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Experimental design is a classical problem in statistics. Consider a simple linear regression where we want
to investigate the linear relationship between a covariate X ∈ Rp and a response Y ∈ R. In a linear model,
this relationship is often expressed as the model

E(Y |X) = β
T X .

The design occurs in a situation where we get to choose the covariate X (or its distribution). For simplicity,
we assume that

Yi = β
T Xi + εi,

where ε1, · · · ,εn are IID normal with variance σ2.

This note is based on Chapter 3.7 of the following book

Design of Experiments for Generalized Linear Models, Kenneth Russell, CRC Press, 2019

and the following classical review paper

Chaloner, K., & Verdinelli, I. (1995). Bayesian Experimental Design: A Review. Statistical
Science, 10(3), 273-304.

1 Frequentist experimental design

In practice, we choose the covariates X1, · · · ,Xn and then observe the corresponding response variables
Y1, · · · ,Yn. Then we attempt to study the linear relationship between X and Y using this data. Namely, we
want to estimate the slope β.

A regular approach (Frequentist) is to apply a least square estimate, which leads to

β̂ = (XTX)−1XTY,

where X ∈ Rn×(p+1) is the design matrix (matrix of the covariate) that is constructed from X1, · · · ,Xn and
Y = (Y1, · · · ,Yn)

T is the response vector. Under regularity conditions (linear model is correct and noise is
homogenous), the variance (covariance) of β̂ is

σ
2 · (XTX)−1 =

σ2

n
·Σ−1

X ,

where σ2 = Var(Y |X = x) is the noise level and ΣX = 1
nX

TX is the design. Thus, in the Frequentist perspec-
tive, we want to choose the design X1, · · · ,Xn such that ΣX is as large as possible.

In summary, a design problem consists of the following elements:
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• A response variable Y or a response vector Y.

• A design of covariates X or X or ΣX that we can choose.

• A parameter of interest β; in the linear regression, β is the slope.

• An estimator β̂ = η(Y,X).

• A measure of success V (ΣX) ∈ R or V (X) ∈ R that marginalizes out the sampling variability of β̂ so
it depends only on ΣX ; in the above example, it is often some function of the variance of the estimator
Var(β̂)−1.

Here are some popular examples of the measure of success; they are often called the alphabetical optimality.

• D-optimality. The D-optimality corresponds to the volume of a confidence ellipse with minimal
volume. So the measure of success is

VD(ΣX) = det(Σ−1
X ).

So we want to choose the design to maximize the determinant of the inverse design matrix ΣX . Note
that there is a Ds-optimality that refers to using the the determinant of a ‘subset’ of Σ

−1
X .

• A-optimality. The A-optimality is the average coordinate-wise variance of β̂. So it corresponds to

VA(ΣX) = Tr(Σ−1
X ).

• C-optimality. The C-optimality corresponds to the prediction variance at a particular location c∈Rp,
i.e., we want to minimize Var(β̂T c). This corresponds to

VC(ΣX) = cT
Σ
−1
X c.

• E-optimality. The E-optimality is the maximal variance under every direction. Namely, we want to
minimize the variance supc:‖c‖=1Var(c

T β̂). Using linear algebra, one can show that this is essentially

VE(ΣX) = λmax(Σ
−1
X ),

the maximal eigenvalue of Σ
−1
X .

• G-optimality. Let X be the support of X . The G-optimality is to minimize the maximal predic-
tive variance supx∈X Var(xT β̂). It is similar to the E-optimality but we focus on the support X . It
corresponds to

VG(ΣX) = sup
x∈X

xT
Σ
−1
X x.
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2 Bayesian experimental design via the posterior

Now we turn to the linear regression problem under the Bayesian setting. For simplicity, we assume that

Yi = β
T Xi + εi,

where ε1, · · · ,εn are IID normal with variance σ2. For the prior, we assume that β ∼ N(β0,σ
2Ω−1). Under

these assumptions, the posterior of β will be

β|Y,X∼ N
(
(nΣX +Ω)−1(XTY+Ωβ0),σ

2(nΣX +Ω)−1) .
The precision matrix (inverse of covariance matrix) Σ

−1
X in the Frequentist setting plays the key role in the

optimality. Because the posterior distribution of β has a precision matrix proportional to (ΣX + 1
n Ω)−1, we

can directly construct Bayesian alphabetical optimality by replacing Σ
−1
X with (ΣX + 1

n Ω)−1, which leads to
the following Bayesian alphabetical optimality:

• D-optimality.

VD(ΣX) = det

((
ΣX +

1
n

Ω

)−1
)
.

• A-optimality.

VA(ΣX) = Tr

((
ΣX +

1
n

Ω

)−1
)
.

• C-optimality.

VC(ΣX) = cT
(

ΣX +
1
n

Ω

)−1

c.

• E-optimality.

VE(ΣX) = λmax

((
ΣX +

1
n

Ω

)−1
)
.

• G-optimality.

VG(ΣX) = sup
x∈X

xT
(

ΣX +
1
n

Ω

)−1

x.

3 Bayesian experimental design via a utility function

Here we introduce an alternative way to construct optimality in a Bayesian setting. We first introduce a
utility function

U0(d,Y,X,β),

where d ∈D is the ‘decision’ that we are making. We want to choose the design X by maximizing the utility
after properly handling other inputs (d,Y,β).
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β is unobserved but given what we observed Y and X, it follows from the posterior π(β|X,Y). So a common
way to ‘marginalize’ out the effect of an unobserved β is to integrate it over the underlying conditional
density. Namely,

U1(d,Y,X) =
∫

U0(d,Y,X,β)π(β|Y,X)dβ.

