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The main reference of this short note is

[F1999] Freedman, D. (1999). Wald Lecture: On the Bernstein-von Mises theorem with infinite-
dimensional parameters. The Annals of Statistics, 27(4), 1119-1141.

Consider a simple normal means model on an infinite basis coefficient problems where we observe an infinite
sequence

Yn = {Y1,Y2, · · ·}

such that each observation is drawn independently from the following model:

Y` = θ`+ ε`/
√

n

such that ε1,ε2, · · · are IID N(0,1). Note that the object Yn is an infinite length vector; the index n describes
the variance of the noise. This model occurs in a nonparametric regression or density estimation with
orthonormal basis or wavelet estimators. In the usual (Frequentist) scenario, we assume that the coefficients
θ1,θ2, · · · are some fixed and unknown parameters.

A Bayesian approach to this model is to place priors on the coefficients. Here we consider a very simple
model where we assume each coefficient are independently from the following prior:

θ` ∼ N(0,λ`).

Namely, Var(θ`) = λ` and λ1,λ2, · · · is a decreasing sequence.

One can easily verify that when we observe Yn, the posterior of each coefficient becomes

θ`|Yn ∼ N
(

Wn,`Y`,
λ`

1+nλ`

)
,

Wn,` =
nλ`

1+nλ`
.

(1)

Suppose we use the posterior mean as a Bayesian estimator of each coefficient, then we obtain

θ̂` =Wn,`Y` =
nλ`

1+nλ`
Y`. (2)

This estimator can be viewed as a particular shrinkage estimator because the usual Frequentist estimator will
be θ̂`,freq = Y`.

In this note, we will focus on the L2 error of estimating all coefficients. Namely,

Rn =
∞

∑
`=1
|θ̂`−θ`|2.
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We will consider two decay rate of the sequence {λ1,λ2, · · ·}: a polynomial rate and an exponential rate.
For simplicity, the polynomial rate we consider is

λ` = `−α (3)

and the exponential rate is
λ` = exp(−β`) (4)

for each `= 1,2,3, · · · .

We will show some interesting results:

• L2 errors Rn (Section 1). When the goal is to infer Rn, the credible interval will not have the Frequen-
tist coverage under the polynomial decay rate in general when the true parameter is sampled from the
prior. However, the credible interval will have the Frequentist coverage when the decay rate of prior
is exponential (and the true parameter is from the prior).

• Faster decay rate (Section 2). Suppose that the true parameter is drawn from a distribution that has
a faster decay rate then the prior, the credible interval has the Frequentist coverage.

1 Analysis on the L2 error

1.1 Polynomial decay

We first consider a polynomial decay, i.e., λ` = `−α as equation (3).

Bayesian analysis. From a Bayesian perspective, the credible interval is constructed using the distribution
of Rn|Yn. Using the techniques in [F1999] (Theorem 1; the key idea is the Lindeberg-Feller’s triangular
array central limit theorem), one can show that when the decay rate of the prior λ` is either polynomial or
exponential,

Rn|Y≈ N(µ(Yn),σ
2(Yn)).

Thus, the credible interval will be constructed using

Cn,1−α = [µ(Yn)− z1−α/2σ(Yn),µ(Yn)+ z1−α/2σ(Yn)],

where zα is the α quantile of a standard normal.
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Now we investigate µ(Yn) and σ(Yn).

µ(Yn) = E[Rn|Yn]

=
∞

∑
`=1

E[|θ̂`−θ`|2|Yn]

=
∞

∑
`=1

Var
(
θ

2
` |Yn

)
since θ̂` is the posterior mean

(1)
=

∞

∑
`=1

λ`

1+nλ`
=

∞

∑
`=1

1
λ
−1
` +n

=
∞

∑
`=1

1
`α +n

≈
∫

∞

0

1
`α +n

d`

= n−1+1/α

∫ 1
sα +1

ds = n−1+1/α
ξα,

(5)

where ξα is a finite constant. The ≈ in the above equation is due to the change of variable d` = n1/αds.
Interestingly, the conditional mean actually does not depend on the observed data Yn.

