as

pY |X(y | x) = pY |X(y | x′) for all x,x′ ∈ X (y)

and
pY |X(y | x) = h(y) (3)

for some function h. Note that, we may relax the assumption by only requiring (1) holds almost surely.

Relation to MAR. To see how CAR and MAR are related, note that if Y contains C, the coarsening variable,
then (CAR) is equivalent to

P(C = c | X = x) = P(C = c | X = x′) for all x,x′ ∈ X (y). (4)

which, together with equation (2), implies

P(C = c | X = x) = h(y) for all x ∈ X (y). (5)

If one view C as the missing indicator, equation (5) implies that the conditional probability of a missing
pattern given the variable of interest X only depends on the observable Y , which is how the MAR assumption
is formulated.
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Relation to MLE. It is well-known that the MAR has the ignorability property that when doing a likelihood
inference, there is no need to model the missing part (there is one small additional assumption to achieve
this call separation of parameters). A similar pattern occurs here at the CAR. Because all we observed is Y ,
we can connect the marginal density of Y to the density of X using

pY (y) =
∫

X (y)
pY,X(y,x)µ(dx)

=
∫

X (y)
pY |X(y|x)pX(x)µ(dx)

(3)
=

∫
X (y)

h(y)pX(x)µ(dx)

= h(y)
∫

X (y)
pX(x)µ(dx).

Assume that we assign a parametric model of X that

pX(x) = pX(x;θ).

This implies that

pY (y;θ) = h(y)
∫

X (y)
pX(x;θ)µ(dx) = h(y)pX(X (y);θ),

where pX(X (y);θ) =
∫

X (y) pX(x;θ)µ(dx). Thus, the log-likelihood of θ using Y is

`(θ|Y ) = log pY (Y ;θ) = logh(Y )+ log pX(X (Y );θ)

so the total log-likelihood with n observation is

`(θ|Y1, · · · ,Yn) = Ω(Y1, · · · ,Yn)+
n

∑
i=1

log pX(X (Yi);θ)

Thus, maximizing the log-likelihood using Y is equivalent to maximizing the log-likelihood constructed
from ∑

n
i=1 log pX(X (y);θ). Again, we obtain the same result as the ignorability of MAR! Note that the

maximization of ∑
n
i=1 log pX(X (y);θ) is similar to the case of a mixture model or a latent variable model.

The MLE is often obtained by applying an EM algorithm.

Example: missing data. Consider a simple missing data problem where we have two variables per individ-
ual: W , the response variable, and Z, the covariate. However, not all response variable W is observed. Some
individuals we only observe the covariate. Let R be the observed pattern where R = 1 means that we observe
both W and Z while R = 0 is the case we only see Z. In this case, the variable of interest is X = (W,Z) and
the coarsening variable is C = R. Our observation can be written as Y = (R,Z,WR+ ?(1−R)), where ?
denotes the missing value. Since the coarsen variable R is inside Y , the CAR is equivalent to

P(R = r |W = w,Z = z) = P(R = r |W = w′,Z = z′) for all (w,z),(w′,z′) ∈ X (y).

When r = 1, this does not tell us much information but when r = 0, y = (0,z,?) so this implies that

P(R = 0 |W = w,Z = z) = P(R = 0 |W = w′,Z = z)
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for all w,w′. This implies that

P(R = 0 |W = w,Z = z) = P(R = 0 | Z = z),

which is the MAR assumption.

Example: censoring data. Consider the censoring problem where we have a time-to-event variable T
of interest and a censoring variable S. Our observations are Y = (I(T ≤ S),min{T,S}). In this case, the
censoring variable S =C is our coarsening variable and the time-to-event variable T = X is the variable of
interest. Because the coarsening variable is not directly observed in Y , we use the original form of the CAR:

P(Y = y | X = x) = P(Y = y | X = x′) for all x,x′ ∈ X (y).

When y = (δ,ω) where δ ∈ {0,1} is binary and ω ∈ R, X (0,ω) = {x : x > ω} and X (1,ω) = {x : x = ω}.
The case where y = (1,ω) does not give us much information so we focus on the case y = (0,ω). The CAR
implies

P(Y = (0,ω)|T = t) = P(Y = (0,ω)|T = t ′) t, t ′ > ω = S.

This implies that pS|T (S = ω|T ) does not depend on T if T > S. Namely, CAR implies

S⊥ T | T > S,

the censoring time is independent of the time-to-event of interest when T > S, which is the common as-
sumption assumed in handling the censoring data.

Example: causal inference (counterfactual model). Consider the counterfactual model that the binary
variable A denotes the reception of treatment or not (1 is treated) and Z is the observed outcome. Under the
counterfactual model, there are two potential outcomes Z(0) and Z(1). The observed data is (A,Z), where
Z = A · Z(1)+ (1−A) · Z(0). In this case, the variable of interest are Z(0) and Z(1) and the coarsening
variable is A, which is directly observable in this case. Using equation (4), the CAR assumption is

P(A = 1|Z(0),Z(1)) = P(A = 1|Z(1)), P(A = 0|Z(0),Z(1)) = P(A = 0|Z(0)).

Both equality holds for any pairs z0,z1 such that Z(0) = z0 and Z(1) = z1, which implies

P(A = 1|Z(0) = z0,Z(1) = z1) = P(A = 1|Z(1) = z1)

= 1−P(A = 0|Z(0) = z0,Z(1) = z1)

= 1−P(A = 0|Z(0) = z0)

for all (z0,z1). This is equivalent to A⊥ Z(0),Z(1), which is the common assumption on the independence
of treatment from the potential outcome.

Reference: Unified Methods for Censored Longitudinal Data and Causality by van der Laan & Robins
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