Then the optimal decision given Y and X, is

d∗(Y,X) = argmaxd∈DU1(d,Y,X) = argmaxd∈D

∫
U0(d,Y,X,β)π(β|Y,X)dβ.

In estimation problem, the decision is often the estimator and the optimal decision often corresponds to
some natural estimator.

Example 1: posterior mean. Suppose we choose the utility function to be negative squared L2 distance

U0(d,Y,X,β) =−‖d−β‖2
2.

Then the optimal decision d∗(Y,X) will be the posterior mean.

Example 2: MAP (Maximum a posteriori estimation; posterior mode). If we choose

U0(d,Y,X,β) = I(d = β),

then the optimal decision d∗(Y,X) will be the MAP.

Example 3: posterior median. In the case of the choice negative L1 norm:

U0(d,Y,X,β) =−‖d−β‖1,

the optimal decision d∗(Y,X) will be the posterior median.

With the optimal decision d∗(Y,X), we can further express the utility in terms of Y and X:

U2(Y,X) =U1(d∗(Y,X),Y,X).

The final objective function will be the utility after adjusting for Y, i.e.,

U3(X) =
∫

U2(Y,X)p(Y|X)dY.

This quantity, U3(X), is the Bayesian version of the measure of success V (X) in the Frequentist setting. So
the Bayesian design problem can be written as finding X or ΣX such that U3(X) is maximized. Namely, the
optimal design is

Σ
∗
X = argmaxXU3(X)

= argmaxX

∫
max
d∈D

∫
U0(d,Y,X,β)π(β|Y,X)p(Y|X)dβdY.
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3.1 Bayesian alphabetical optimality as utility function

We come back to the linear regression and show that some alphabetical optimality can be written in terms
of utility functions. Again, we assume that

Yi = β
T Xi + εi,

where ε1, · · · ,εn are IID normal with variance σ2. For the prior, we assume that β ∼ N(β0,σ
2Ω−1). Under

these assumptions, the posterior of β will be

β|Y,X∼ N
(
(nΣX +Ω)−1(XTY+Ωβ0),σ

2(nΣX +Ω)−1) .
3.1.1 D-optimality

A popular utility function is to formulate the problem as the expected information gain from the prior to the
posterior, which corresponds to the utility function

U0(d,Y,X,β) = log
(

π(β|Y,X)
π(β)

)
.

Note that in this case, the decision is not important so we can ignore it. This leads to

U2(Y,X) =
∫

log
(

π(β|Y,X)
π(β)

)
π(β|Y,X)dβ

= KL(π(·|Y,X)||π(·)),

which is the Kullback-Leibler (KL) divergence between the posterior and the prior.

The final objective function will then be

U3(X) =
∫

KL(π(·|Y,X)||π(·)))p(Y|X)dβdY

= E(KL(π(·|Y,X)||π(·))|X) ,

which is the expected KL divergence between the posterior and prior.

Interestingly, the prior distribution π(·) in U2(Y,X) is independent of X. Thus, maximizing U3(X) is equiv-
alent to maximizing

U4(X) =
∫

(logπ(β|Y,X))π(β|Y,X)p(Y|X)dβdY.

Now plugging the normal model into the posterior distribution, we obtain a simple form

U4(X) =−
p
2

log(2π)− p
2
+

1
2

logdet(σ2(nΣX +Ω)−1).

Thus, the optimal choice of X is to maximize det(σ2(nΣX +Ω)−1), i.e.,

X∗D = argmaxXdet(σ
2(nΣX +Ω)−1),

which recovers the Bayesian D-optimality. Note that there are other utility functions of obtaining the D-
optimality design.
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3.1.2 A-optimality

Now consider the utility function U0(d,Y,X,β) = ‖d− β‖2
2. From example 1, we know that the optimal

d∗(X,Y) will be the posterior mean, i.e.,

d∗(X,Y) = β̂pm = (nΣX +Ω)−1(XTY+Ωβ0).

Thus,
U2(Y,X) =

∫
‖β̂pm−β‖2

2π(β|Y,X)dβ = Tr(σ2(nΣX +Ω)−1),

which is independent of Y so we immediately obtain

U3(X) = Tr(σ2(nΣX +Ω)−1),

the same result as the Bayesian A-optimality.

3.1.3 C-optimality

The C-optimality can also be derived using the utility function. Let c ∈ Rp and consider

U0(d,Y,X,β) = |cT (d−β)|2.

The optimal decision d∗ will again be the posterior mean, i.e. d∗(X,Y) = β̂pm. As a result,

U2(Y,X) =
∫
|cT (β̂pm−β)|2π(β|Y,X)dβ = σ

2cT (nΣX +Ω)−1)c.

Again, it is independent of Y so
U3(X) = σ

2cT (nΣX +Ω)−1)c,

which recovers the Bayesian C-optimality.

Remark on E-optimality and G-optimality. Although many alphabetical optimality can be written as
utility function form, it is still unclear how to write the E-optimality and G-optimality as a utility function
problem. A major issue is that the two optimality involves the supreme operator of the posterior covariance
matrix. It is unclear how do we adjust the utility function so that this supreme operator can be included.
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