Now we turn to the conditional variance. Note that a key trick is that the 4-th centered moment of N(µ,σ2)
is 3σ4. Thus,

σ
2(Yn) = Var

(
∞

∑
`=1

(θ̂`−θ`)
2|Yn

)

=
∞

∑
`=1

Var
(
(θ̂`−θ`)

2|Yn

)
=

∞

∑
`=1

E
(
(θ̂`−θ`)

4|Yn

)
−E2

(
(θ̂`−θ`)

2|Yn

)
=

∞

∑
`=1

2Var2 (θ`|Yn)

= 2
∞

∑
`=1

(
λ`

1+nλ`

)2

≈ 2
∫

∞

0

1
(λ−1

` +n)2
d`.

(6)

Again, using the change of variable d`= n1/αds and the polynomial decay rate λ` = `−α, we obtain

σ
2(Yn)≈ n−2+1/α 2

∫
∞

0

1
(sα +1)2 ds︸ ︷︷ ︸

η2
α

.

To sum up,
Rn|Y≈ N(n−1+1/α ·ξα, n−2+1/α ·η2

α). (7)

Frequentist analysis. From a Frequentist perspective, the randomness comes from the data Yn. Thus, a
Frequentists confidence interval will be focusing on the distribution of Rn where the randomness is from Yn
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and β is assumed to be fixed. Using the fact that θ̂` =Wn,`Y` and Y` = θ`+
ε√̀

n , we expand

Rn =
∞

∑
`=1
|θ̂`−θ`|2 =

∞

∑
`=1
|Wn,`Y`−θ`|2

=
∞

∑
`=1

∣∣∣∣(Wn,`−1)θ`+Wn,`
ε`√

n

∣∣∣∣2
=

∞

∑
`=1

(1−Wn,`)
2
θ

2
` −2Wn,`(1−Wn,`)

θ`ε`√
n
+W 2

n,`
ε2
`

n
.

A remarkable trick that was used in [F1999] (proof of Theorem 2) was to plus and minus (1−Wn,`)
2λ` and

W 2
n,`/n, leading it to

Rn =
∞

∑
`=1

(1−Wn,`)
2
λ`+W 2

n,`/n︸ ︷︷ ︸
An

+(1−Wn,`)
2(θ2

` −λ`)︸ ︷︷ ︸
Bn

+−2Wn,`(1−Wn,`)
θ`ε`√

n
+W 2

n,`
ε2
` −1

n︸ ︷︷ ︸
Cn

.
(8)

The reason of this decomposition is that term An can be shown to be

An = n−1+1/α ·ξα = µ(Yn)

so it corresponds to the conditional mean of the posterior.

Both term Bn and Cn depends on the true parameter {θ`}. Now we consider the scenario where prior
distribution is a correct model, i.e., the parameter θ` is indeed generated from a normal distribution with
mean 0 and variance λ`.

In this case, term Cn can be shown to be a quantity converging to a normal distribution with mean 0 and
variance n−2+1/α ·η2

α = σ2(Yn), which corresponds to the variance of the of the posterior.

Thus, what is different is the term Bn = ∑`(1−Wn,`)
2(θ2

` −λ`), which was called Bayes bias in [F1999].
If this term disappears, then the credible interval has the correct Frequentist coverage. Although one can
easily verify that EBn = 0, its variance is not:

Var(Bn) = ∑
`

(1−Wn,`)
4Var(θ2

` −λ`) = ∑
`

(1−Wn,`)
4
λ

2
`Var(Z

2
` −1) = 2∑

`

(1−Wn,`)
4
λ

2
` ,

where Z1,Z2, · · · , are IID standard normal. Thus, the variance is

Var(Bn) = 2∑
`

λ2
`

(1+nλ`)4 = 2
∫

∞

0

`2α

(n+ `α)4 d`≈ n−2+α

∫
∞

0

s2α

1+ sα
ds︸ ︷︷ ︸

η2
α,1

.

As a result, the frequentist distribution of Rn is

Rn = An +Bn +Cn,
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where

An = n−1+1/α ·ξα

Bn = n−2+1/α ·η2
α,1Z1

Cn = n−2+1/α ·η2
αZ2,

where Z1 and Z2 are independent standard normal. Thus, the credible interval in equation (7) is offset by the
amount of Bn, a random offset. So the credible interval does not have the Frequentist coverage.

1.2 Exponential decay

Suppose that λ` follows the exponential decay in equation (4) λ` = exp(−β`). We will make good use of
the following lemma from [F1999]:

Lemma 1 (Lemma 5 of Freedman 1999) Let a,b,c > 0 be positive constants and ab > c. Then

• ∑
∞
`=1

1
(n+ea`)b ∼ logn

anb

• ∑
∞
`=1

ec`

(n+ea`)b ∼ n−b+c/a

Bayesian analysis. Recall that the posterior will be a normal distribution with mean µ(Yn) and variance
σ2(Yn). We have to modify both terms due to the change of prior distribution. Using Lemma 1, we can
show the mean to be

µ(Yn) =
n

∑
`=1

1
λ
−1
` +n

=
n

∑
`=1

1
eα`+n

∼ logn
n

and the variance will be

σ
2(Yn) = 2

n

∑
`=1

(
1

λ
−1
` +n

)2

=
n

∑
`=1

1
(eα`+n

)2

∼ logn
n2

Frequentist analysis. Now we turn to the analysis of Frequentist distribution of Rn. Note that we still have

An = µ(Yn) = OP(
logn

n ) and Cn ≈ σ(Yn) = OP(
√

logn
n2 ) so what we need to focus is the Bayes bias term Bn.
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Note that

Bn =
∞

∑
`=1

(1−Wn,`)
2(θ2

` −λ`)

has mean 0 and variance

Var(Bn) = 2∑
`

λ2
`

(1+nλ`)4

= 2∑
`

λ
−2
`

(λ−1
` +n)4

= 2∑
`

e2α`

(eα`+n)4

Lemma 1∼ n−4+2 = n−2.

As a result, we conclude that the Frequentist distribution

Rn = An +Bn +Cn

An = µ(Yn) = OP

(
logn

n

)
Bn = OP(n−1)

Cn ≈ σ(Yn) = OP

(√
logn
n2

)

Since Bn
σ(Yn)

= OP

(
1√

logn

)
= oP(1), the Bayes bias is asymptotically negligible so the credible interval has

Frequentist coverage.

Remark. Although Bn
σ(Yn)

= OP

(
1√

logn

)
= oP(1) converges to 0, it is a very very slow term. The rate is

√
logn! So in practice, we need an extremely large sample size to see its convergence. For some people, a

rate of this order will not be viewed as convergence since the required sample size is too huge.

2 Faster decay rate

Now we go back to the polynomial decay rate and study an interesting question: if our prior is a polynomial
`−α but the true parameter is drawn from a distribution with polynomial `−β, will the credible interval has
the asymptotic coverage when β > α?

The answer is yes! If the true parameter is drawn from a distribution with a faster rate, we do have the
correct coverage (in fact, we have overcoverage).

The main reference of this section is the following paper:

[L2011] Leahu, H. (2011). On the Bernstein-von Mises phenomenon in the Gaussian white
noise model. Electronic journal of statistics, 5, 373-404.
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Consider the following two classes:

Pβ = {θ : θ` � `−β}

Sβ =

{
θ :

∞

∑
`=1

`β−1
θ` < ∞

}
.

The first one Pβ is the polynomial decay rate class and the second one Sβ is something related to the so-called
Sobolev ball. The two classes have the following relation:

Pβ∩Sβ = /0, Pβ∩Sβ+ε = /0, Pβ+ε ⊂ Sβ, Pβ ⊂ Sβ+ε,

for any ε > 0.

Recall that we assume the prior λ` � `−β and we construct a credible interval of Rn using

Cn,1−α = [µ(Yn)− z1−α/2σ(Yn),µ(Yn)+ z1−α/2σ(Yn)],

where µ(Yn) and σ(Yn) are defined in equation (7). Then we have the following results, which are revised
from Section 3 of [L2011]:

• Class Pβ. If θ ∈ Pβ such that

– β > α (a.k.a. undersmoothing), then infθ∈Pβ
P(θ ∈Cn,1−α)→ 1.

– β = α, then infθ∈Pβ
P(θ ∈Cn,1−α) = 0,supθ∈Pβ

P(θ ∈Cn,1−α) = 1; the actual coverage depends
on the true parameter (determined by the Bn term in Section 1.1).

– β < α (a.k.a. oversmoothing), then supθ∈Pβ
P(θ ∈Cn,1−α)→ 0.

• Class Sβ. If θ ∈ Sβ such that

– β≥ α (a.k.a. undersmoothing), then infθ∈Sβ
P(θ ∈Cn,1−α)→ 1.

– β < α (a.k.a. oversmoothing), then supθ∈Sβ
P(θ ∈Cn,1−α)→ 0.

Thus, as long as we are undersmoothing (i.e., the prior has a slower decay rate than the true parameter), the
credible interval has the enough coverage (though it has over-coverage). An interesting note is that the two
classes Pβ and Sβ have distinct results when β = α–the polynomial decay class Pα may not have enough
coverage while the Sobolev-type class Sβ still have enough coverage.

3 Remarks

• A sad news on the choice of prior. This analysis shows that if the true parameter is generated from
our prior distribution, unfortunately, the credible interval will not have enough coverage in general.

The analysis in Section 2 shows that if the true parameter lies in an undersmoothing class (the decay
rate is faster than the prior, i.e., Pα−ε for some ε > 0), then we do have the coverage. However,
suppose we sample θ` from the prior distribution N(0,λ` = `−α), the probability P(θ ∈ Pα−ε) = 0.
Namely, there is no chance that we would obtain a set of parameter that we can have an overwhelming
coverage. In conclusion, I would quote the following statement from the abstract of [L2011]:
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The overall conclusion is that, unlike in the parametric setup, positive results regarding
frequentist probability coverage of credible sets can only be obtained if the prior assigns
null mass to the parameter space.

In other words, to use a Bayesian approach as a Frequentist method and suppose that we know the
true decay rate is `−α, we have to purposely choose the prior to be slower than `−α, which is a bizarre
situation.

• A note on the derivation of Section 2. Here is a note on the derivation of Section 2. Recalled from
equation (8), we can decompose Rn = An +Bn +Cn. In the analysis of a faster decay rate, we will
combine An +Bn and jointly analyze them and deal with Cn separately:

An +Bn =
∞

∑
`=1

W 2
n,`

n
+(1−Wn,`)

2
θ

2
` ,

Cn =−2Wn,`(1−Wn,`)
θ`ε`√

n
+W 2

n,`
ε2
` −1

n
.

Using the fact that Wn,` =
nλ`

1+nλ`
and λ` = `−α and the two terms in Cn are uncorrelated (θ` has mean

0 and is independent of ε`), we conclude that

An +Bn =
∞

∑
`=1

nλ2
`

(1+nλ`)2 +
θ2
`

(1+nλ`)2

=
∞

∑
`=1

n
(`α +n)2 +

`2αθ2
`

(`α +n)2

Var(Cn) =
∞

∑
`=1

4W 2
n,`(1−Wn,`)

2 θ2
`

n
+2

W 4
n,`

n2

=
∞

∑
`=1

4n`2αθ2
`

(`α +n)4 +
2n2

(`α +n)4 .

Note: An+Bn equals the quantity Mn+Qn(θ) in [L2011] and Var(Cn) equals Var(Zn(θ,ε)) in [L2011]
(both are just right below Lemma 3 of [L2011]). With these equalities, one can work out the results
in Section 2.
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